org.python.modules.binascii Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython-slim Show documentation
Show all versions of jython-slim Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
/*
* Copyright 2019 Jython Developers
*
* Original conversion from CPython source copyright 1998 Finn Bock.
*
* This program contains material copyrighted by: Copyright (c) 1991, 1992, 1993, 1994 by Stichting
* Mathematisch Centrum, Amsterdam, The Netherlands.
*/
package org.python.modules;
import org.python.core.ArgParser;
import org.python.core.BufferProtocol;
import org.python.core.Py;
import org.python.core.PyBUF;
import org.python.core.PyBuffer;
import org.python.core.PyException;
import org.python.core.PyObject;
import org.python.core.PyString;
import org.python.core.PyStringMap;
import org.python.core.PyTuple;
import org.python.core.PyUnicode;
import org.python.core.buffer.SimpleStringBuffer;
/**
* The binascii.java module contains a number of methods to convert between binary and
* various ASCII-encoded binary representations. Normally, you will not use these modules directly
* but use wrapper modules like uu or hexbin instead, this module solely exists
* because bit-manipulation of large amounts of data is slow in Python.
*
*
* The binascii.java module defines the following functions:
*
*
* - a2b_uu (string)
* - Convert a single line of uuencoded data back to binary and return the binary data. Lines
* normally contain 45 (binary) bytes, except for the last line. Line data may be followed by
* whitespace.
*
* - b2a_uu (data)
* - Convert binary data to a line of ASCII characters, the return value is the converted line,
* including a newline char. The length of data should be at most 45.
*
* - a2b_base64 (string)
* - Convert a block of base64 data back to binary and return the binary data. More than one line
* may be passed at a time.
*
* - b2a_base64 (data)
* - Convert binary data to a line of ASCII characters in base64 coding. The return value is the
* converted line, including a newline char. The length of data should be at most 57 to
* adhere to the base64 standard.
*
* - a2b_hqx (string)
* - Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression. The string
* should contain a complete number of binary bytes, or (in case of the last portion of the binhex4
* data) have the remaining bits zero.
*
* - rledecode_hqx (data)
* - Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses
* 0x90 after a byte as a repeat indicator, followed by a count. A count of 0
* specifies a byte value of 0x90. The routine returns the decompressed data, unless data
* input data ends in an orphaned repeat indicator, in which case the Incomplete exception
* is raised.
*
* - rlecode_hqx (data)
* - Perform binhex4 style RLE-compression on data and return the result.
*
* - b2a_hqx (data)
* - Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument
* should already be RLE-coded, and have a length divisible by 3 (except possibly the last
* fragment).
*
* - crc_hqx (data, crc)
* - Compute the binhex4 crc value of data, starting with an initial crc and
* returning the result.
*
* - Error
* - Exception raised on errors. These are usually programming errors.
*
* - Incomplete
* - Exception raised on incomplete data. These are usually not programming errors, but may be
* handled by reading a little more data and trying again.
*
*
* The module is a line-by-line conversion of the original binasciimodule.c written by Jack Jansen,
* except that all mistakes and errors are my own.
*
* @author Finn Bock, [email protected]
* @version binascii.java,v 1.6 1999/02/20 11:37:07 fb Exp
*
*/
public class binascii {
public static String __doc__ = "Conversion between binary data and ASCII";
public static final PyObject Error = Py.makeClass("Error", Py.Exception, exceptionNamespace());
public static final PyObject Incomplete =
Py.makeClass("Incomplete", Py.Exception, exceptionNamespace());
public static PyObject exceptionNamespace() {
PyObject dict = new PyStringMap();
dict.__setitem__("__module__", new PyString("binascii"));
return dict;
}
// hqx lookup table, ascii->binary.
private static char RUNCHAR = 0x90;
private static byte DONE = 0x7F;
private static byte SKIP = 0x7E;
private static byte FAIL = 0x7D;
//@formatter:off
private static byte[] table_a2b_hqx = {
/* ^@ ^A ^B ^C ^D ^E ^F ^G */
/* 0*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* \b \t \n ^K ^L \r ^N ^O */
/* 1*/ FAIL, FAIL, SKIP, FAIL, FAIL, SKIP, FAIL, FAIL,
/* ^P ^Q ^R ^S ^T ^U ^V ^W */
/* 2*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
/* 3*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* ! " # $ % & ' */
/* 4*/ FAIL, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
/* ( ) * + , - . / */
/* 5*/ 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, FAIL, FAIL,
/* 0 1 2 3 4 5 6 7 */
/* 6*/ 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, FAIL,
/* 8 9 : ; < = > ? */
/* 7*/ 0x14, 0x15, DONE, FAIL, FAIL, FAIL, FAIL, FAIL,
/* @ A B C D E F G */
/* 8*/ 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D,
/* H I J K L M N O */
/* 9*/ 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, FAIL,
/* P Q R S T U V W */
/*10*/ 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, FAIL,
/* X Y Z [ \ ] ^ _ */
/*11*/ 0x2C, 0x2D, 0x2E, 0x2F, FAIL, FAIL, FAIL, FAIL,
/* ` a b c d e f g */
/*12*/ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, FAIL,
/* h i j k l m n o */
/*13*/ 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, FAIL, FAIL,
/* p q r s t u v w */
/*14*/ 0x3D, 0x3E, 0x3F, FAIL, FAIL, FAIL, FAIL, FAIL,
/* x y z { | } ~ ^? */
/*15*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/*16*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
};
//@formatter:on
private static char[] table_b2a_hqx =
"!\"#$%&'()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[`abcdefhijklmpqr".toCharArray();
//@formatter:off
private static byte table_a2b_base64[] = {
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63,
52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14,
15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1,
-1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40,
41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1
};
//@formatter:on
private static char BASE64_PAD = '=';
/* Max binary chunk size */
private static int BASE64_MAXBIN = Integer.MAX_VALUE / 2 - 3;
private static char[] table_b2a_base64 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".toCharArray();
//@formatter:off
private static int[] crctab_hqx = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
};
//@formatter:on
public static PyString __doc__a2b_uu =
new PyString("(ascii) -> bin. Decode a line of uuencoded data");
/**
* Convert a single line of uuencoded data back to binary and return the binary data. Lines
* normally contain 45 (binary) bytes, except for the last line. Line data may be followed by
* whitespace.
*/
public static PyString a2b_uu(PyObject text) {
try (PyBuffer textBuf = getByteBuffer(text)) {
int textLen = textBuf.getLen();
if (textLen == 0) {
return new PyString("");
}
StringBuilder dataBuf = new StringBuilder();
int bits = 0; // store bits not yet emitted (max 12 bits)
int bitCount = 0; // how many (valid) bits waiting
int index = 0;
int dataExpected = (textBuf.intAt(0) - ' ') & 077;
textLen -= 1;
for (; dataExpected > 0 && textLen > 0; index++, textLen--) {
int ch = textBuf.intAt(index + 1);
int sixBits;
if (ch == '\n' || ch == '\r') {
// Whitespace. Assume some spaces got eaten at end-of-line.
// (We check this later.)
sixBits = 0;
} else {
/*
* Check the character for legality The 64 instead of the expected 63 is because
* there are a few uuencodes out there that use '@' as zero instead of space.
*/
if (ch < ' ' || ch > (' ' + 64)) {
throw new PyException(Error, "Illegal char");
}
sixBits = (ch - ' ') & 0x3f;
}
// Shift it in on the low end, and see if there's a byte ready for output.
bits = (bits << 6) | sixBits;
bitCount += 6;
if (bitCount >= 8) {
bitCount -= 8;
int b = (bits >> bitCount) & 0xff;
dataBuf.append((char) b); // byte
bits &= (1 << bitCount) - 1;
dataExpected--;
}
}
// Finally, check that anything left on the line is white space.
while (textLen-- > 0) {
int ch = textBuf.intAt(++index);
// Extra '@' may be written as padding in some cases
if (ch != ' ' && ch != '@' && ch != '\n' && ch != '\r') {
throw new PyException(Error, "Trailing garbage");
}
}
// finally, if we haven't decoded enough stuff, fill it up with zeros
for (; index < dataExpected; index++) {
dataBuf.append((char) 0);
}
return new PyString(dataBuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_uu", text);
}
}
public static PyString __doc__b2a_uu = new PyString("(bin) -> ascii. Uuencode line of data");
/**
* Convert binary data to a line of ASCII characters, the return value is the converted line,
* including a newline char. The length of data should be at most 45.
*/
public static PyString b2a_uu(PyObject data) {
try (PyBuffer dataBuf = getByteBuffer(data)) {
int dataLen = dataBuf.getLen();
if (dataLen > 45) {
// The 45 is a limit that appears in all uuencode's
throw new PyException(Error, "At most 45 bytes at once");
}
// Each 3 bytes (rounded up) produce 4 characters, plus a 1 byte length and '\n'
StringBuilder textBuf = new StringBuilder(4 * ((dataLen + 2) / 3) + 2);
int bitCount = 0;
int bits = 0;
// Store the length
textBuf.append((char) (' ' + (dataLen & 077)));
for (int i = 0; dataLen > 0 || bitCount != 0; i++, dataLen--) {
// Shift the data (or padding) into our buffer
if (dataLen > 0) {
bits = (bits << 8) | dataBuf.intAt(i);
} else {
bits <<= 8;
}
bitCount += 8;
// See if there are 6-bit groups ready
while (bitCount >= 6) {
bitCount -= 6;
int sixBits = (bits >> bitCount) & 0x3f;
textBuf.append((char) (sixBits + ' '));
}
}
textBuf.append('\n'); // Append a courtesy newline
return new PyString(textBuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("b2a_uu", data);
}
}
/** Finds & returns the (num+1)th valid character for base64, or -1 if none. */
private static int binascii_find_valid(PyBuffer b, int offset, int num) {
int blen = b.getLen() - offset;
int ret = -1;
while ((blen > 0) && (ret == -1)) {
int c = b.intAt(offset);
byte b64val = table_a2b_base64[c & 0x7f];
if (((c <= 0x7f) && (b64val != -1))) {
if (num == 0) {
ret = c;
}
num--;
}
offset++;
blen--;
}
return ret;
}
public static PyString __doc__a2b_base64 =
new PyString("(ascii) -> bin. Decode a line of base64 data");
/**
* Convert a block of base64 data back to binary and return the binary data. More than one line
* may be passed at a time.
*/
public static PyString a2b_base64(PyObject text) {
try (PyBuffer textBuf = getByteBuffer(text)) {
int textLen = textBuf.getLen();
// Every 4 characters (rounded up) map to 3 bytes. (Or fewer, if there are extras.)
int dataLen = 3 * ((textLen + 3) / 4);
// These characters will represent bytes, in the usual Jython 2 way.
StringBuilder dataBuf = new StringBuilder(dataLen);
int bits = 0; // store bits not yet emitted (max 12 bits)
int bitCount = 0; // how many (valid) bits waiting
int quad_pos = 0;
for (int i = 0; textLen > 0; textLen--, i++) {
// Skip some punctuation
int ch = textBuf.intAt(i);
if (ch > 0x7F || ch == '\r' || ch == '\n' || ch == ' ') {
continue;
} else
if (ch == BASE64_PAD) {
if (quad_pos < 2 || (quad_pos == 2
&& binascii_find_valid(textBuf, i, 1) != BASE64_PAD)) {
continue;
} else {
// A pad sequence means no more input. We've already interpreted the data
// from the quad at this point.
bitCount = 0;
break;
}
} else {
int sixBits = table_a2b_base64[ch];
if (sixBits == -1) {
continue;
}
// Shift it in on the low end, and see if there's a byte ready for output.
quad_pos = (quad_pos + 1) & 0x03;
bits = (bits << 6) | sixBits;
bitCount += 6;
if (bitCount >= 8) {
bitCount -= 8;
dataBuf.append((char) ((bits >> bitCount) & 0xff)); // byte
// Erase the bits we emitted
bits &= (1 << bitCount) - 1;
}
}
}
// Check that no bits are left
if (bitCount != 0) {
throw new PyException(Error, "Incorrect padding");
}
return new PyString(dataBuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_base64", text);
}
}
public static PyString __doc__b2a_base64 =
new PyString("(bin) -> ascii. Base64-code line of data");
/**
* Convert binary data to a line of ASCII characters in base64 coding. The return value is the
* converted line, including a newline char.
*/
public static PyString b2a_base64(PyObject data) {
try (PyBuffer dataBuf = getByteBuffer(data)) {
int dataLen = dataBuf.getLen();
if (dataLen > BASE64_MAXBIN) {
throw new PyException(Error, "Too much data for base64 line");
}
// Every 3 bytes (rounded up) maps to 4 characters (and there's a newline)
StringBuilder ascii_data = new StringBuilder(4 * ((dataLen + 2) / 3) + 1);
int bits = 0; // store bits not yet emitted (max 14 bits)
int bitCount = 0; // how many (valid) bits waiting
for (int i = 0; i < dataLen; i++) {
// Shift the data into our buffer
bits = (bits << 8) | dataBuf.intAt(i);
bitCount += 8;
// While there are 6-bit groups available, emit them as characters.
while (bitCount >= 6) {
bitCount -= 6;
ascii_data.append(table_b2a_base64[(bits >> bitCount) & 0x3f]);
}
}
// Emit the balance of bits and append a newline
if (bitCount == 2) {
ascii_data.append(table_b2a_base64[(bits & 3) << 4]);
ascii_data.append(BASE64_PAD);
ascii_data.append(BASE64_PAD);
} else if (bitCount == 4) {
ascii_data.append(table_b2a_base64[(bits & 0xf) << 2]);
ascii_data.append(BASE64_PAD);
}
ascii_data.append('\n'); // Append a courtesy newline
return new PyString(ascii_data.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("b2a_base64", data);
}
}
public static PyString __doc__a2b_hqx = new PyString("ascii -> bin, done. Decode .hqx coding");
/**
* Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression. The string
* should contain a complete number of binary bytes, or (in case of the last portion of the
* binhex4 data) have the remaining bits zero.
*/
public static PyTuple a2b_hqx(PyObject text) {
try (PyBuffer textBuf = getByteBuffer(text)) {
int textLen = textBuf.getLen();
StringBuilder dataBuf = new StringBuilder();
int bitCount = 0;
int bits = 0;
boolean done = false;
for (int i = 0; i < textLen; i++) {
// Get the byte and look it up
byte b = table_a2b_hqx[textBuf.intAt(i)];
if (b == SKIP) {
continue;
} else if (b == FAIL) {
throw new PyException(Error, "Illegal char");
} else if (b == DONE) {
// The terminating colon
done = true;
break;
} else {
// Shift it into the buffer and see if any bytes are ready
bits = (bits << 6) | b;
bitCount += 6;
if (bitCount >= 8) {
bitCount -= 8;
dataBuf.append((char) ((bits >> bitCount) & 0xff)); // byte
bits &= (1 << bitCount) - 1;
}
}
}
if (bitCount != 0 && !done) {
throw new PyException(Incomplete, "String has incomplete number of bytes");
}
return new PyTuple(new PyString(dataBuf.toString()), Py.newInteger(done ? 1 : 0));
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_hqx", text);
}
}
public static PyString __doc__rlecode_hqx = new PyString("Binhex RLE-code binary data");
/** Perform binhex4 style RLE-compression on data and return the result. */
static public PyString rlecode_hqx(PyObject data) {
try (PyBuffer inBuf = getByteBuffer(data)) {
int len = inBuf.getLen();
StringBuilder outBuf = new StringBuilder();
for (int in = 0; in < len; in++) {
char ch = (char) inBuf.intAt(in);
if (ch == RUNCHAR) {
// RUNCHAR. Escape it.
outBuf.append(RUNCHAR);
outBuf.append((char) 0);
} else {
// Check how many following are the same
int inend;
for (inend = in + 1; inend < len && ((char) inBuf.intAt(inend)) == ch
&& inend < in + 255; inend++) { /* nothing */ }
if (inend - in > 3) {
// More than 3 in a row. Output RLE.
outBuf.append(ch);
outBuf.append(RUNCHAR);
outBuf.append((char) (inend - in));
in = inend - 1;
} else {
// Less than 3. Output the byte itself
outBuf.append(ch);
}
}
}
return new PyString(outBuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("rlecode_hqx", data);
}
}
public static PyString __doc__b2a_hqx = new PyString("Encode .hqx data");
/**
* Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument
* should already be RLE-coded, and have a length divisible by 3 (except possibly the last
* fragment).
*/
public static PyString b2a_hqx(PyObject data) {
try (PyBuffer dataBuf = getByteBuffer(data)) {
int len = dataBuf.getLen();
StringBuilder textBuf = new StringBuilder();
int bits = 0;
int bitCount = 0;
for (int i = 0; len > 0; len--, i++) {
// Shift into our buffer, and output any 6bits ready
bits = (bits << 8) | (char) dataBuf.intAt(i);
bitCount += 8;
while (bitCount >= 6) {
bitCount -= 6;
textBuf.append(table_b2a_hqx[(bits >> bitCount) & 0x3f]);
}
}
// Output a possible runt byte
if (bitCount != 0) {
bits <<= (6 - bitCount);
textBuf.append(table_b2a_hqx[bits & 0x3f]);
}
return new PyString(textBuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("b2a_hqx", data);
}
}
public static PyString __doc__rledecode_hqx = new PyString("Decode hexbin RLE-coded string");
/**
* Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses
* 0x90 after a byte as a repeat indicator, followed by a count. A count of 0
* specifies a byte value of 0x90. The routine returns the decompressed data, unless
* data input data ends in an orphaned repeat indicator, in which case the Incomplete
* exception is raised.
*/
static public PyString rledecode_hqx(PyObject data) {
try (PyBuffer inBuf = getByteBuffer(data)) {
int inLen = inBuf.getLen();
int index = 0;
// Empty string is a special case
if (inLen == 0) {
return Py.EmptyString;
}
// Pretty much throughout, we use a char to store a byte :(
StringBuilder outBuf = new StringBuilder();
// Handle first byte separately (since we have to get angry
// in case of an orphaned RLE code).
if (--inLen < 0) {
throw new PyException(Incomplete);
}
char outByte = (char) inBuf.intAt(index++);
if (outByte == RUNCHAR) {
if (--inLen < 0) {
throw new PyException(Incomplete);
}
int in_repeat = inBuf.intAt(index++);
if (in_repeat != 0) {
// Note Error, not Incomplete (which is at the end
// of the string only). This is a programmer error.
throw new PyException(Error, "Orphaned RLE code at start");
}
outBuf.append(RUNCHAR);
} else {
outBuf.append(outByte);
}
while (inLen > 0) {
if (--inLen < 0) {
throw new PyException(Incomplete);
}
outByte = (char) inBuf.intAt(index++);
if (outByte == RUNCHAR) {
if (--inLen < 0) {
throw new PyException(Incomplete);
}
int in_repeat = inBuf.intAt(index++);
if (in_repeat == 0) {
// Just an escaped RUNCHAR value
outBuf.append(RUNCHAR);
} else {
// Pick up value and output a sequence of it
outByte = outBuf.charAt(outBuf.length() - 1);
while (--in_repeat > 0) {
outBuf.append(outByte);
}
}
} else {
// Normal byte
outBuf.append(outByte);
}
}
return new PyString(outBuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("rledecode_hqx", data);
}
}
public static PyString __doc__crc_hqx =
new PyString("(data, oldcrc) -> newcrc. Compute hqx CRC incrementally");
/**
* Compute the binhex4 crc value of data, starting with an initial crc and
* returning the result.
*/
public static int crc_hqx(PyObject data, int crc) {
try (PyBuffer buf = getByteBuffer(data)) {
int len = buf.getLen();
for (int i = 0; i < len; i++) {
crc = ((crc << 8) & 0xff00) ^ crctab_hqx[((crc >> 8) & 0xff) ^ buf.intAt(i)];
}
return crc;
} catch (ClassCastException e) {
throw argMustBeBytes("crc_hqx", data);
}
}
//@formatter:off
static int[] crc_32_tab = new int[] {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
0x2d02ef8d
};
//@formatter:on
public static int crc32(PyObject bp) {
return crc32(bp, 0);
}
public static int crc32(PyObject data, long long_crc) {
int crc = ~(int) long_crc;
try (PyBuffer dataBuf = getByteBuffer(data)) {
int len = dataBuf.getLen();
for (int i = 0; i < len; i++) {
int b = dataBuf.intAt(i);
crc = crc_32_tab[(crc ^ b) & 0xff] ^ (crc >>> 8);
/* Note: (crc >> 8) MUST zero fill on left */
}
return ~crc;
} catch (ClassCastException e) {
throw argMustBeBytes("crc32", data);
}
}
private static char[] hexdigit = "0123456789abcdef".toCharArray();
public static PyString __doc__b2a_hex =
new PyString("b2a_hex(data) -> s; Hexadecimal representation of binary data.\n" + "\n"
+ "This function is also available as \"hexlify()\".");
public static PyString b2a_hex(PyObject data) {
try (PyBuffer dataBuf = getByteBuffer(data)) {
int dataLen = dataBuf.getLen();
StringBuilder retbuf = new StringBuilder(dataLen * 2);
// make hex version of string, taken from shamodule.c
for (int i = 0; i < dataLen; i++) {
int ch = dataBuf.intAt(i);
retbuf.append(hexdigit[(ch >>> 4) & 0xF]);
retbuf.append(hexdigit[ch & 0xF]);
}
return new PyString(retbuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("b2a_hex", data);
}
}
public static PyString hexlify(PyObject argbuf) {
return b2a_hex(argbuf);
}
public static PyString a2b_hex$doc =
new PyString("a2b_hex(hexstr) -> s; Binary data of hexadecimal representation.\n" + "\n"
+ "hexstr must contain an even number of hex digits "
+ "(upper or lower case).\n"
+ "This function is also available as \"unhexlify()\"");
public static PyString a2b_hex(PyObject hexstr) {
try (PyBuffer buf = getByteBuffer(hexstr)) {
int bufLen = buf.getLen();
StringBuilder retbuf = new StringBuilder(bufLen / 2);
/*
* XXX What should we do about strings with an odd length? Should we add an implicit
* leading zero, or a trailing zero? For now, raise an exception.
*/
if (bufLen % 2 != 0) {
throw Py.TypeError("Odd-length string");
}
for (int i = 0; i < bufLen; i += 2) {
int top = Character.digit(buf.intAt(i), 16);
int bot = Character.digit(buf.intAt(i + 1), 16);
if (top == -1 || bot == -1) {
throw Py.TypeError("Non-hexadecimal digit found");
}
retbuf.append((char) ((top << 4) + bot));
}
return new PyString(retbuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_hex", hexstr);
}
}
public static PyString unhexlify(PyObject argbuf) {
return a2b_hex(argbuf);
}
final private static char[] upper_hexdigit = "0123456789ABCDEF".toCharArray();
private static StringBuilder qpEscape(StringBuilder sb, char c) {
sb.append('=');
sb.append(upper_hexdigit[(c >>> 4) & 0xF]);
sb.append(upper_hexdigit[c & 0xF]);
return sb;
}
final public static PyString __doc__a2b_qp = new PyString("Decode a string of qp-encoded data");
private static boolean getIntFlagAsBool(ArgParser ap, int index, int dflt, String errMsg) {
try {
boolean val = ap.getInt(index, dflt) != 0;
return val;
} catch (PyException e) {
if (e.match(Py.AttributeError) || e.match(Py.ValueError)) {
throw Py.TypeError(errMsg);
}
throw e;
}
}
public static PyString a2b_qp(PyObject[] arg, String[] kws) {
ArgParser ap = new ArgParser("a2b_qp", arg, kws, new String[] {"s", "header"});
PyObject bp = ap.getPyObject(0);
StringBuilder sb = new StringBuilder();
boolean header = getIntFlagAsBool(ap, 1, 0, "an integer is required");
try (PyBuffer ascii_data = getByteBuffer((PyObject) bp)) {
for (int i = 0, m = ascii_data.getLen(); i < m;) {
char c = (char) ascii_data.intAt(i++);
if (header && c == '_') {
sb.append(' ');
} else if (c == '=') {
if (i < m) {
c = (char) ascii_data.intAt(i++);
if (c == '=') {
sb.append(c);
} else if (c == ' ') {
sb.append("= ");
} else if ((c >= '0' && c <= '9' || c >= 'A' && c <= 'F') && i < m) {
char nc = (char) ascii_data.intAt(i++);
if ((nc >= '0' && nc <= '9' || nc >= 'A' && nc <= 'F')) {
sb.append((char) (Character.digit(c, 16) << 4
| Character.digit(nc, 16)));
} else {
sb.append('=').append(c).append(nc);
}
} else if (c != '\n') {
sb.append('=').append(c);
}
}
} else {
sb.append(c);
}
}
return new PyString(sb.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_qp", bp);
}
}
final public static PyString __doc__b2a_qp =
new PyString("b2a_qp(data, quotetabs=0, istext=1, header=0) -> s;\n"
+ "Encode a string using quoted-printable encoding.\n\n"
+ "On encoding, when istext is set, newlines are not encoded, and white\n"
+ "space at end of lines is. When istext is not set, \r and \n (CR/LF) are\n"
+ "both encoded. When quotetabs is set, space and tabs are encoded.");
public static PyString b2a_qp(PyObject[] arg, String[] kws) {
ArgParser ap = new ArgParser("b2a_qp", arg, kws,
new String[] {"s", "quotetabs", "istext", "header"});
boolean quotetabs = getIntFlagAsBool(ap, 1, 0, "an integer is required");
boolean istext = getIntFlagAsBool(ap, 2, 1, "an integer is required");
boolean header = getIntFlagAsBool(ap, 3, 0, "an integer is required");
PyObject data = ap.getPyObject(0);
try (PyBuffer dataBuf = getByteBuffer(data)) {
int dataLen = dataBuf.getLen();
StringBuilder sb = new StringBuilder(dataLen);
String lineEnd = "\n";
// Work out if line endings should be crlf.
for (int i = 0, m = dataBuf.getLen(); i < m; i++) {
if ('\n' == dataBuf.intAt(i)) {
if (i > 0 && '\r' == dataBuf.intAt(i - 1)) {
lineEnd = "\r\n";
}
break;
}
}
int count = 0;
int MAXLINESIZE = 76;
int in = 0;
while (in < dataLen) {
char ch = (char) dataBuf.intAt(in);
if ((ch > 126) || (ch == '=') || (header && ch == '_')
|| ((ch == '.') && (count == 0)
&& ((in + 1 == dataLen) || (char) dataBuf.intAt(in + 1) == '\n'
|| (char) dataBuf.intAt(in + 1) == '\r'))
|| (!istext && ((ch == '\r') || (ch == '\n')))
|| ((ch == '\t' || ch == ' ') && (in + 1 == dataLen))
|| ((ch < 33) && (ch != '\r') && (ch != '\n')
&& (quotetabs || (!quotetabs && ((ch != '\t') && (ch != ' ')))))) {
if ((count + 3) >= MAXLINESIZE) {
sb.append('=');
sb.append(lineEnd);
count = 0;
}
qpEscape(sb, ch);
in++;
count += 3;
} else {
if (istext && ((ch == '\n') || ((in + 1 < dataLen) && (ch == '\r')
&& (dataBuf.intAt(in + 1) == '\n')))) {
count = 0;
// Protect against whitespace on end of line
int out = sb.length();
if (out > 0
&& ((sb.charAt(out - 1) == ' ') || (sb.charAt(out - 1) == '\t'))) {
ch = sb.charAt(out - 1);
sb.setLength(out - 1);
qpEscape(sb, ch);
}
sb.append(lineEnd);
if (ch == '\r') {
in += 2;
} else {
in++;
}
} else {
if ((in + 1 != dataLen) && ((char) dataBuf.intAt(in + 1) != '\n')
&& (count + 1) >= MAXLINESIZE) {
sb.append('=');
sb.append(lineEnd);
count = 0;
}
count++;
if (header && ch == ' ') {
sb.append('_');
in++;
} else {
sb.append(ch);
in++;
}
}
}
}
return new PyString(sb.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("b2a_qp", data);
}
}
/**
* We use this when the argument given to a conversion method is to be interpreted as text. If
* it is byte-like, the bytes are used unchanged, assumed in the "intended" character set. It
* may be a {@code PyUnicode}, in which case the it will be decoded to bytes using the default
* encoding ({@code sys.getdefaultencoding()}.
*
* @param text an object with the buffer protocol (or {@code unicode})
* @return a byte-buffer view of argument (or default decoding if {@code unicode})
* @throws ClassCastException where the text object does not implement the buffer protocol
*/
private static PyBuffer getByteBuffer(PyObject text) throws ClassCastException {
if (text instanceof PyUnicode) {
String s = ((PyUnicode) text).encode();
return new SimpleStringBuffer(PyBUF.SIMPLE, null, s);
} else {
return ((BufferProtocol) text).getBuffer(PyBUF.SIMPLE);
}
}
/**
* Convenience method providing the exception when an argument is not the expected type, in the
* format "f() argument 1 must bytes or unicode, not type(arg)
."
*
* @param f name of function of error (or could be any text)
* @param arg argument provided from which actual type will be reported
* @return TypeError to throw
*/
private static PyException argMustBeBytes(String f, PyObject arg) {
String fmt = "%s() argument 1 must bytes or unicode, not %s";
String type = "null";
if (arg instanceof PyObject) {
type = ((PyObject) arg).getType().fastGetName();
} else if (arg != null) {
type = arg.getClass().getName();
}
return Py.TypeError(String.format(fmt, f, type));
}
}