lib-python.2.7.test.decimaltestdata.tointegral.decTest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython-standalone Show documentation
Show all versions of jython-standalone Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
------------------------------------------------------------------------
-- tointegral.decTest -- round decimal to integral value --
-- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
-- these testcases. --
-- --
-- These testcases are experimental ('beta' versions), and they --
-- may contain errors. They are offered on an as-is basis. In --
-- particular, achieving the same results as the tests here is not --
-- a guarantee that an implementation complies with any Standard --
-- or specification. The tests are not exhaustive. --
-- --
-- Please send comments, suggestions, and corrections to the author: --
-- Mike Cowlishaw, IBM Fellow --
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- [email protected] --
------------------------------------------------------------------------
version: 2.59
-- This set of tests tests the extended specification 'round-to-integral
-- value' operation (from IEEE 854, later modified in 754r).
-- All non-zero results are defined as being those from either copy or
-- quantize, so those are assumed to have been tested.
-- Note that 754r requires that Inexact not be set, and we similarly
-- assume Rounded is not set.
extended: 1
precision: 9
rounding: half_up
maxExponent: 999
minExponent: -999
intx001 tointegral 0 -> 0
intx002 tointegral 0.0 -> 0
intx003 tointegral 0.1 -> 0
intx004 tointegral 0.2 -> 0
intx005 tointegral 0.3 -> 0
intx006 tointegral 0.4 -> 0
intx007 tointegral 0.5 -> 1
intx008 tointegral 0.6 -> 1
intx009 tointegral 0.7 -> 1
intx010 tointegral 0.8 -> 1
intx011 tointegral 0.9 -> 1
intx012 tointegral 1 -> 1
intx013 tointegral 1.0 -> 1
intx014 tointegral 1.1 -> 1
intx015 tointegral 1.2 -> 1
intx016 tointegral 1.3 -> 1
intx017 tointegral 1.4 -> 1
intx018 tointegral 1.5 -> 2
intx019 tointegral 1.6 -> 2
intx020 tointegral 1.7 -> 2
intx021 tointegral 1.8 -> 2
intx022 tointegral 1.9 -> 2
-- negatives
intx031 tointegral -0 -> -0
intx032 tointegral -0.0 -> -0
intx033 tointegral -0.1 -> -0
intx034 tointegral -0.2 -> -0
intx035 tointegral -0.3 -> -0
intx036 tointegral -0.4 -> -0
intx037 tointegral -0.5 -> -1
intx038 tointegral -0.6 -> -1
intx039 tointegral -0.7 -> -1
intx040 tointegral -0.8 -> -1
intx041 tointegral -0.9 -> -1
intx042 tointegral -1 -> -1
intx043 tointegral -1.0 -> -1
intx044 tointegral -1.1 -> -1
intx045 tointegral -1.2 -> -1
intx046 tointegral -1.3 -> -1
intx047 tointegral -1.4 -> -1
intx048 tointegral -1.5 -> -2
intx049 tointegral -1.6 -> -2
intx050 tointegral -1.7 -> -2
intx051 tointegral -1.8 -> -2
intx052 tointegral -1.9 -> -2
-- next two would be NaN using quantize(x, 0)
intx053 tointegral 10E+30 -> 1.0E+31
intx054 tointegral -10E+30 -> -1.0E+31
-- numbers around precision
precision: 9
intx060 tointegral '56267E-10' -> '0'
intx061 tointegral '56267E-5' -> '1'
intx062 tointegral '56267E-2' -> '563'
intx063 tointegral '56267E-1' -> '5627'
intx065 tointegral '56267E-0' -> '56267'
intx066 tointegral '56267E+0' -> '56267'
intx067 tointegral '56267E+1' -> '5.6267E+5'
intx068 tointegral '56267E+2' -> '5.6267E+6'
intx069 tointegral '56267E+3' -> '5.6267E+7'
intx070 tointegral '56267E+4' -> '5.6267E+8'
intx071 tointegral '56267E+5' -> '5.6267E+9'
intx072 tointegral '56267E+6' -> '5.6267E+10'
intx073 tointegral '1.23E+96' -> '1.23E+96'
intx074 tointegral '1.23E+384' -> '1.23E+384'
intx075 tointegral '1.23E+999' -> '1.23E+999'
intx080 tointegral '-56267E-10' -> '-0'
intx081 tointegral '-56267E-5' -> '-1'
intx082 tointegral '-56267E-2' -> '-563'
intx083 tointegral '-56267E-1' -> '-5627'
intx085 tointegral '-56267E-0' -> '-56267'
intx086 tointegral '-56267E+0' -> '-56267'
intx087 tointegral '-56267E+1' -> '-5.6267E+5'
intx088 tointegral '-56267E+2' -> '-5.6267E+6'
intx089 tointegral '-56267E+3' -> '-5.6267E+7'
intx090 tointegral '-56267E+4' -> '-5.6267E+8'
intx091 tointegral '-56267E+5' -> '-5.6267E+9'
intx092 tointegral '-56267E+6' -> '-5.6267E+10'
intx093 tointegral '-1.23E+96' -> '-1.23E+96'
intx094 tointegral '-1.23E+384' -> '-1.23E+384'
intx095 tointegral '-1.23E+999' -> '-1.23E+999'
-- subnormal inputs
intx100 tointegral 1E-999 -> 0
intx101 tointegral 0.1E-999 -> 0
intx102 tointegral 0.01E-999 -> 0
intx103 tointegral 0E-999 -> 0
-- specials and zeros
intx120 tointegral 'Inf' -> Infinity
intx121 tointegral '-Inf' -> -Infinity
intx122 tointegral NaN -> NaN
intx123 tointegral sNaN -> NaN Invalid_operation
intx124 tointegral 0 -> 0
intx125 tointegral -0 -> -0
intx126 tointegral 0.000 -> 0
intx127 tointegral 0.00 -> 0
intx128 tointegral 0.0 -> 0
intx129 tointegral 0 -> 0
intx130 tointegral 0E-3 -> 0
intx131 tointegral 0E-2 -> 0
intx132 tointegral 0E-1 -> 0
intx133 tointegral 0E-0 -> 0
intx134 tointegral 0E+1 -> 0E+1
intx135 tointegral 0E+2 -> 0E+2
intx136 tointegral 0E+3 -> 0E+3
intx137 tointegral 0E+4 -> 0E+4
intx138 tointegral 0E+5 -> 0E+5
intx139 tointegral -0.000 -> -0
intx140 tointegral -0.00 -> -0
intx141 tointegral -0.0 -> -0
intx142 tointegral -0 -> -0
intx143 tointegral -0E-3 -> -0
intx144 tointegral -0E-2 -> -0
intx145 tointegral -0E-1 -> -0
intx146 tointegral -0E-0 -> -0
intx147 tointegral -0E+1 -> -0E+1
intx148 tointegral -0E+2 -> -0E+2
intx149 tointegral -0E+3 -> -0E+3
intx150 tointegral -0E+4 -> -0E+4
intx151 tointegral -0E+5 -> -0E+5
-- propagating NaNs
intx152 tointegral NaN808 -> NaN808
intx153 tointegral sNaN080 -> NaN80 Invalid_operation
intx154 tointegral -NaN808 -> -NaN808
intx155 tointegral -sNaN080 -> -NaN80 Invalid_operation
intx156 tointegral -NaN -> -NaN
intx157 tointegral -sNaN -> -NaN Invalid_operation
-- examples
rounding: half_up
precision: 9
intx200 tointegral 2.1 -> 2
intx201 tointegral 100 -> 100
intx202 tointegral 100.0 -> 100
intx203 tointegral 101.5 -> 102
intx204 tointegral -101.5 -> -102
intx205 tointegral 10E+5 -> 1.0E+6
intx206 tointegral 7.89E+77 -> 7.89E+77
intx207 tointegral -Inf -> -Infinity
-- all rounding modes
rounding: half_even
intx210 tointegral 55.5 -> 56
intx211 tointegral 56.5 -> 56
intx212 tointegral 57.5 -> 58
intx213 tointegral -55.5 -> -56
intx214 tointegral -56.5 -> -56
intx215 tointegral -57.5 -> -58
rounding: half_up
intx220 tointegral 55.5 -> 56
intx221 tointegral 56.5 -> 57
intx222 tointegral 57.5 -> 58
intx223 tointegral -55.5 -> -56
intx224 tointegral -56.5 -> -57
intx225 tointegral -57.5 -> -58
rounding: half_down
intx230 tointegral 55.5 -> 55
intx231 tointegral 56.5 -> 56
intx232 tointegral 57.5 -> 57
intx233 tointegral -55.5 -> -55
intx234 tointegral -56.5 -> -56
intx235 tointegral -57.5 -> -57
rounding: up
intx240 tointegral 55.3 -> 56
intx241 tointegral 56.3 -> 57
intx242 tointegral 57.3 -> 58
intx243 tointegral -55.3 -> -56
intx244 tointegral -56.3 -> -57
intx245 tointegral -57.3 -> -58
rounding: down
intx250 tointegral 55.7 -> 55
intx251 tointegral 56.7 -> 56
intx252 tointegral 57.7 -> 57
intx253 tointegral -55.7 -> -55
intx254 tointegral -56.7 -> -56
intx255 tointegral -57.7 -> -57
rounding: ceiling
intx260 tointegral 55.3 -> 56
intx261 tointegral 56.3 -> 57
intx262 tointegral 57.3 -> 58
intx263 tointegral -55.3 -> -55
intx264 tointegral -56.3 -> -56
intx265 tointegral -57.3 -> -57
rounding: floor
intx270 tointegral 55.7 -> 55
intx271 tointegral 56.7 -> 56
intx272 tointegral 57.7 -> 57
intx273 tointegral -55.7 -> -56
intx274 tointegral -56.7 -> -57
intx275 tointegral -57.7 -> -58
© 2015 - 2024 Weber Informatics LLC | Privacy Policy