All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Lib.test.test_math_jy.py Maven / Gradle / Ivy

Go to download

Jython is an implementation of the high-level, dynamic, object-oriented language Python written in 100% Pure Java, and seamlessly integrated with the Java platform. It thus allows you to run Python on any Java platform.

The newest version!
"""Misc math module tests

Made for Jython.
"""
import math
import unittest
from test import test_support
from test.test_math import (MathTests, ulps_check,
                            parse_testfile, test_file)

from java.lang import Math

inf = float('inf')
ninf = float('-inf')
nan = float('nan')

# Optional tests use mpmath
try:
    import mpmath
    HAVE_MPMATH = True
except:
    HAVE_MPMATH = False


class MathTestCase(unittest.TestCase):

    def test_frexp(self):
        self.assertEqual(math.frexp(inf), (inf, 0))
        mantissa, exponent = math.frexp(nan)
        self.assertNotEqual(mantissa, mantissa)
        self.assertEqual(exponent, 0)

    def test_fmod(self):
        self.assertEqual(-1e-100, math.fmod(-1e-100, 1e100))

    def test_hypot(self):
        self.assert_(math.isnan(math.hypot(nan, nan)))
        self.assert_(math.isnan(math.hypot(4, nan)))
        self.assert_(math.isnan(math.hypot(nan, 4)))
        self.assertEqual(inf, math.hypot(inf, 4))
        self.assertEqual(inf, math.hypot(4, inf))
        self.assertEqual(inf, math.hypot(ninf, 4))
        self.assertEqual(inf, math.hypot(4, ninf))

    def test_math_domain_error(self):
        self.assertRaises(ValueError, math.sqrt, -1)
        self.assertRaises(ValueError, math.sqrt, -1.5)
        self.assertRaises(ValueError, math.sqrt, -0.5)
        self.assertRaises(ValueError, math.log, 0)
        self.assertRaises(ValueError, math.log, -1)
        self.assertRaises(ValueError, math.log, -1.5)
        self.assertRaises(ValueError, math.log, -0.5)


class MathAccuracy(MathTests):
    # Run the CPython tests but expect accurate results

    def ftest(self, name, value, expected, ulps_err=1):

        if expected != 0. :
            # Tolerate small deviation in proportion to expected
            ulp_unit = Math.ulp(expected)
        else :
            # On zero, allow 2**-52. Maybe allow different slack based on name
            ulp_unit = Math.ulp(1.)

        # Complex expressions accumulate errors
        if name in ('cosh(2)-2*cosh(1)**2', 'sinh(1)**2-cosh(1)**2') :
            # ... quite steeply in these cases
            ulps_err *= 5

        err = value-expected

        if abs(err) > ulps_err * ulp_unit:
            # Use %r to display full precision.
            message = '%s returned %r, expected %r (%r ulps)' % \
                (name, value, expected, round(err/ulp_unit, 1))
            self.fail(message)

    def testConstants(self):
        # Override MathTests.testConstants requiring equality with java.Math
        self.assertEqual(math.pi, Math.PI)
        self.assertEqual(math.e, Math.E)

    def test_testfile(self, math_module=math, ulps_err=None):
        # Rigorous variant of MathTests.test_testfile requiring accuracy in ulps.
        fail_fmt = "{}:{}({!r}): expected {!r}, got {!r}"
        failures = []

        for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
            # Skip if either the input or result is complex, or if
            # flags is nonempty
            if ai != 0. or ei != 0. or flags:
                continue
            if fn in ['rect', 'polar']:
                # no real versions of rect, polar
                continue

            if ulps_err is not None :
                fn_ulps_err = ulps_err
            else :
                # java.Math mostly promises 1 ulp, except for:
                if fn in ['atan2'] :
                    fn_ulps_err = 2
                elif fn in ['cosh', 'sinh', 'tanh'] :
                    fn_ulps_err = 2.5
                else :
                    fn_ulps_err = 1

            func = getattr(math_module, fn)
            arg = ar
            expected = er

            if 'invalid' in flags or 'divide-by-zero' in flags:
                expected = 'ValueError'
            elif 'overflow' in flags:
                expected = 'OverflowError'

            try:
                got = float(func(arg))
            except ValueError:
                got = 'ValueError'
            except OverflowError:
                got = 'OverflowError'

            accuracy_failure = None
            if isinstance(got, float) and isinstance(expected, float):
                if math.isnan(expected) and math.isnan(got):
                    continue
                accuracy_failure = ulps_check(expected, got, fn_ulps_err)
                if accuracy_failure is None:
                    continue

            if isinstance(got, str) and isinstance(expected, str):
                if got == expected:
                    continue

            fail_msg = fail_fmt.format(id, fn, arg, expected, got)
            if accuracy_failure is not None:
                fail_msg += ' ({})'.format(accuracy_failure)
            failures.append(fail_msg)

        if failures:
            self.fail('Failures in test_testfile:\n  ' +
                      '\n  '.join(failures))

    @unittest.skipUnless(HAVE_MPMATH, "requires mpmath module")
    def test_testfile_mpmath(self):
        # Run the mpmath module on the same material: consistency check during development.
        with mpmath.workprec(100) :
            self.test_testfile(mpmath, 1, 1)


def test_main():
    test_support.run_unittest(
            MathTestCase,
            MathAccuracy,
        )


if __name__ == '__main__':
    test_main()




© 2015 - 2025 Weber Informatics LLC | Privacy Policy