lib-python.2.7.unittest.test.test_functiontestcase.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython-standalone Show documentation
Show all versions of jython-standalone Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
import unittest
from .support import LoggingResult
class Test_FunctionTestCase(unittest.TestCase):
# "Return the number of tests represented by the this test object. For
# TestCase instances, this will always be 1"
def test_countTestCases(self):
test = unittest.FunctionTestCase(lambda: None)
self.assertEqual(test.countTestCases(), 1)
# "When a setUp() method is defined, the test runner will run that method
# prior to each test. Likewise, if a tearDown() method is defined, the
# test runner will invoke that method after each test. In the example,
# setUp() was used to create a fresh sequence for each test."
#
# Make sure the proper call order is maintained, even if setUp() raises
# an exception.
def test_run_call_order__error_in_setUp(self):
events = []
result = LoggingResult(events)
def setUp():
events.append('setUp')
raise RuntimeError('raised by setUp')
def test():
events.append('test')
def tearDown():
events.append('tearDown')
expected = ['startTest', 'setUp', 'addError', 'stopTest']
unittest.FunctionTestCase(test, setUp, tearDown).run(result)
self.assertEqual(events, expected)
# "When a setUp() method is defined, the test runner will run that method
# prior to each test. Likewise, if a tearDown() method is defined, the
# test runner will invoke that method after each test. In the example,
# setUp() was used to create a fresh sequence for each test."
#
# Make sure the proper call order is maintained, even if the test raises
# an error (as opposed to a failure).
def test_run_call_order__error_in_test(self):
events = []
result = LoggingResult(events)
def setUp():
events.append('setUp')
def test():
events.append('test')
raise RuntimeError('raised by test')
def tearDown():
events.append('tearDown')
expected = ['startTest', 'setUp', 'test', 'addError', 'tearDown',
'stopTest']
unittest.FunctionTestCase(test, setUp, tearDown).run(result)
self.assertEqual(events, expected)
# "When a setUp() method is defined, the test runner will run that method
# prior to each test. Likewise, if a tearDown() method is defined, the
# test runner will invoke that method after each test. In the example,
# setUp() was used to create a fresh sequence for each test."
#
# Make sure the proper call order is maintained, even if the test signals
# a failure (as opposed to an error).
def test_run_call_order__failure_in_test(self):
events = []
result = LoggingResult(events)
def setUp():
events.append('setUp')
def test():
events.append('test')
self.fail('raised by test')
def tearDown():
events.append('tearDown')
expected = ['startTest', 'setUp', 'test', 'addFailure', 'tearDown',
'stopTest']
unittest.FunctionTestCase(test, setUp, tearDown).run(result)
self.assertEqual(events, expected)
# "When a setUp() method is defined, the test runner will run that method
# prior to each test. Likewise, if a tearDown() method is defined, the
# test runner will invoke that method after each test. In the example,
# setUp() was used to create a fresh sequence for each test."
#
# Make sure the proper call order is maintained, even if tearDown() raises
# an exception.
def test_run_call_order__error_in_tearDown(self):
events = []
result = LoggingResult(events)
def setUp():
events.append('setUp')
def test():
events.append('test')
def tearDown():
events.append('tearDown')
raise RuntimeError('raised by tearDown')
expected = ['startTest', 'setUp', 'test', 'tearDown', 'addError',
'stopTest']
unittest.FunctionTestCase(test, setUp, tearDown).run(result)
self.assertEqual(events, expected)
# "Return a string identifying the specific test case."
#
# Because of the vague nature of the docs, I'm not going to lock this
# test down too much. Really all that can be asserted is that the id()
# will be a string (either 8-byte or unicode -- again, because the docs
# just say "string")
def test_id(self):
test = unittest.FunctionTestCase(lambda: None)
self.assertIsInstance(test.id(), basestring)
# "Returns a one-line description of the test, or None if no description
# has been provided. The default implementation of this method returns
# the first line of the test method's docstring, if available, or None."
def test_shortDescription__no_docstring(self):
test = unittest.FunctionTestCase(lambda: None)
self.assertEqual(test.shortDescription(), None)
# "Returns a one-line description of the test, or None if no description
# has been provided. The default implementation of this method returns
# the first line of the test method's docstring, if available, or None."
def test_shortDescription__singleline_docstring(self):
desc = "this tests foo"
test = unittest.FunctionTestCase(lambda: None, description=desc)
self.assertEqual(test.shortDescription(), "this tests foo")
if __name__ == '__main__':
unittest.main()