Lib._socket.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython-standalone Show documentation
Show all versions of jython-standalone Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
import array
import encodings.idna
import errno
import jarray
import logging
import numbers
import pprint
import struct
import sys
import time
import _google_ipaddr_r234
from collections import namedtuple, Iterable
from contextlib import contextmanager
from functools import partial, wraps
from itertools import chain
from jythonlib import MapMaker, dict_builder
from numbers import Number
from StringIO import StringIO
from threading import Condition, Lock
from types import MethodType, NoneType
import java
from java.io import IOException, InterruptedIOException
from java.lang import Thread, IllegalStateException
from java.net import InetAddress, InetSocketAddress
from java.nio.channels import ClosedChannelException
from java.security.cert import CertificateException
from java.util import NoSuchElementException
from java.util.concurrent import (
ArrayBlockingQueue, CopyOnWriteArrayList, CountDownLatch, LinkedBlockingQueue,
RejectedExecutionException, ThreadFactory, TimeUnit)
from java.util.concurrent.atomic import AtomicBoolean, AtomicLong
from javax.net.ssl import SSLPeerUnverifiedException, SSLException
try:
# jarjar-ed version
from org.python.netty.bootstrap import Bootstrap, ChannelFactory, ServerBootstrap
from org.python.netty.buffer import PooledByteBufAllocator, Unpooled
from org.python.netty.channel import ChannelException as NettyChannelException, ChannelInboundHandlerAdapter, ChannelInitializer, ChannelOption
from org.python.netty.channel.nio import NioEventLoopGroup
from org.python.netty.channel.socket import DatagramPacket
from org.python.netty.channel.socket.nio import NioDatagramChannel, NioSocketChannel, NioServerSocketChannel
except ImportError:
# dev version from extlibs
from io.netty.bootstrap import Bootstrap, ChannelFactory, ServerBootstrap
from io.netty.buffer import PooledByteBufAllocator, Unpooled
from io.netty.channel import ChannelException as NettyChannelException, ChannelInboundHandlerAdapter, ChannelInitializer, ChannelOption
from io.netty.channel.nio import NioEventLoopGroup
from io.netty.channel.socket import DatagramPacket
from io.netty.channel.socket.nio import NioDatagramChannel, NioSocketChannel, NioServerSocketChannel
log = logging.getLogger("_socket")
log.setLevel(level=logging.WARNING)
def _debug():
FORMAT = '%(asctime)-15s %(threadName)s %(levelname)s %(funcName)s %(message)s %(sock)s'
debug_sh = logging.StreamHandler()
debug_sh.setFormatter(logging.Formatter(FORMAT))
log.addHandler(debug_sh)
log.setLevel(level=logging.DEBUG)
# _debug() # UNCOMMENT to get logging of socket activity
# Constants
###########
has_ipv6 = True # IPV6 FTW!
_GLOBAL_DEFAULT_TIMEOUT = object()
_EPHEMERAL_ADDRESS = InetSocketAddress(0)
_BOUND_EPHEMERAL_ADDRESS = object()
# FIXME most constants should come from JNR if possible; they may be
# arbitrary for the implementation of socket/ssl/select purposes, but
# some misbehaved code may want to use the arbitrary numbers
SHUT_RD = 0
SHUT_WR = 1
SHUT_RDWR = 2
AF_UNSPEC = 0
AF_INET = 2
AF_INET6 = 23
AI_PASSIVE = 1
AI_CANONNAME = 2
AI_NUMERICHOST = 4
AI_V4MAPPED = 8
AI_ALL = 16
AI_ADDRCONFIG = 32
AI_NUMERICSERV = 1024
EAI_NONAME = -2
EAI_SERVICE = -8
EAI_ADDRFAMILY = -9
NI_NUMERICHOST = 1
NI_NUMERICSERV = 2
NI_NOFQDN = 4
NI_NAMEREQD = 8
NI_DGRAM = 16
NI_MAXSERV = 32
NI_IDN = 64
NI_IDN_ALLOW_UNASSIGNED = 128
NI_IDN_USE_STD3_ASCII_RULES = 256
NI_MAXHOST = 1025
SOCK_DGRAM = 1
SOCK_STREAM = 2
SOCK_RAW = 3 # not supported
SOCK_RDM = 4 # not supported
SOCK_SEQPACKET = 5 # not supported
SOL_SOCKET = 0xFFFF
IPPROTO_AH = 51 # not supported
IPPROTO_DSTOPTS = 60 # not supported
IPPROTO_ESP = 50 # not supported
IPPROTO_FRAGMENT = 44 # not supported
IPPROTO_GGP = 3 # not supported
IPPROTO_HOPOPTS = 0 # not supported
IPPROTO_ICMP = 1 # not supported
IPPROTO_ICMPV6 = 58 # not supported
IPPROTO_IDP = 22 # not supported
IPPROTO_IGMP = 2 # not supported
IPPROTO_IP = 0
IPPROTO_IPV4 = 4 # not supported
IPPROTO_IPV6 = 41 # not supported
IPPROTO_MAX = 256 # not supported
IPPROTO_ND = 77 # not supported
IPPROTO_NONE = 59 # not supported
IPPROTO_PUP = 12 # not supported
IPPROTO_RAW = 255 # not supported
IPPROTO_ROUTING = 43 # not supported
IPPROTO_TCP = 6
IPPROTO_UDP = 17
SO_ACCEPTCONN = 1
SO_BROADCAST = 2
SO_ERROR = 4
SO_KEEPALIVE = 8
SO_LINGER = 16
SO_OOBINLINE = 32
SO_RCVBUF = 64
SO_REUSEADDR = 128
SO_SNDBUF = 256
SO_TIMEOUT = 512
SO_TYPE = 1024
# Options with negative constants are not supported
# They are being added here so that code that refers to them
# will not break with an AttributeError
SO_DEBUG = -1
SO_DONTROUTE = -1
SO_EXCLUSIVEADDRUSE = -8
SO_RCVLOWAT = -16
SO_RCVTIMEO = -32
SO_REUSEPORT = -64
SO_SNDLOWAT = -128
SO_SNDTIMEO = -256
SO_USELOOPBACK = -512
TCP_NODELAY = 2048
INADDR_ANY = "0.0.0.0"
INADDR_BROADCAST = "255.255.255.255"
IN6ADDR_ANY_INIT = "::"
POLLIN = 1
POLLOUT = 2
POLLPRI = 4 # Ignored - not supportable on Java
POLLERR = 8
POLLHUP = 16
POLLNVAL = 32 # Polled when not open - no Netty channel
# Specific constants for socket-reboot:
# Keep the highest possible precision for converting from Python's use
# of floating point for durations to Java's use of both a long
# duration and a specific unit, in this case TimeUnit.NANOSECONDS
_TO_NANOSECONDS = 1000000000
_PEER_CLOSED = object()
# Event loop management
#######################
_NUM_THREADS = 10
# Use daemon threads for the event loop group. This is just fine
# because these threads only handle ephemeral data, such as performing
# SSL wrap/unwrap.
class DaemonThreadFactory(ThreadFactory):
thread_count = AtomicLong()
def __init__(self, label):
self.label = label
def newThread(self, runnable):
t = Thread(runnable)
t.daemon = True
t.name = self.label % (self.thread_count.getAndIncrement())
return t
NIO_GROUP = NioEventLoopGroup(_NUM_THREADS, DaemonThreadFactory("Jython-Netty-Client-%s"))
def _check_threadpool_for_pending_threads(group):
pending_threads = []
for t in group:
pending_count = t.pendingTasks()
if pending_count > 0:
pending_threads.append((t, pending_count))
log.debug("Pending threads in Netty pool: %s", pprint.pformat(pending_threads), extra={"sock": "*"})
return pending_threads
def _shutdown_threadpool():
log.debug("Shutting down thread pool...", extra={"sock": "*"})
# FIXME this timeout probably should be configurable; for client
# usage that have completed this probably only produces scary
# messages at worst, but TBD; in particular this may because we
# are seeing closes both in SSL and at the socket level
NIO_GROUP.shutdownGracefully(0, 100, TimeUnit.MILLISECONDS)
log.debug("Shut down thread pool", extra={"sock": "*"})
# Ensure deallocation of thread pool if PySystemState.cleanup is
# called; this includes in the event of sigterm
sys.registerCloser(_shutdown_threadpool)
# Error management
##################
class error(IOError): pass
class herror(error): pass
class gaierror(error): pass
class timeout(error): pass
class SSLError(error): pass
SSL_ERROR_SSL = 1
SSL_ERROR_WANT_READ = 2
SSL_ERROR_WANT_WRITE = 3
SSL_ERROR_WANT_X509_LOOKUP = 4
SSL_ERROR_SYSCALL = 5
SSL_ERROR_ZERO_RETURN = 6
SSL_ERROR_WANT_CONNECT = 7
SSL_ERROR_EOF = 8
SSL_ERROR_INVALID_ERROR_CODE = 9
def _add_exception_attrs(exc):
exc.errno = exc[0]
exc.strerror = exc[1]
return exc
def _unmapped_exception(exc):
return _add_exception_attrs(error(-1, 'Unmapped exception: %s' % exc))
def java_net_socketexception_handler(exc):
if exc.message.startswith("Address family not supported by protocol family"):
return _add_exception_attrs(
error(errno.EAFNOSUPPORT,
'Address family not supported by protocol family: See http://wiki.python.org/jython/NewSocketModule#IPV6_address_support'))
if exc.message.startswith('Address already in use'):
return error(errno.EADDRINUSE, 'Address already in use')
return _unmapped_exception(exc)
def would_block_error(exc=None):
return _add_exception_attrs(
error(errno.EWOULDBLOCK, 'The socket operation could not complete without blocking'))
_exception_map = {
# javaexception : callable that raises the python equivalent exception, or None to stub out as unmapped
IOException : lambda x: error(errno.ECONNRESET, 'Software caused connection abort'),
InterruptedIOException : lambda x: timeout(None, 'timed out'),
IllegalStateException : lambda x: error(errno.EPIPE, 'Illegal state exception'),
java.net.BindException : lambda x: error(errno.EADDRINUSE, 'Address already in use'),
java.net.ConnectException : lambda x: error(errno.ECONNREFUSED, 'Connection refused'),
java.net.NoRouteToHostException : lambda x: error(errno.EHOSTUNREACH, 'No route to host'),
java.net.PortUnreachableException : None,
java.net.ProtocolException : None,
java.net.SocketException : java_net_socketexception_handler,
java.net.SocketTimeoutException : lambda x: timeout(None, 'timed out'),
java.net.UnknownHostException : lambda x: gaierror(errno.EGETADDRINFOFAILED, 'getaddrinfo failed'),
java.nio.channels.AlreadyConnectedException : lambda x: error(errno.EISCONN, 'Socket is already connected'),
java.nio.channels.AsynchronousCloseException : None,
java.nio.channels.CancelledKeyException : None,
java.nio.channels.ClosedByInterruptException : None,
java.nio.channels.ClosedChannelException : lambda x: error(errno.ECONNRESET, 'Socket closed'),
java.nio.channels.ClosedSelectorException : None,
java.nio.channels.ConnectionPendingException : None,
java.nio.channels.IllegalBlockingModeException : None,
java.nio.channels.IllegalSelectorException : None,
java.nio.channels.NoConnectionPendingException : None,
java.nio.channels.NonReadableChannelException : None,
java.nio.channels.NonWritableChannelException : None,
java.nio.channels.NotYetBoundException : None,
java.nio.channels.NotYetConnectedException : None,
java.nio.channels.UnresolvedAddressException : lambda x: gaierror(errno.EGETADDRINFOFAILED, 'getaddrinfo failed'),
java.nio.channels.UnsupportedAddressTypeException : None,
SSLPeerUnverifiedException: lambda x: SSLError(SSL_ERROR_SSL, x.message),
}
def _map_exception(java_exception):
if isinstance(java_exception, NettyChannelException):
java_exception = java_exception.cause # unwrap
if isinstance(java_exception, SSLException) or isinstance(java_exception, CertificateException):
cause = java_exception.cause
if cause:
msg = "%s (%s)" % (java_exception.message, cause)
else:
msg = java_exception.message
py_exception = SSLError(SSL_ERROR_SSL, msg)
else:
mapped_exception = _exception_map.get(java_exception.__class__)
if mapped_exception:
py_exception = mapped_exception(java_exception)
else:
py_exception = error(-1, 'Unmapped exception: %s' % java_exception)
py_exception.java_exception = java_exception
return _add_exception_attrs(py_exception)
def raises_java_exception(method_or_function):
"""Maps java socket exceptions to the equivalent python exception.
Also sets _last_error on socket objects so as to support SO_ERROR.
"""
@wraps(method_or_function)
def handle_exception(*args, **kwargs):
is_socket = len(args) > 0 and isinstance(args[0], _realsocket)
try:
try:
return method_or_function(*args, **kwargs)
except java.lang.Exception, jlx:
raise _map_exception(jlx)
except error, e:
if is_socket:
args[0]._last_error = e[0]
raise
else:
if is_socket:
args[0]._last_error = 0
return handle_exception
# select support
################
class _Select(object):
def __init__(self, rlist, wlist, xlist):
self.cv = Condition()
self.rlist = frozenset(rlist)
self.wlist = frozenset(wlist)
self.xlist = frozenset(xlist)
def _normalize_sockets(self, socks):
# Get underlying socket, via fileno lookup
_socks = []
for sock in socks:
try:
_sock = sock.fileno()
_sock._register_selector # double check our API requirements
_socks.append(_sock)
except AttributeError:
raise error(errno.EBADF, "Bad file descriptor: %s" % (sock,))
return _socks
def notify(self, sock, **_):
with self.cv:
self.cv.notify()
def __str__(self):
return "_Select(r={},w={},x={})".format(list(self.rlist), list(self.wlist), list(self.xlist))
@contextmanager
def _register_sockets(self, socks):
socks = self._normalize_sockets(socks)
for sock in socks:
sock._register_selector(self)
yield self
for sock in socks:
sock._unregister_selector(self)
def __call__(self, timeout):
started = time.time()
with self.cv, self._register_sockets(chain(self.rlist, self.wlist, self.xlist)):
while True:
# Checking if sockets are ready (readable OR writable)
# converts selection from detecting edges to detecting levels
selected_rlist = set(sock for sock in self.rlist if sock.fileno()._readable())
selected_wlist = set(sock for sock in self.wlist if sock.fileno()._writable())
# FIXME add support for exceptions
selected_xlist = []
# As usual with condition variables, we need to ensure
# there's not a spurious wakeup; this test also ensures
# shortcircuiting if the socket was in fact ready for
# reading/writing/exception before the select call
if selected_rlist or selected_wlist:
completed = sorted(selected_rlist), sorted(selected_wlist), sorted(selected_xlist)
log.debug("Completed select %s", completed, extra={"sock": "*"})
return completed
elif timeout is not None and time.time() - started >= timeout:
return [], [], []
self.cv.wait(timeout)
# poll support
##############
_PollNotification = namedtuple(
"_PollNotification",
["sock", # the real socket
"fd", # could be the real socket (as returned by fileno) or a wrapping socket object
"exception",
"hangup"])
class poll(object):
def __init__(self):
self.queue = LinkedBlockingQueue()
self.registered = dict() # fd -> eventmask
self.socks2fd = dict_builder(MapMaker().weakKeys().makeMap)() # sock -> fd
def notify(self, sock, exception=None, hangup=False):
notification = _PollNotification(
sock=sock,
fd=self.socks2fd.get(sock),
exception=exception,
hangup=hangup)
log.debug("Notify %s", notification, extra={"sock": "*"})
self.queue.put(notification)
def register(self, fd, eventmask=POLLIN|POLLPRI|POLLOUT):
if not hasattr(fd, "fileno"):
raise TypeError("argument must have a fileno() method")
sock = fd.fileno()
log.debug("Register fd=%s eventmask=%s", fd, eventmask, extra={"sock": sock})
self.registered[fd] = eventmask
self.socks2fd[sock] = fd
sock._register_selector(self)
self.notify(sock) # Ensure we get an initial notification
def modify(self, fd, eventmask):
if not hasattr(fd, "fileno"):
raise TypeError("argument must have a fileno() method")
if fd not in self.registered:
raise error(errno.ENOENT, "No such file or directory")
self.registered[fd] = eventmask
def unregister(self, fd):
if not hasattr(fd, "fileno"):
raise TypeError("argument must have a fileno() method")
log.debug("Unregister socket fd=%s", fd, extra={"sock": fd.fileno()})
del self.registered[fd]
sock = fd.fileno()
sock._unregister_selector(self)
def _event_test(self, notification):
# Performs standard edge vs event polling, except that we get
# edges around errors and hangup
if notification is None:
return None, 0
mask = self.registered.get(notification.fd, 0) # handle if concurrently removed, by simply ignoring
log.debug("Testing notification=%s mask=%s", notification, mask, extra={"sock": "*"})
event = 0
if mask & POLLIN and notification.sock._readable():
event |= POLLIN
if mask & POLLOUT and notification.sock._writable():
event |= POLLOUT
if mask & POLLERR and notification.exception:
event |= POLLERR
if mask & POLLHUP and (notification.hangup or not notification.sock.channel):
event |= POLLHUP
if mask & POLLNVAL and not notification.sock.peer_closed:
event |= POLLNVAL
log.debug("Tested notification=%s event=%s", notification, event, extra={"sock": "*"})
return notification.fd, event
def _handle_poll(self, poller):
notification = poller()
if notification is None:
return []
# Pull as many outstanding notifications as possible out
# of the queue
notifications = [notification]
self.queue.drainTo(notifications)
log.debug("Got notification(s) %s", notifications, extra={"sock": "MODULE"})
result = []
socks = set()
# But given how we notify, it's possible to see possible
# multiple notifications. Just return one (fd, event) for a
# given socket
for notification in notifications:
if notification.sock not in socks:
fd, event = self._event_test(notification)
if event:
result.append((fd, event))
socks.add(notification.sock)
# Repump sockets to pick up a subsequent level change
for sock in socks:
self.notify(sock)
return result
def poll(self, timeout=None):
if not (timeout is None or isinstance(timeout, numbers.Real)):
raise TypeError("timeout must be a number or None, got %r" % (timeout,))
if timeout < 0:
timeout = None
log.debug("Polling timeout=%s", timeout, extra={"sock": "*"})
if timeout is None:
return self._handle_poll(self.queue.take)
elif timeout == 0:
return self._handle_poll(self.queue.poll)
else:
timeout = float(timeout) / 1000. # convert from milliseconds to seconds
while timeout > 0:
started = time.time()
timeout_in_ns = int(timeout * _TO_NANOSECONDS)
result = self._handle_poll(partial(self.queue.poll, timeout_in_ns, TimeUnit.NANOSECONDS))
if result:
return result
timeout -= time.time() - started
log.debug("Spurious wakeup, retrying with timeout=%s", timeout, extra={"sock": "*"})
return []
# integration with Netty
########################
class PythonInboundHandler(ChannelInboundHandlerAdapter):
def __init__(self, sock):
self.sock = sock
log.debug("Initializing inbound handler", extra={"sock": self.sock})
def channelActive(self, ctx):
log.debug("Channel is active", extra={"sock": self.sock})
self.sock._notify_selectors()
ctx.fireChannelActive()
def channelRead(self, ctx, msg):
log.debug("Channel read message %s", msg, extra={"sock": self.sock})
msg.retain() # bump ref count so it can be used in the blocking queue
self.sock.incoming.put(msg)
self.sock._notify_selectors()
ctx.fireChannelRead(msg)
def channelWritabilityChanged(self, ctx):
log.debug("Channel ready for write", extra={"sock": self.sock})
self.sock._notify_selectors()
ctx.fireChannelWritabilityChanged()
def exceptionCaught(self, ctx, cause):
log.debug("Channel caught exception %s", cause, extra={"sock": self.sock})
self.sock._notify_selectors(exception=cause)
class ChildSocketHandler(ChannelInitializer):
def __init__(self, parent_socket):
self.parent_socket = parent_socket
def initChannel(self, child_channel):
child = ChildSocket(self.parent_socket)
log.debug("Initializing child %s", child, extra={"sock": self.parent_socket})
child.proto = IPPROTO_TCP
child._init_client_mode(child_channel)
# Get most current options from the parent. This enables any subsequent divergence.
#
# It's OK that this copy could occur without a mutex, given that such iteration
# is guaranteed to be weakly consistent
child.options = dict(((option, value) for option, value in self.parent_socket.options.iteritems()))
if child.options:
log.debug("Setting inherited options %s", child.options, extra={"sock": child})
config = child_channel.config()
for option, value in child.options.iteritems():
_set_option(config.setOption, option, value)
log.debug("Notifing listeners of parent socket %s", self.parent_socket, extra={"sock": child})
self.parent_socket.child_queue.put(child)
self.parent_socket._notify_selectors()
log.debug("Notified listeners of parent socket %s with queue %s",
self.parent_socket, self.parent_socket.child_queue, extra={"sock": child})
# Must block until the child socket is actually "used". This is
# because there may be some additional setup required, such as
# wrapping the socket, before the child is ready to read.
def unlatch_child(_):
# FIXME when bound methods are supported for single method interfaces
child._unlatch()
# Ensure that this handler will not block if the channel is closed,
# otherwise this handler will simply sit idly as a pending task in the Netty
# thread pool
child_channel.closeFuture().addListener(unlatch_child)
if self.parent_socket.timeout is None:
child._ensure_post_connect()
child._wait_on_latch()
log.debug("Socket initChannel completed waiting on latch", extra={"sock": child})
# FIXME raise exceptions for ops not permitted on client socket, server socket
UNKNOWN_SOCKET, CLIENT_SOCKET, SERVER_SOCKET, DATAGRAM_SOCKET = range(4)
_socket_types = {
UNKNOWN_SOCKET: "unknown",
CLIENT_SOCKET: "client",
SERVER_SOCKET: "server",
DATAGRAM_SOCKET: "datagram"
}
def _identity(value):
return value
def _set_option(setter, option, value):
if option in (ChannelOption.SO_LINGER, ChannelOption.SO_TIMEOUT):
# FIXME consider implementing these options. Note these are not settable
# via config.setOption in any event:
#
# * SO_TIMEOUT does not work for NIO sockets, need to use
# IdleStateHandler instead
#
# * SO_LINGER does not work for nonblocking sockets, so need
# to emulate in calling close on the socket by attempting to
# send any unsent data (it's not clear this actually is
# needed in Netty however...)
return
else:
setter(option, value)
# These are the only socket protocols we currently support, so it's easy to map as follows:
_socket_options = {
IPPROTO_TCP: {
(SOL_SOCKET, SO_KEEPALIVE): (ChannelOption.SO_KEEPALIVE, bool),
(SOL_SOCKET, SO_LINGER): (ChannelOption.SO_LINGER, _identity),
(SOL_SOCKET, SO_RCVBUF): (ChannelOption.SO_RCVBUF, int),
(SOL_SOCKET, SO_REUSEADDR): (ChannelOption.SO_REUSEADDR, bool),
(SOL_SOCKET, SO_SNDBUF): (ChannelOption.SO_SNDBUF, int),
(SOL_SOCKET, SO_TIMEOUT): (ChannelOption.SO_TIMEOUT, int),
(IPPROTO_TCP, TCP_NODELAY): (ChannelOption.TCP_NODELAY, bool),
},
IPPROTO_UDP: {
(SOL_SOCKET, SO_BROADCAST): (ChannelOption.SO_BROADCAST, bool),
(SOL_SOCKET, SO_RCVBUF): (ChannelOption.SO_RCVBUF, int),
(SOL_SOCKET, SO_REUSEADDR): (ChannelOption.SO_REUSEADDR, bool),
(SOL_SOCKET, SO_SNDBUF): (ChannelOption.SO_SNDBUF, int),
(SOL_SOCKET, SO_TIMEOUT): (ChannelOption.SO_TIMEOUT, int),
}
}
def _socktuple(addr):
port = addr.getPort()
inet_addr = addr.getAddress()
if isinstance(inet_addr, java.net.Inet6Address):
return str(inet_addr.getHostAddress()), port, 0, inet_addr.getScopeId()
else:
return str(inet_addr.getHostAddress()), port
# actual socket support
#######################
class _realsocket(object):
def __init__(self, family=None, type=None, proto=None):
# FIXME verify args are correct
self.family = family
self.type = type
if proto is None:
if type == SOCK_STREAM:
proto = IPPROTO_TCP
elif type == SOCK_DGRAM:
proto = IPPROTO_UDP
self.proto = proto
self._sock = self # some Python code wants to see a socket
self._last_error = 0 # supports SO_ERROR
self.connected = False
self.timeout = _defaulttimeout
self.channel = None
self.bind_addr = _EPHEMERAL_ADDRESS
self.bind_timestamp = None # Handle Netty race condition on bound addresses
self.selectors = CopyOnWriteArrayList()
self.options = {} # deferred options until bootstrap
self.peer_closed = False
# Reference count this underlying socket
self.open_lock = Lock()
self.open_count = 1
if self.type == SOCK_DGRAM:
self.socket_type = DATAGRAM_SOCKET
self.incoming = LinkedBlockingQueue() # list of read buffers
self.incoming_head = None # allows msg buffers to be broken up
self.python_inbound_handler = None
self._can_write = True
else:
self.socket_type = UNKNOWN_SOCKET
def __repr__(self):
return "<_realsocket at {:#x} type={} open_count={} channel={} timeout={}>".format(
id(self), _socket_types[self.socket_type], self.open_count, self.channel, self.timeout)
def _unlatch(self):
pass # no-op once mutated from ChildSocket to normal _socketobject
def _register_selector(self, selector):
self.selectors.addIfAbsent(selector)
def _unregister_selector(self, selector):
try:
return self.selectors.remove(selector)
except ValueError:
return None
def _notify_selectors(self, exception=None, hangup=False):
for selector in self.selectors:
selector.notify(self, exception=exception, hangup=hangup)
@raises_java_exception
def _handle_channel_future(self, future, reason):
# All differences between nonblocking vs blocking with optional timeouts
# is managed by this method.
#
# All sockets can be selected on, regardless of blocking/nonblocking state.
future.addListener(self._notify_selectors)
if self.timeout is None:
log.debug("Syncing on future %s for %s", future, reason, extra={"sock": self})
return future.sync()
elif self.timeout:
self._handle_timeout(future.await, reason)
if not future.isSuccess():
log.debug("Got this failure %s during %s", future.cause(), reason, extra={"sock": self})
print "Got this failure %s during %s (%s)" % (future.cause(), reason, self)
raise future.cause()
return future
else:
return future
def setblocking(self, flag):
if flag:
self.settimeout(None)
else:
self.settimeout(0.0)
def settimeout(self, timeout):
self.timeout = _calctimeoutvalue(timeout)
def gettimeout(self):
return self.timeout
def _handle_timeout(self, waiter, reason):
timeout_in_ns = int(self.timeout * _TO_NANOSECONDS)
log.debug("Waiting for up to %.2fs for %s", self.timeout, reason, extra={"sock": self})
started = time.time()
result = waiter(timeout_in_ns, TimeUnit.NANOSECONDS)
log.debug("Completed in %.2fs", time.time() - started, extra={"sock": self})
if not result:
# above predicate handles either the case the waiter is
# returning a value or in the case ChannelFuture#await,
# that the timeout expired, in which case False is
# returned
if self.timeout == 0:
raise error(errno.ETIMEDOUT, "Connection timed out")
else:
raise timeout("timed out")
return result
def bind(self, address):
# Netty 4 supports binding a socket to multiple addresses;
# apparently this is the not the case for C API sockets
self.bind_addr = _get_jsockaddr(address, self.family, self.type, self.proto, AI_PASSIVE)
self._datagram_connect() # as necessary
# CLIENT METHODS
# Calling connect/connect_ex means this is a client socket; these
# in turn use _connect, which uses Bootstrap, not ServerBootstrap
def _init_client_mode(self, channel=None):
# this is client socket specific
self.socket_type = CLIENT_SOCKET
self.incoming = LinkedBlockingQueue() # list of read buffers
self.incoming_head = None # allows msg buffers to be broken up
self.python_inbound_handler = None
self._can_write = True
self.connect_handlers = []
self.connected = False
if channel:
log.debug("Setting up channel %s", channel, extra={"sock": self})
self.channel = channel
self.python_inbound_handler = PythonInboundHandler(self)
self.connect_handlers = [self.python_inbound_handler]
self.connected = True
def _connect(self, addr):
log.debug("Begin connection to %s", addr, extra={"sock": self})
addr = _get_jsockaddr(addr, self.family, self.type, self.proto, 0)
self._init_client_mode()
self.connected = True
self.python_inbound_handler = PythonInboundHandler(self)
bootstrap = Bootstrap().group(NIO_GROUP).channel(NioSocketChannel)
for option, value in self.options.iteritems():
_set_option(bootstrap.option, option, value)
# FIXME really this is just for SSL handling, so make more
# specific than a list of connect_handlers
if self.connect_handlers:
for handler in self.connect_handlers:
bootstrap.handler(handler)
else:
bootstrap.handler(self.python_inbound_handler)
if self.bind_addr:
log.debug("Connect %s to %s", self.bind_addr, addr, extra={"sock": self})
bind_future = bootstrap.bind(self.bind_addr)
self._handle_channel_future(bind_future, "local bind")
self.channel = bind_future.channel()
else:
log.debug("Connect to %s", addr, extra={"sock": self})
self.channel = bootstrap.channel()
self.connect_future = self.channel.connect(addr)
self._handle_channel_future(self.connect_future, "connect")
self.bind_timestamp = time.time()
def _post_connect(self):
# Post-connect step is necessary to handle SSL setup,
# otherwise the read adapter can race in seeing encrypted
# messages from the peer
if self.connect_handlers:
self.channel.pipeline().addLast(self.python_inbound_handler)
def peer_closed(x):
log.debug("Peer closed channel %s", x, extra={"sock": self})
self.incoming.put(_PEER_CLOSED)
self._notify_selectors(hangup=True)
self.channel.closeFuture().addListener(peer_closed)
def connect(self, addr):
# Unwrapped sockets can immediately perform the post-connect step
if self.socket_type == DATAGRAM_SOCKET:
self._datagram_connect(addr)
log.debug("Completed datagram connection to %s", addr, extra={"sock": self})
else:
self._connect(addr)
self._post_connect()
log.debug("Completed connection to %s", addr, extra={"sock": self})
def connect_ex(self, addr):
if not self.connected:
try:
self.connect(addr)
except error as e:
return e.errno
if not self.connect_future.isDone():
return errno.EINPROGRESS
elif self.connect_future.isSuccess():
return errno.EISCONN
else:
return errno.ENOTCONN
# SERVER METHODS
# Calling listen means this is a server socket
@raises_java_exception
def listen(self, backlog):
self.socket_type = SERVER_SOCKET
self.child_queue = ArrayBlockingQueue(backlog)
self.accepted_children = 1 # include the parent as well to simplify close logic
b = ServerBootstrap()
try:
self.parent_group = NioEventLoopGroup(_NUM_THREADS, DaemonThreadFactory("Jython-Netty-Parent-%s"))
self.child_group = NioEventLoopGroup(_NUM_THREADS, DaemonThreadFactory("Jython-Netty-Child-%s"))
except IllegalStateException:
raise error(errno.EMFILE, "Cannot allocate thread pool for server socket")
b.group(self.parent_group, self.child_group)
b.channel(NioServerSocketChannel)
b.option(ChannelOption.SO_BACKLOG, backlog)
for option, value in self.options.iteritems():
_set_option(b.option, option, value)
# Note that child options are set in the child handler so
# that they can take into account any subsequent changes,
# plus have shadow support
self.child_handler = ChildSocketHandler(self)
b.childHandler(self.child_handler)
self.bind_future = b.bind(self.bind_addr.getAddress(), self.bind_addr.getPort())
self._handle_channel_future(self.bind_future, "listen")
self.bind_timestamp = time.time()
self.channel = self.bind_future.channel()
log.debug("Bound server socket to %s", self.bind_addr, extra={"sock": self})
def accept(self):
if self.timeout is None:
log.debug("Blocking indefinitely for child on queue %s", self.child_queue, extra={"sock": self})
child = self.child_queue.take()
elif self.timeout:
log.debug("Timed wait for child on queue %s", self.child_queue, extra={"sock": self})
child = self._handle_timeout(self.child_queue.poll, "accept")
else:
log.debug("Polling for child on queue %s", self.child_queue, extra={"sock": self})
child = self.child_queue.poll()
if child is None:
raise error(errno.EWOULDBLOCK, "Resource temporarily unavailable")
peername = child.getpeername() if child else None
log.debug("Got child %s connected to %s", child, peername, extra={"sock": self})
child.accepted = True
with self.open_lock:
self.accepted_children += 1
return child, peername
# DATAGRAM METHODS
def _datagram_connect(self, addr=None):
# FIXME raise exception if not of the right family
if addr is not None:
addr = _get_jsockaddr(addr, self.family, self.type, self.proto, 0)
if not self.connected and self.socket_type == DATAGRAM_SOCKET:
log.debug("Binding datagram socket to %s", self.bind_addr, extra={"sock": self})
self.connected = True
self.python_inbound_handler = PythonInboundHandler(self)
bootstrap = Bootstrap().group(NIO_GROUP).channel(NioDatagramChannel)
bootstrap.handler(self.python_inbound_handler)
for option, value in self.options.iteritems():
_set_option(bootstrap.option, option, value)
future = bootstrap.register()
self._handle_channel_future(future, "register")
self.channel = future.channel()
self._handle_channel_future(self.channel.bind(self.bind_addr), "bind")
if addr is not None:
# Handles the relatively rare case that this is a
# CONNECTED datagram socket, which Netty does not
# support in its bootstrap setup.
log.debug("Connecting datagram socket to %s", addr, extra={"sock": self})
future = self.channel.connect(addr)
self._handle_channel_future(future, "connect")
def sendto(self, string, arg1, arg2=None):
# Unfortunate arg overloading
if arg2 is not None:
flags = arg1
address = arg2
else:
flags = None
address = arg1
address = _get_jsockaddr(address, self.family, self.type, self.proto, 0)
log.debug("Sending datagram to %s <<<{!r:.20}>>>".format(string), address, extra={"sock": self})
self._datagram_connect()
packet = DatagramPacket(Unpooled.wrappedBuffer(string), address)
future = self.channel.writeAndFlush(packet)
self._handle_channel_future(future, "sendto")
return len(string)
def recvfrom_into(self, buffer, nbytes=0, flags=0):
if nbytes == 0:
nbytes = len(buffer)
data, remote_addr = self.recvfrom(nbytes, flags)
buffer[0:len(data)] = data
return len(data), remote_addr
def recv_into(self, buffer, nbytes=0, flags=0):
if nbytes == 0:
nbytes = len(buffer)
data = self.recv(nbytes, flags)
buffer[0:len(data)] = data
return len(data)
# GENERAL METHODS
def close(self):
with self.open_lock:
self.open_count -= 1
if self.open_count > 0:
log.debug("Open count > 0, so not closing underlying socket", extra={"sock": self})
return
if self.channel is None:
return
try:
self.channel.close().sync()
except RejectedExecutionException:
# Do not care about tasks that attempt to schedule after close
pass
if self.socket_type == SERVER_SOCKET:
log.debug("Shutting down server socket parent group", extra={"sock": self})
self.parent_group.shutdownGracefully(0, 100, TimeUnit.MILLISECONDS)
self.accepted_children -= 1
while True:
child = self.child_queue.poll()
if child is None:
break
log.debug("Closed child socket %s not yet accepted", child, extra={"sock": self})
child.close()
else:
msgs = []
self.incoming.drainTo(msgs)
for msg in msgs:
if msg is not _PEER_CLOSED:
msg.release()
log.debug("Closed socket", extra={"sock": self})
def shutdown(self, how):
log.debug("Got request to shutdown socket how=%s", how, extra={"sock": self})
self._verify_channel()
if how & SHUT_RD:
try:
self.channel.pipeline().remove(self.python_inbound_handler)
except NoSuchElementException:
pass # already removed, can safely ignore (presumably)
if how & SHUT_WR:
self._can_write = False
def _readable(self):
if self.socket_type == CLIENT_SOCKET or self.socket_type == DATAGRAM_SOCKET:
log.debug("Incoming head=%s queue=%s", self.incoming_head, self.incoming, extra={"sock": self})
return bool(
(self.incoming_head is not None and self.incoming_head.readableBytes()) or
self.incoming.peek())
elif self.socket_type == SERVER_SOCKET:
return bool(self.child_queue.peek())
else:
return False
def _pending(self):
# Used by ssl.py for an undocumented function used in tests
# and of course some user code. Note that with Netty,
# readableBytes() in incoming or incoming_head are guaranteed
# to be plaintext because of the way pipelines work. However
# this is a terrible function to call because it's trying to
# do something synchronous in the async setting of sockets.
if self.socket_type == CLIENT_SOCKET or self.socket_type == DATAGRAM_SOCKET:
if self.incoming_head is not None:
pending = self.incoming_head.readableBytes()
else:
pending = 0
for msg in self.incoming:
pending += msg.readableBytes()
return pending
return 0
def _writable(self):
return self.channel and self.channel.isActive() and self.channel.isWritable()
can_write = _writable
def _verify_channel(self):
if self.channel is None:
log.debug("Channel is not connected or setup", extra={"sock": self})
raise error(errno.ENOTCONN, "Socket is not connected")
@raises_java_exception
def send(self, data, flags=0):
# FIXME this almost certainly needs to chunk things
self._verify_channel()
data = str(data) # FIXME temporary fix if data is of type buffer
log.debug("Sending data <<<{!r:.20}>>>".format(data), extra={"sock": self})
if self.socket_type == DATAGRAM_SOCKET:
packet = DatagramPacket(Unpooled.wrappedBuffer(data), self.channel.remoteAddress())
future = self.channel.writeAndFlush(packet)
self._handle_channel_future(future, "send")
return len(data)
if not self._can_write:
raise error(errno.ENOTCONN, 'Socket not connected')
future = self.channel.writeAndFlush(Unpooled.wrappedBuffer(data))
self._handle_channel_future(future, "send")
log.debug("Sent data <<<{!r:.20}>>>".format(data), extra={"sock": self})
# FIXME are we sure we are going to be able to send this much data, especially async?
return len(data)
sendall = send # FIXME see note above!
def _get_incoming_msg(self, reason):
if self.incoming_head is None:
if self.timeout is None:
if self.peer_closed:
return None
self.incoming_head = self.incoming.take()
elif self.timeout:
if self.peer_closed:
return None
self.incoming_head = self._handle_timeout(self.incoming.poll, reason)
else:
self.incoming_head = self.incoming.poll() # Could be None
if self.incoming_head is None:
# FIXME FIXME C socket semantics return a '' after the first EAGAIN (not certain if this gets reset or not)
log.debug("No data yet for socket", extra={"sock": self})
raise error(errno.EAGAIN, "Resource temporarily unavailable")
msg = self.incoming_head
if msg is _PEER_CLOSED:
# Only return _PEER_CLOSED once
self.incoming_head = None
self.peer_closed = True
return msg
@raises_java_exception
def _get_message(self, bufsize, reason):
self._datagram_connect()
self._verify_channel()
msg = self._get_incoming_msg(reason)
if self.socket_type == DATAGRAM_SOCKET:
if msg is None:
return None, None
elif msg is _PEER_CLOSED:
return "", None
else:
if msg is None:
return None, self.channel.remoteAddress()
elif msg is _PEER_CLOSED:
return "", self.channel.remoteAddress()
if self.socket_type == DATAGRAM_SOCKET:
content = msg.content()
sender = msg.sender()
else:
content = msg
sender = self.channel.remoteAddress()
msg_length = content.readableBytes()
buf = jarray.zeros(min(msg_length, bufsize), "b")
content.readBytes(buf)
if content.readableBytes() == 0:
msg.release() # return msg ByteBuf back to Netty's pool
self.incoming_head = None
return buf.tostring(), sender
def recv(self, bufsize, flags=0):
self._verify_channel()
log.debug("Waiting on recv", extra={"sock": self})
# For obvious reasons, concurrent reads on the same socket
# have to be locked; I don't believe it is the job of recv to
# do this; in particular this is the policy of SocketChannel,
# which underlies Netty's support for such channels.
data, _ = self._get_message(bufsize, "recv")
log.debug("Received <<<{!r:.20}>>>".format(data), extra={"sock": self})
return data
def recvfrom(self, bufsize, flags=0):
self._verify_channel()
data, sender = self._get_message(bufsize, "recvfrom")
remote_addr = sender.getHostString(), sender.getPort()
log.debug("Received from sender %s <<<{!r:20}>>>".format(data), remote_addr, extra={"sock": self})
return data, remote_addr
def fileno(self):
return self
@raises_java_exception
def setsockopt(self, level, optname, value):
try:
option, cast = _socket_options[self.proto][(level, optname)]
except KeyError:
raise error(errno.ENOPROTOOPT, "Protocol not available")
cast_value = cast(value)
self.options[option] = cast_value
log.debug("Setting option %s to %s", optname, value, extra={"sock": self})
if self.channel:
_set_option(self.channel.config().setOption, option, cast_value)
@raises_java_exception
def getsockopt(self, level, optname, buflen=None):
# Pseudo options for interrogating the status of this socket
if level == SOL_SOCKET:
if optname == SO_ACCEPTCONN:
if self.socket_type == SERVER_SOCKET:
return 1
elif self.type == SOCK_STREAM:
return 0
else:
raise error(errno.ENOPROTOOPT, "Protocol not available")
if optname == SO_TYPE:
return self.type
if optname == SO_ERROR:
last_error = self._last_error
self._last_error = 0
return last_error
# Normal options
try:
option, _ = _socket_options[self.proto][(level, optname)]
except KeyError:
raise error(errno.ENOPROTOOPT, "Protocol not available")
log.debug("Shadow option settings %s", self.options, extra={"sock": self})
return self.options.get(option, 0)
def getsockname(self):
if self.channel is None:
if self.bind_addr == _EPHEMERAL_ADDRESS:
raise error(errno.ENOTCONN, "Socket is not connected")
else:
return _socktuple(self.bind_addr)
# Netty 4 currently races between bind to ephemeral port and the availability
# of the local address for the channel. Poll to work around this issue.
while True:
local_addr = self.channel.localAddress()
if local_addr:
if hasattr(self, "bind_future"):
if self.bind_future.isDone():
break
else:
break
if time.time() - self.bind_timestamp > 1:
# Presumably after a second something is completely wrong,
# so punt
raise error(errno.ENOTCONN, "Socket is not connected")
log.debug("Poll for local address", extra={"sock": self})
time.sleep(0.01) # completely arbitrary
if local_addr.getAddress().isAnyLocalAddress():
# Netty 4 will default to an IPv6 "any" address from a channel even if it was originally bound to an IPv4 "any" address
# so, as a workaround, let's construct a new "any" address using the port information gathered above
if type(self.bind_addr.getAddress()) != type(local_addr.getAddress()):
return _socktuple(java.net.InetSocketAddress(self.bind_addr.getAddress(), local_addr.getPort()))
return _socktuple(local_addr)
def getpeername(self):
self._verify_channel()
remote_addr = self.channel.remoteAddress()
if remote_addr is None:
raise error(errno.ENOTCONN, "Socket is not connected")
return _socktuple(remote_addr)
_socketmethods = (
'bind', 'connect', 'connect_ex', 'fileno', 'listen',
'getpeername', 'getsockname', 'getsockopt', 'setsockopt',
'sendall', 'setblocking',
'settimeout', 'gettimeout', 'shutdown')
# All the method names that must be delegated to either the real socket
# object or the _closedsocket object.
# For socket-reboot, this also means anything used by _Select
_delegate_methods = (
"recv", "recvfrom", "recv_into", "recvfrom_into",
"send", "sendto", "fileno")
class _closedsocket(object):
def close(self):
pass # Should be able to close repeatedly
def _dummy(*args):
raise error(errno.EBADF, 'Bad file descriptor')
# All _delegate_methods must also be initialized here.
fileno = send = recv = recv_into = sendto = recvfrom = recvfrom_into = _dummy
__getattr__ = _dummy
# Wrapper around platform socket objects. This implements
# a platform-independent dup() functionality. The
# implementation currently relies on reference counting
# to close the underlying socket object.
class _socketobject(object):
__doc__ = _realsocket.__doc__
def __init__(self, family=AF_INET, type=SOCK_STREAM, proto=0, _sock=None):
if _sock is None:
_sock = _realsocket(family, type, proto)
self._sock = _sock
for method in _delegate_methods:
setattr(self, method, getattr(_sock, method))
def close(self, _closedsocket=_closedsocket,
_delegate_methods=_delegate_methods, setattr=setattr):
# This function should not reference any globals. See issue #808164.
self._sock.close()
self._sock = _closedsocket()
dummy = self._sock._dummy
for method in _delegate_methods:
setattr(self, method, dummy)
close.__doc__ = _realsocket.close.__doc__
def fileno(self):
return self._sock
def accept(self):
sock, addr = self._sock.accept()
return _socketobject(_sock=sock), addr
accept.__doc__ = _realsocket.accept.__doc__
def dup(self):
"""dup() -> socket object
Return a new socket object connected to the same system resource."""
if isinstance(self._sock, _closedsocket):
return _socketobject(_sock=_closedsocket())
with self._sock.open_lock:
self._sock.open_count += 1
return _socketobject(_sock=self._sock)
def makefile(self, mode='r', bufsize=-1):
"""makefile([mode[, bufsize]]) -> file object
Return a regular file object corresponding to the socket. The mode
and bufsize arguments are as for the built-in open() function."""
if isinstance(self._sock, _closedsocket):
return _fileobject(_closedsocket(), mode, bufsize, close=True)
with self._sock.open_lock:
self._sock.open_count += 1
return _fileobject(self._sock, mode, bufsize, close=True)
family = property(lambda self: self._sock.family, doc="the socket family")
type = property(lambda self: self._sock.type, doc="the socket type")
proto = property(lambda self: self._sock.proto, doc="the socket protocol")
def meth(name,self,*args):
return getattr(self._sock,name)(*args)
for _m in _socketmethods:
p = partial(meth,_m)
p.__name__ = _m
p.__doc__ = getattr(_realsocket,_m).__doc__
m = MethodType(p,None,_socketobject)
setattr(_socketobject,_m,m)
socket = SocketType = _socketobject
class ChildSocket(_realsocket):
def __init__(self, parent_socket):
super(ChildSocket, self).__init__()
self.parent_socket = parent_socket
self.active = AtomicBoolean()
self.active_latch = CountDownLatch(1)
self.accepted = False
self.timeout = parent_socket.timeout
def _ensure_post_connect(self):
do_post_connect = not self.active.getAndSet(True)
if do_post_connect:
self._post_connect()
self.active_latch.countDown()
def _wait_on_latch(self):
log.debug("Waiting for activity", extra={"sock": self})
self.active_latch.await()
log.debug("Latch released, can now proceed", extra={"sock": self})
# FIXME raise exception for accept, listen, bind, connect, connect_ex
# All ops that allow us to characterize the mode of operation of
# this socket as being either Start TLS or SSL when
# connected. These should be ops that send/receive/change
# connection, not metadata.
def send(self, data):
self._ensure_post_connect()
return super(ChildSocket, self).send(data)
sendall = send
def recv(self, bufsize, flags=0):
self._ensure_post_connect()
return super(ChildSocket, self).recv(bufsize, flags)
def recvfrom(self, bufsize, flags=0):
self._ensure_post_connect()
return super(ChildSocket, self).recvfrom(bufsize, flags)
def setblocking(self, mode):
self._ensure_post_connect()
return super(ChildSocket, self).setblocking(mode)
def close(self):
self._ensure_post_connect()
super(ChildSocket, self).close()
if self.open_count > 0:
return
if self.accepted:
with self.parent_socket.open_lock:
self.parent_socket.accepted_children -= 1
if self.parent_socket.open_count == 0 and self.parent_socket.accepted_children == 0:
log.debug("Shutting down child group for parent socket=%s accepted_children=%s",
self.parent_socket, self.parent_socket.accepted_children, extra={"sock": self})
self.parent_socket.child_group.shutdownGracefully(0, 100, TimeUnit.MILLISECONDS)
def shutdown(self, how):
self._ensure_post_connect()
super(ChildSocket, self).shutdown(how)
def __del__(self):
# Required in the case this child socket never becomes active.
# This cleanup will ensure that the pending thread for the
# handler is released when a GC happens, not necessarily
# before shutdown of course. Naturally no extra work will be
# done in setting up the channel.
self.active_latch.countDown()
self.close()
# EXPORTED constructors
def socket(family=None, type=None, proto=None):
return _socketobject(family, type, proto)
def select(rlist, wlist, xlist, timeout=None):
for lst in (rlist, wlist, xlist):
if not isinstance(lst, Iterable):
raise TypeError("arguments 1-3 must be sequences")
if not(timeout is None or isinstance(timeout, Number)):
raise TypeError("timeout must be a float or None")
if timeout is not None and timeout < 0:
raise error(errno.EINVAL, "Invalid argument")
return _Select(rlist, wlist, xlist)(timeout)
def create_connection(address, timeout=_GLOBAL_DEFAULT_TIMEOUT,
source_address=None):
"""Connect to *address* and return the socket object.
Convenience function. Connect to *address* (a 2-tuple ``(host,
port)``) and return the socket object. Passing the optional
*timeout* parameter will set the timeout on the socket instance
before attempting to connect. If no *timeout* is supplied, the
global default timeout setting returned by :func:`getdefaulttimeout`
is used. If *source_address* is set it must be a tuple of (host, port)
for the socket to bind as a source address before making the connection.
An host of '' or port 0 tells the OS to use the default.
"""
host, port = address
err = None
for res in getaddrinfo(host, port, 0, SOCK_STREAM):
af, socktype, proto, canonname, sa = res
sock = None
try:
sock = socket(af, socktype, proto)
if timeout is not _GLOBAL_DEFAULT_TIMEOUT:
sock.settimeout(timeout)
if source_address:
sock.bind(source_address)
sock.connect(sa)
return sock
except error as _:
err = _
if sock is not None:
sock.close()
if err is not None:
raise err
else:
raise error("getaddrinfo returns an empty list")
# MISCELLANEOUS module level functions
_defaulttimeout = None
def _calctimeoutvalue(value):
if value is None:
return None
try:
floatvalue = float(value)
except:
raise TypeError('Socket timeout value must be a number or None')
if floatvalue < 0.0:
raise ValueError("Socket timeout value cannot be negative")
return floatvalue
def getdefaulttimeout():
return _defaulttimeout
def setdefaulttimeout(timeout):
global _defaulttimeout
_defaulttimeout = _calctimeoutvalue(timeout)
# Define data structures to support IPV4 and IPV6.
class _ip_address_t(tuple):
pass
class _ipv4_address_t(_ip_address_t):
jaddress = None
def __new__(cls, sockaddr, port, jaddress):
ntup = tuple.__new__(cls, (sockaddr, port))
ntup.jaddress = jaddress
return ntup
class _ipv6_address_t(_ip_address_t):
jaddress = None
def __new__(cls, sockaddr, port, jaddress):
ntup = tuple.__new__(cls, (sockaddr, port, 0, jaddress.scopeId))
ntup.jaddress = jaddress
return ntup
def _get_jsockaddr(address_object, family, sock_type, proto, flags):
if family is None:
family = AF_UNSPEC
if sock_type is None:
sock_type = 0
if proto is None:
proto = 0
addr = _get_jsockaddr2(address_object, family, sock_type, proto, flags)
log.debug("Address %s for %s", addr, address_object, extra={"sock": "*"})
return addr
def _get_jsockaddr2(address_object, family, sock_type, proto, flags):
# Is this an object that was returned from getaddrinfo? If so, it already contains an InetAddress
if isinstance(address_object, _ip_address_t):
return java.net.InetSocketAddress(address_object.jaddress, address_object[1])
# The user passed an address tuple, not an object returned from getaddrinfo
# So we must call getaddrinfo, after some translations and checking
if address_object is None:
address_object = ("", 0)
error_message = "Address must be a 2-tuple (ipv4: (host, port)) or a 4-tuple (ipv6: (host, port, flow, scope))"
if not isinstance(address_object, tuple) or \
((family == AF_INET and len(address_object) != 2) or \
(family == AF_INET6 and len(address_object) not in [2,4] )) or \
not isinstance(address_object[0], (basestring, NoneType)) or \
not isinstance(address_object[1], (int, long)):
raise TypeError(error_message)
if len(address_object) == 4 and not isinstance(address_object[3], (int, long)):
raise TypeError(error_message)
hostname = address_object[0]
if hostname is not None:
hostname = hostname.strip()
port = address_object[1]
if family == AF_INET and sock_type == SOCK_DGRAM and hostname == "":
hostname = INADDR_BROADCAST
if hostname in ["", None]:
if flags & AI_PASSIVE:
hostname = {AF_INET: INADDR_ANY, AF_INET6: IN6ADDR_ANY_INIT}[family]
else:
hostname = "localhost"
if isinstance(hostname, unicode):
hostname = encodings.idna.ToASCII(hostname)
addresses = getaddrinfo(hostname, port, family, sock_type, proto, flags)
if len(addresses) == 0:
raise gaierror(errno.EGETADDRINFOFAILED, 'getaddrinfo failed')
return java.net.InetSocketAddress(addresses[0][4].jaddress, port)
def _is_ip_address(addr, version=None):
try:
_google_ipaddr_r234.IPAddress(addr, version)
return True
except ValueError:
return False
def is_ipv4_address(addr):
return _is_ip_address(addr, 4)
def is_ipv6_address(addr):
return _is_ip_address(addr, 6)
def is_ip_address(addr):
return _is_ip_address(addr)
# Workaround for this (predominantly windows) issue
# http://wiki.python.org/jython/NewSocketModule#IPV6_address_support
_ipv4_addresses_only = False
def _use_ipv4_addresses_only(value):
global _ipv4_addresses_only
_ipv4_addresses_only = value
def _getaddrinfo_get_host(host, family, flags):
if not isinstance(host, basestring) and host is not None:
raise TypeError("getaddrinfo() argument 1 must be string or None")
if flags & AI_NUMERICHOST:
if not is_ip_address(host):
raise gaierror(EAI_NONAME, "Name or service not known")
if family == AF_INET and not is_ipv4_address(host):
raise gaierror(EAI_ADDRFAMILY, "Address family for hostname not supported")
if family == AF_INET6 and not is_ipv6_address(host):
raise gaierror(EAI_ADDRFAMILY, "Address family for hostname not supported")
if isinstance(host, unicode):
host = encodings.idna.ToASCII(host)
return host
def _getaddrinfo_get_port(port, flags):
if isinstance(port, basestring):
try:
int_port = int(port)
except ValueError:
if flags & AI_NUMERICSERV:
raise gaierror(EAI_NONAME, "Name or service not known")
# Lookup the service by name
try:
int_port = getservbyname(port)
except error:
raise gaierror(EAI_SERVICE, "Servname not supported for ai_socktype")
elif port is None:
int_port = 0
elif not isinstance(port, (int, long)):
raise error("Int or String expected")
else:
int_port = int(port)
return int_port % 65536
@raises_java_exception
def getaddrinfo(host, port, family=AF_UNSPEC, socktype=0, proto=0, flags=0):
if family is None:
family = AF_UNSPEC
if socktype is None:
socktype = 0
if not family in [AF_INET, AF_INET6, AF_UNSPEC]:
raise gaierror(errno.EIO, 'ai_family not supported')
host = _getaddrinfo_get_host(host, family, flags)
port = _getaddrinfo_get_port(port, flags)
if socktype not in [0, SOCK_DGRAM, SOCK_STREAM]:
raise error(errno.ESOCKTNOSUPPORT, "Socket type is not supported")
filter_fns = []
filter_fns.append({
AF_INET: lambda x: isinstance(x, java.net.Inet4Address),
AF_INET6: lambda x: isinstance(x, java.net.Inet6Address),
AF_UNSPEC: lambda x: isinstance(x, java.net.InetAddress),
}[family])
if host in [None, ""]:
if flags & AI_PASSIVE:
hosts = {AF_INET: [INADDR_ANY], AF_INET6: [IN6ADDR_ANY_INIT], AF_UNSPEC: [INADDR_ANY, IN6ADDR_ANY_INIT]}[family]
else:
hosts = ["localhost"]
else:
hosts = [host]
results = []
for h in hosts:
for a in java.net.InetAddress.getAllByName(h):
if len([f for f in filter_fns if f(a)]):
family = {java.net.Inet4Address: AF_INET, java.net.Inet6Address: AF_INET6}[a.getClass()]
if flags & AI_CANONNAME:
canonname = str(a.getCanonicalHostName())
else:
canonname = ""
sockaddr = str(a.getHostAddress())
# TODO: Include flowinfo and scopeid in a 4-tuple for IPv6 addresses
sock_tuple = {AF_INET : _ipv4_address_t, AF_INET6 : _ipv6_address_t}[family](sockaddr, port, a)
if socktype == 0:
socktypes = [SOCK_DGRAM, SOCK_STREAM]
else:
socktypes = [socktype]
for result_socktype in socktypes:
result_proto = {SOCK_DGRAM: IPPROTO_UDP, SOCK_STREAM: IPPROTO_TCP}[result_socktype]
if proto in [0, result_proto]:
# The returned socket will only support the result_proto
# If this does not match the requested proto, don't return it
results.append((family, result_socktype, result_proto, canonname, sock_tuple))
return results
def htons(x): return x
def htonl(x): return x
def ntohs(x): return x
def ntohl(x): return x
@raises_java_exception
def inet_pton(family, ip_string):
if family == AF_INET:
if not is_ipv4_address(ip_string):
raise error("illegal IP address string passed to inet_pton")
elif family == AF_INET6:
if not is_ipv6_address(ip_string):
raise error("illegal IP address string passed to inet_pton")
else:
raise error(errno.EAFNOSUPPORT, "Address family not supported by protocol")
ia = java.net.InetAddress.getByName(ip_string)
bytes = []
for byte in ia.getAddress():
if byte < 0:
bytes.append(byte+256)
else:
bytes.append(byte)
return "".join([chr(byte) for byte in bytes])
@raises_java_exception
def inet_ntop(family, packed_ip):
jByteArray = array.array("b", packed_ip)
if family == AF_INET:
if len(jByteArray) != 4:
raise ValueError("invalid length of packed IP address string")
elif family == AF_INET6:
if len(jByteArray) != 16:
raise ValueError("invalid length of packed IP address string")
else:
raise ValueError("unknown address family %s" % family)
ia = java.net.InetAddress.getByAddress(jByteArray)
return ia.getHostAddress()
def inet_aton(ip_string):
return inet_pton(AF_INET, ip_string)
def inet_ntoa(packed_ip):
return inet_ntop(AF_INET, packed_ip)
# Various toplevel functions for the socket module
##################################################
def _gethostbyaddr(name):
# This is as close as I can get; at least the types are correct...
addresses = InetAddress.getAllByName(gethostbyname(name))
names = []
addrs = []
for addr in addresses:
names.append(str(addr.getHostName()))
addrs.append(str(addr.getHostAddress()))
return names, addrs
@raises_java_exception
def getfqdn(name=None):
"""
Return a fully qualified domain name for name. If name is omitted or empty
it is interpreted as the local host. To find the fully qualified name,
the hostname returned by gethostbyaddr() is checked, then aliases for the
host, if available. The first name which includes a period is selected.
In case no fully qualified domain name is available, the hostname is retur
New in version 2.0.
"""
if not name:
name = gethostname()
names, addrs = _gethostbyaddr(name)
for a in names:
if a.find(".") >= 0:
return a
return name
@raises_java_exception
def gethostname():
return str(InetAddress.getLocalHost().getHostName())
@raises_java_exception
def gethostbyname(name):
return str(InetAddress.getByName(name).getHostAddress())
#
# Skeleton implementation of gethostbyname_ex
# Needed because urllib2 refers to it
#
@raises_java_exception
def gethostbyname_ex(name):
return name, [], gethostbyname(name)
@raises_java_exception
def gethostbyaddr(name):
names, addrs = _gethostbyaddr(name)
return names[0], names, addrs
try:
from jnr.netdb import Service, Protocol
def getservbyname(service_name, protocol_name=None):
service = Service.getServiceByName(service_name, protocol_name)
if service is None:
raise error('service/proto not found')
return service.getPort()
def getservbyport(port, protocol_name=None):
service = Service.getServiceByPort(port, protocol_name)
if service is None:
raise error('port/proto not found')
return service.getName()
def getprotobyname(protocol_name=None):
proto = Protocol.getProtocolByName(protocol_name)
if proto is None:
raise error('protocol not found')
return proto.getProto()
except ImportError:
def getservbyname(service_name, protocol_name=None):
return None
def getservbyport(port, protocol_name=None):
return None
def getprotobyname(protocol_name=None):
return None
def _getnameinfo_get_host(address, flags):
if not isinstance(address, basestring):
raise TypeError("getnameinfo() address 1 must be string, not None")
if isinstance(address, unicode):
address = encodings.idna.ToASCII(address)
jia = InetAddress.getByName(address)
result = jia.getCanonicalHostName()
if flags & NI_NAMEREQD:
if is_ip_address(result):
raise gaierror(EAI_NONAME, "Name or service not known")
elif flags & NI_NUMERICHOST:
result = jia.getHostAddress()
# Ignoring NI_NOFQDN for now
if flags & NI_IDN:
result = encodings.idna.ToASCII(result)
return result
def _getnameinfo_get_port(port, flags):
if not isinstance(port, (int, long)):
raise TypeError("getnameinfo() port number must be an integer")
if flags & NI_NUMERICSERV:
return port
proto = None
if flags & NI_DGRAM:
proto = "udp"
return getservbyport(port, proto)
@raises_java_exception
def getnameinfo(sock_addr, flags):
if not isinstance(sock_addr, tuple) or len(sock_addr) < 2:
raise TypeError("getnameinfo() argument 1 must be a tuple")
host = _getnameinfo_get_host(sock_addr[0], flags)
port = _getnameinfo_get_port(sock_addr[1], flags)
return (host, port)
class _fileobject(object):
"""Faux file object attached to a socket object."""
default_bufsize = 8192
name = ""
__slots__ = ["mode", "bufsize", "softspace",
# "closed" is a property, see below
"_sock", "_rbufsize", "_wbufsize", "_rbuf", "_wbuf", "_wbuf_len",
"_close"]
def __init__(self, sock, mode='rb', bufsize=-1, close=False):
self._sock = sock
self.mode = mode # Not actually used in this version
if bufsize < 0:
bufsize = self.default_bufsize
self.bufsize = bufsize
self.softspace = False
# _rbufsize is the suggested recv buffer size. It is *strictly*
# obeyed within readline() for recv calls. If it is larger than
# default_bufsize it will be used for recv calls within read().
if bufsize == 0:
self._rbufsize = 1
elif bufsize == 1:
self._rbufsize = self.default_bufsize
else:
self._rbufsize = bufsize
self._wbufsize = bufsize
# We use StringIO for the read buffer to avoid holding a list
# of variously sized string objects which have been known to
# fragment the heap due to how they are malloc()ed and often
# realloc()ed down much smaller than their original allocation.
self._rbuf = StringIO()
self._wbuf = [] # A list of strings
self._wbuf_len = 0
self._close = close
def _getclosed(self):
return self._sock is None
closed = property(_getclosed, doc="True if the file is closed")
def close(self):
try:
if self._sock:
self.flush()
finally:
if self._close:
self._sock.close()
self._sock = None
def __del__(self):
try:
self.close()
except:
# close() may fail if __init__ didn't complete
pass
def flush(self):
if self._wbuf:
data = "".join(self._wbuf)
self._wbuf = []
self._wbuf_len = 0
buffer_size = max(self._rbufsize, self.default_bufsize)
data_size = len(data)
write_offset = 0
# FIXME apparently this doesn't yet work on jython,
# despite our work on memoryview/buffer support
view = data # memoryview(data)
try:
while write_offset < data_size:
chunk = view[write_offset:write_offset+buffer_size]
self._sock.sendall(chunk)
write_offset += buffer_size
finally:
if write_offset < data_size:
remainder = data[write_offset:]
del view, data # explicit free
self._wbuf.append(remainder)
self._wbuf_len = len(remainder)
def fileno(self):
return self._sock.fileno()
def write(self, data):
data = str(data) # XXX Should really reject non-string non-buffers
if not data:
return
self._wbuf.append(data)
self._wbuf_len += len(data)
if (self._wbufsize == 0 or
(self._wbufsize == 1 and '\n' in data) or
(self._wbufsize > 1 and self._wbuf_len >= self._wbufsize)):
self.flush()
def writelines(self, list):
# XXX We could do better here for very long lists
# XXX Should really reject non-string non-buffers
lines = filter(None, map(str, list))
self._wbuf_len += sum(map(len, lines))
self._wbuf.extend(lines)
if (self._wbufsize <= 1 or
self._wbuf_len >= self._wbufsize):
self.flush()
def read(self, size=-1):
# Use max, disallow tiny reads in a loop as they are very inefficient.
# We never leave read() with any leftover data from a new recv() call
# in our internal buffer.
rbufsize = max(self._rbufsize, self.default_bufsize)
# Our use of StringIO rather than lists of string objects returned by
# recv() minimizes memory usage and fragmentation that occurs when
# rbufsize is large compared to the typical return value of recv().
buf = self._rbuf
buf.seek(0, 2) # seek end
if size < 0:
# Read until EOF
self._rbuf = StringIO() # reset _rbuf. we consume it via buf.
while True:
try:
data = self._sock.recv(rbufsize)
except error, e:
if e.args[0] == errno.EINTR:
continue
raise
if not data:
break
buf.write(data)
return buf.getvalue()
else:
# Read until size bytes or EOF seen, whichever comes first
buf_len = buf.tell()
if buf_len >= size:
# Already have size bytes in our buffer? Extract and return.
buf.seek(0)
rv = buf.read(size)
self._rbuf = StringIO()
self._rbuf.write(buf.read())
return rv
self._rbuf = StringIO() # reset _rbuf. we consume it via buf.
while True:
left = size - buf_len
# recv() will malloc the amount of memory given as its
# parameter even though it often returns much less data
# than that. The returned data string is short lived
# as we copy it into a StringIO and free it. This avoids
# fragmentation issues on many platforms.
try:
data = self._sock.recv(left)
except error, e:
if e.args[0] == errno.EINTR:
continue
raise
if not data:
break
n = len(data)
if n == size and not buf_len:
# Shortcut. Avoid buffer data copies when:
# - We have no data in our buffer.
# AND
# - Our call to recv returned exactly the
# number of bytes we were asked to read.
return data
if n == left:
buf.write(data)
del data # explicit free
break
assert n <= left, "recv(%d) returned %d bytes" % (left, n)
buf.write(data)
buf_len += n
del data # explicit free
#assert buf_len == buf.tell()
return buf.getvalue()
def readline(self, size=-1):
buf = self._rbuf
buf.seek(0, 2) # seek end
if buf.tell() > 0:
# check if we already have it in our buffer
buf.seek(0)
bline = buf.readline(size)
if bline.endswith('\n') or len(bline) == size:
self._rbuf = StringIO()
self._rbuf.write(buf.read())
return bline
del bline
if size < 0:
# Read until \n or EOF, whichever comes first
if self._rbufsize <= 1:
# Speed up unbuffered case
buf.seek(0)
buffers = [buf.read()]
self._rbuf = StringIO() # reset _rbuf. we consume it via buf.
data = None
recv = self._sock.recv
while True:
try:
while data != "\n":
data = recv(1)
if not data:
break
buffers.append(data)
except error, e:
# The try..except to catch EINTR was moved outside the
# recv loop to avoid the per byte overhead.
if e.args[0] == errno.EINTR:
continue
raise
break
return "".join(buffers)
buf.seek(0, 2) # seek end
self._rbuf = StringIO() # reset _rbuf. we consume it via buf.
while True:
try:
data = self._sock.recv(self._rbufsize)
except error, e:
if e.args[0] == errno.EINTR:
continue
raise
if not data:
break
nl = data.find('\n')
if nl >= 0:
nl += 1
buf.write(data[:nl])
self._rbuf.write(data[nl:])
del data
break
buf.write(data)
return buf.getvalue()
else:
# Read until size bytes or \n or EOF seen, whichever comes first
buf.seek(0, 2) # seek end
buf_len = buf.tell()
if buf_len >= size:
buf.seek(0)
rv = buf.read(size)
self._rbuf = StringIO()
self._rbuf.write(buf.read())
return rv
self._rbuf = StringIO() # reset _rbuf. we consume it via buf.
while True:
try:
data = self._sock.recv(self._rbufsize)
except error, e:
if e.args[0] == errno.EINTR:
continue
raise
if not data:
break
left = size - buf_len
# did we just receive a newline?
nl = data.find('\n', 0, left)
if nl >= 0:
nl += 1
# save the excess data to _rbuf
self._rbuf.write(data[nl:])
if buf_len:
buf.write(data[:nl])
break
else:
# Shortcut. Avoid data copy through buf when returning
# a substring of our first recv().
return data[:nl]
n = len(data)
if n == size and not buf_len:
# Shortcut. Avoid data copy through buf when
# returning exactly all of our first recv().
return data
if n >= left:
buf.write(data[:left])
self._rbuf.write(data[left:])
break
buf.write(data)
buf_len += n
#assert buf_len == buf.tell()
return buf.getvalue()
def readlines(self, sizehint=0):
total = 0
list = []
while True:
line = self.readline()
if not line:
break
list.append(line)
total += len(line)
if sizehint and total >= sizehint:
break
return list
# Iterator protocols
def __iter__(self):
return self
def next(self):
line = self.readline()
if not line:
raise StopIteration
return line