lib-python.2.7.multiprocessing.pool.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython Show documentation
Show all versions of jython Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
#
# Module providing the `Pool` class for managing a process pool
#
# multiprocessing/pool.py
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of author nor the names of any contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
__all__ = ['Pool']
#
# Imports
#
import threading
import Queue
import itertools
import collections
import time
from multiprocessing import Process, cpu_count, TimeoutError
from multiprocessing.util import Finalize, debug
#
# Constants representing the state of a pool
#
RUN = 0
CLOSE = 1
TERMINATE = 2
#
# Miscellaneous
#
job_counter = itertools.count()
def mapstar(args):
return map(*args)
#
# Code run by worker processes
#
class MaybeEncodingError(Exception):
"""Wraps possible unpickleable errors, so they can be
safely sent through the socket."""
def __init__(self, exc, value):
self.exc = repr(exc)
self.value = repr(value)
super(MaybeEncodingError, self).__init__(self.exc, self.value)
def __str__(self):
return "Error sending result: '%s'. Reason: '%s'" % (self.value,
self.exc)
def __repr__(self):
return "" % str(self)
def worker(inqueue, outqueue, initializer=None, initargs=(), maxtasks=None):
assert maxtasks is None or (type(maxtasks) == int and maxtasks > 0)
put = outqueue.put
get = inqueue.get
if hasattr(inqueue, '_writer'):
inqueue._writer.close()
outqueue._reader.close()
if initializer is not None:
initializer(*initargs)
completed = 0
while maxtasks is None or (maxtasks and completed < maxtasks):
try:
task = get()
except (EOFError, IOError):
debug('worker got EOFError or IOError -- exiting')
break
if task is None:
debug('worker got sentinel -- exiting')
break
job, i, func, args, kwds = task
try:
result = (True, func(*args, **kwds))
except Exception, e:
result = (False, e)
try:
put((job, i, result))
except Exception as e:
wrapped = MaybeEncodingError(e, result[1])
debug("Possible encoding error while sending result: %s" % (
wrapped))
put((job, i, (False, wrapped)))
completed += 1
debug('worker exiting after %d tasks' % completed)
#
# Class representing a process pool
#
class Pool(object):
'''
Class which supports an async version of the `apply()` builtin
'''
Process = Process
def __init__(self, processes=None, initializer=None, initargs=(),
maxtasksperchild=None):
self._setup_queues()
self._taskqueue = Queue.Queue()
self._cache = {}
self._state = RUN
self._maxtasksperchild = maxtasksperchild
self._initializer = initializer
self._initargs = initargs
if processes is None:
try:
processes = cpu_count()
except NotImplementedError:
processes = 1
if processes < 1:
raise ValueError("Number of processes must be at least 1")
if initializer is not None and not hasattr(initializer, '__call__'):
raise TypeError('initializer must be a callable')
self._processes = processes
self._pool = []
self._repopulate_pool()
self._worker_handler = threading.Thread(
target=Pool._handle_workers,
args=(self, )
)
self._worker_handler.daemon = True
self._worker_handler._state = RUN
self._worker_handler.start()
self._task_handler = threading.Thread(
target=Pool._handle_tasks,
args=(self._taskqueue, self._quick_put, self._outqueue,
self._pool, self._cache)
)
self._task_handler.daemon = True
self._task_handler._state = RUN
self._task_handler.start()
self._result_handler = threading.Thread(
target=Pool._handle_results,
args=(self._outqueue, self._quick_get, self._cache)
)
self._result_handler.daemon = True
self._result_handler._state = RUN
self._result_handler.start()
self._terminate = Finalize(
self, self._terminate_pool,
args=(self._taskqueue, self._inqueue, self._outqueue, self._pool,
self._worker_handler, self._task_handler,
self._result_handler, self._cache),
exitpriority=15
)
def _join_exited_workers(self):
"""Cleanup after any worker processes which have exited due to reaching
their specified lifetime. Returns True if any workers were cleaned up.
"""
cleaned = False
for i in reversed(range(len(self._pool))):
worker = self._pool[i]
if worker.exitcode is not None:
# worker exited
debug('cleaning up worker %d' % i)
worker.join()
cleaned = True
del self._pool[i]
return cleaned
def _repopulate_pool(self):
"""Bring the number of pool processes up to the specified number,
for use after reaping workers which have exited.
"""
for i in range(self._processes - len(self._pool)):
w = self.Process(target=worker,
args=(self._inqueue, self._outqueue,
self._initializer,
self._initargs, self._maxtasksperchild)
)
self._pool.append(w)
w.name = w.name.replace('Process', 'PoolWorker')
w.daemon = True
w.start()
debug('added worker')
def _maintain_pool(self):
"""Clean up any exited workers and start replacements for them.
"""
if self._join_exited_workers():
self._repopulate_pool()
def _setup_queues(self):
from .queues import SimpleQueue
self._inqueue = SimpleQueue()
self._outqueue = SimpleQueue()
self._quick_put = self._inqueue._writer.send
self._quick_get = self._outqueue._reader.recv
def apply(self, func, args=(), kwds={}):
'''
Equivalent of `apply()` builtin
'''
assert self._state == RUN
return self.apply_async(func, args, kwds).get()
def map(self, func, iterable, chunksize=None):
'''
Equivalent of `map()` builtin
'''
assert self._state == RUN
return self.map_async(func, iterable, chunksize).get()
def imap(self, func, iterable, chunksize=1):
'''
Equivalent of `itertools.imap()` -- can be MUCH slower than `Pool.map()`
'''
assert self._state == RUN
if chunksize == 1:
result = IMapIterator(self._cache)
self._taskqueue.put((((result._job, i, func, (x,), {})
for i, x in enumerate(iterable)), result._set_length))
return result
else:
assert chunksize > 1
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapIterator(self._cache)
self._taskqueue.put((((result._job, i, mapstar, (x,), {})
for i, x in enumerate(task_batches)), result._set_length))
return (item for chunk in result for item in chunk)
def imap_unordered(self, func, iterable, chunksize=1):
'''
Like `imap()` method but ordering of results is arbitrary
'''
assert self._state == RUN
if chunksize == 1:
result = IMapUnorderedIterator(self._cache)
self._taskqueue.put((((result._job, i, func, (x,), {})
for i, x in enumerate(iterable)), result._set_length))
return result
else:
assert chunksize > 1
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapUnorderedIterator(self._cache)
self._taskqueue.put((((result._job, i, mapstar, (x,), {})
for i, x in enumerate(task_batches)), result._set_length))
return (item for chunk in result for item in chunk)
def apply_async(self, func, args=(), kwds={}, callback=None):
'''
Asynchronous equivalent of `apply()` builtin
'''
assert self._state == RUN
result = ApplyResult(self._cache, callback)
self._taskqueue.put(([(result._job, None, func, args, kwds)], None))
return result
def map_async(self, func, iterable, chunksize=None, callback=None):
'''
Asynchronous equivalent of `map()` builtin
'''
assert self._state == RUN
if not hasattr(iterable, '__len__'):
iterable = list(iterable)
if chunksize is None:
chunksize, extra = divmod(len(iterable), len(self._pool) * 4)
if extra:
chunksize += 1
if len(iterable) == 0:
chunksize = 0
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = MapResult(self._cache, chunksize, len(iterable), callback)
self._taskqueue.put((((result._job, i, mapstar, (x,), {})
for i, x in enumerate(task_batches)), None))
return result
@staticmethod
def _handle_workers(pool):
thread = threading.current_thread()
# Keep maintaining workers until the cache gets drained, unless the pool
# is terminated.
while thread._state == RUN or (pool._cache and thread._state != TERMINATE):
pool._maintain_pool()
time.sleep(0.1)
# send sentinel to stop workers
pool._taskqueue.put(None)
debug('worker handler exiting')
@staticmethod
def _handle_tasks(taskqueue, put, outqueue, pool, cache):
thread = threading.current_thread()
for taskseq, set_length in iter(taskqueue.get, None):
task = None
i = -1
try:
for i, task in enumerate(taskseq):
if thread._state:
debug('task handler found thread._state != RUN')
break
try:
put(task)
except Exception as e:
job, ind = task[:2]
try:
cache[job]._set(ind, (False, e))
except KeyError:
pass
else:
if set_length:
debug('doing set_length()')
set_length(i+1)
continue
break
except Exception as ex:
job, ind = task[:2] if task else (0, 0)
if job in cache:
cache[job]._set(ind + 1, (False, ex))
if set_length:
debug('doing set_length()')
set_length(i+1)
else:
debug('task handler got sentinel')
try:
# tell result handler to finish when cache is empty
debug('task handler sending sentinel to result handler')
outqueue.put(None)
# tell workers there is no more work
debug('task handler sending sentinel to workers')
for p in pool:
put(None)
except IOError:
debug('task handler got IOError when sending sentinels')
debug('task handler exiting')
@staticmethod
def _handle_results(outqueue, get, cache):
thread = threading.current_thread()
while 1:
try:
task = get()
except (IOError, EOFError):
debug('result handler got EOFError/IOError -- exiting')
return
if thread._state:
assert thread._state == TERMINATE
debug('result handler found thread._state=TERMINATE')
break
if task is None:
debug('result handler got sentinel')
break
job, i, obj = task
try:
cache[job]._set(i, obj)
except KeyError:
pass
while cache and thread._state != TERMINATE:
try:
task = get()
except (IOError, EOFError):
debug('result handler got EOFError/IOError -- exiting')
return
if task is None:
debug('result handler ignoring extra sentinel')
continue
job, i, obj = task
try:
cache[job]._set(i, obj)
except KeyError:
pass
if hasattr(outqueue, '_reader'):
debug('ensuring that outqueue is not full')
# If we don't make room available in outqueue then
# attempts to add the sentinel (None) to outqueue may
# block. There is guaranteed to be no more than 2 sentinels.
try:
for i in range(10):
if not outqueue._reader.poll():
break
get()
except (IOError, EOFError):
pass
debug('result handler exiting: len(cache)=%s, thread._state=%s',
len(cache), thread._state)
@staticmethod
def _get_tasks(func, it, size):
it = iter(it)
while 1:
x = tuple(itertools.islice(it, size))
if not x:
return
yield (func, x)
def __reduce__(self):
raise NotImplementedError(
'pool objects cannot be passed between processes or pickled'
)
def close(self):
debug('closing pool')
if self._state == RUN:
self._state = CLOSE
self._worker_handler._state = CLOSE
def terminate(self):
debug('terminating pool')
self._state = TERMINATE
self._worker_handler._state = TERMINATE
self._terminate()
def join(self):
debug('joining pool')
assert self._state in (CLOSE, TERMINATE)
self._worker_handler.join()
self._task_handler.join()
self._result_handler.join()
for p in self._pool:
p.join()
@staticmethod
def _help_stuff_finish(inqueue, task_handler, size):
# task_handler may be blocked trying to put items on inqueue
debug('removing tasks from inqueue until task handler finished')
inqueue._rlock.acquire()
while task_handler.is_alive() and inqueue._reader.poll():
inqueue._reader.recv()
time.sleep(0)
@classmethod
def _terminate_pool(cls, taskqueue, inqueue, outqueue, pool,
worker_handler, task_handler, result_handler, cache):
# this is guaranteed to only be called once
debug('finalizing pool')
worker_handler._state = TERMINATE
task_handler._state = TERMINATE
debug('helping task handler/workers to finish')
cls._help_stuff_finish(inqueue, task_handler, len(pool))
assert result_handler.is_alive() or len(cache) == 0
result_handler._state = TERMINATE
outqueue.put(None) # sentinel
# We must wait for the worker handler to exit before terminating
# workers because we don't want workers to be restarted behind our back.
debug('joining worker handler')
if threading.current_thread() is not worker_handler:
worker_handler.join(1e100)
# Terminate workers which haven't already finished.
if pool and hasattr(pool[0], 'terminate'):
debug('terminating workers')
for p in pool:
if p.exitcode is None:
p.terminate()
debug('joining task handler')
if threading.current_thread() is not task_handler:
task_handler.join(1e100)
debug('joining result handler')
if threading.current_thread() is not result_handler:
result_handler.join(1e100)
if pool and hasattr(pool[0], 'terminate'):
debug('joining pool workers')
for p in pool:
if p.is_alive():
# worker has not yet exited
debug('cleaning up worker %d' % p.pid)
p.join()
#
# Class whose instances are returned by `Pool.apply_async()`
#
class ApplyResult(object):
def __init__(self, cache, callback):
self._cond = threading.Condition(threading.Lock())
self._job = job_counter.next()
self._cache = cache
self._ready = False
self._callback = callback
cache[self._job] = self
def ready(self):
return self._ready
def successful(self):
assert self._ready
return self._success
def wait(self, timeout=None):
self._cond.acquire()
try:
if not self._ready:
self._cond.wait(timeout)
finally:
self._cond.release()
def get(self, timeout=None):
self.wait(timeout)
if not self._ready:
raise TimeoutError
if self._success:
return self._value
else:
raise self._value
def _set(self, i, obj):
self._success, self._value = obj
if self._callback and self._success:
self._callback(self._value)
self._cond.acquire()
try:
self._ready = True
self._cond.notify()
finally:
self._cond.release()
del self._cache[self._job]
AsyncResult = ApplyResult # create alias -- see #17805
#
# Class whose instances are returned by `Pool.map_async()`
#
class MapResult(ApplyResult):
def __init__(self, cache, chunksize, length, callback):
ApplyResult.__init__(self, cache, callback)
self._success = True
self._value = [None] * length
self._chunksize = chunksize
if chunksize <= 0:
self._number_left = 0
self._ready = True
del cache[self._job]
else:
self._number_left = length//chunksize + bool(length % chunksize)
def _set(self, i, success_result):
success, result = success_result
if success:
self._value[i*self._chunksize:(i+1)*self._chunksize] = result
self._number_left -= 1
if self._number_left == 0:
if self._callback:
self._callback(self._value)
del self._cache[self._job]
self._cond.acquire()
try:
self._ready = True
self._cond.notify()
finally:
self._cond.release()
else:
self._success = False
self._value = result
del self._cache[self._job]
self._cond.acquire()
try:
self._ready = True
self._cond.notify()
finally:
self._cond.release()
#
# Class whose instances are returned by `Pool.imap()`
#
class IMapIterator(object):
def __init__(self, cache):
self._cond = threading.Condition(threading.Lock())
self._job = job_counter.next()
self._cache = cache
self._items = collections.deque()
self._index = 0
self._length = None
self._unsorted = {}
cache[self._job] = self
def __iter__(self):
return self
def next(self, timeout=None):
self._cond.acquire()
try:
try:
item = self._items.popleft()
except IndexError:
if self._index == self._length:
raise StopIteration
self._cond.wait(timeout)
try:
item = self._items.popleft()
except IndexError:
if self._index == self._length:
raise StopIteration
raise TimeoutError
finally:
self._cond.release()
success, value = item
if success:
return value
raise value
__next__ = next # XXX
def _set(self, i, obj):
self._cond.acquire()
try:
if self._index == i:
self._items.append(obj)
self._index += 1
while self._index in self._unsorted:
obj = self._unsorted.pop(self._index)
self._items.append(obj)
self._index += 1
self._cond.notify()
else:
self._unsorted[i] = obj
if self._index == self._length:
del self._cache[self._job]
finally:
self._cond.release()
def _set_length(self, length):
self._cond.acquire()
try:
self._length = length
if self._index == self._length:
self._cond.notify()
del self._cache[self._job]
finally:
self._cond.release()
#
# Class whose instances are returned by `Pool.imap_unordered()`
#
class IMapUnorderedIterator(IMapIterator):
def _set(self, i, obj):
self._cond.acquire()
try:
self._items.append(obj)
self._index += 1
self._cond.notify()
if self._index == self._length:
del self._cache[self._job]
finally:
self._cond.release()
#
#
#
class ThreadPool(Pool):
from .dummy import Process
def __init__(self, processes=None, initializer=None, initargs=()):
Pool.__init__(self, processes, initializer, initargs)
def _setup_queues(self):
self._inqueue = Queue.Queue()
self._outqueue = Queue.Queue()
self._quick_put = self._inqueue.put
self._quick_get = self._outqueue.get
@staticmethod
def _help_stuff_finish(inqueue, task_handler, size):
# put sentinels at head of inqueue to make workers finish
inqueue.not_empty.acquire()
try:
inqueue.queue.clear()
inqueue.queue.extend([None] * size)
inqueue.not_empty.notify_all()
finally:
inqueue.not_empty.release()