All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.lang.AbstractStringBuilder Maven / Gradle / Ivy

There is a newer version: 17.alpha.0.57
Show newest version
/*
 * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang;

import jdk.internal.math.FloatingDecimal;

import java.util.Arrays;
import java.util.Spliterator;
import java.util.stream.IntStream;
import java.util.stream.StreamSupport;
import jdk.internal.util.ArraysSupport;

import static java.lang.String.COMPACT_STRINGS;
import static java.lang.String.UTF16;
import static java.lang.String.LATIN1;
import static java.lang.String.checkIndex;
import static java.lang.String.checkOffset;

/**
 * A mutable sequence of characters.
 * 

* Implements a modifiable string. At any point in time it contains some * particular sequence of characters, but the length and content of the * sequence can be changed through certain method calls. * *

Unless otherwise noted, passing a {@code null} argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * * @author Michael McCloskey * @author Martin Buchholz * @author Ulf Zibis * @since 1.5 */ abstract class AbstractStringBuilder implements Appendable, CharSequence { /** * The value is used for character storage. */ byte[] value; /** * The id of the encoding used to encode the bytes in {@code value}. */ byte coder; /** * The count is the number of characters used. */ int count; private static final byte[] EMPTYVALUE = new byte[0]; /** * This no-arg constructor is necessary for serialization of subclasses. */ AbstractStringBuilder() { value = EMPTYVALUE; } /** * Creates an AbstractStringBuilder of the specified capacity. */ AbstractStringBuilder(int capacity) { if (COMPACT_STRINGS) { value = new byte[capacity]; coder = LATIN1; } else { value = StringUTF16.newBytesFor(capacity); coder = UTF16; } } /** * Constructs an AbstractStringBuilder that contains the same characters * as the specified {@code String}. The initial capacity of * the string builder is {@code 16} plus the length of the * {@code String} argument. * * @param str the string to copy. */ AbstractStringBuilder(String str) { int length = str.length(); int capacity = (length < Integer.MAX_VALUE - 16) ? length + 16 : Integer.MAX_VALUE; final byte initCoder = str.coder(); coder = initCoder; value = (initCoder == LATIN1) ? new byte[capacity] : StringUTF16.newBytesFor(capacity); append(str); } /** * Constructs an AbstractStringBuilder that contains the same characters * as the specified {@code CharSequence}. The initial capacity of * the string builder is {@code 16} plus the length of the * {@code CharSequence} argument. * * @param seq the sequence to copy. */ AbstractStringBuilder(CharSequence seq) { int length = seq.length(); if (length < 0) { throw new NegativeArraySizeException("Negative length: " + length); } int capacity = (length < Integer.MAX_VALUE - 16) ? length + 16 : Integer.MAX_VALUE; final byte initCoder; if (COMPACT_STRINGS) { if (seq instanceof AbstractStringBuilder) { initCoder = ((AbstractStringBuilder)seq).getCoder(); } else if (seq instanceof String) { initCoder = ((String)seq).coder(); } else { initCoder = LATIN1; } } else { initCoder = UTF16; } coder = initCoder; value = (initCoder == LATIN1) ? new byte[capacity] : StringUTF16.newBytesFor(capacity); append(seq); } /** * Compares the objects of two AbstractStringBuilder implementations lexicographically. * * @since 11 */ int compareTo(AbstractStringBuilder another) { if (this == another) { return 0; } byte[] val1 = value; byte[] val2 = another.value; int count1 = this.count; int count2 = another.count; if (coder == another.coder) { return isLatin1() ? StringLatin1.compareTo(val1, val2, count1, count2) : StringUTF16.compareTo(val1, val2, count1, count2); } return isLatin1() ? StringLatin1.compareToUTF16(val1, val2, count1, count2) : StringUTF16.compareToLatin1(val1, val2, count1, count2); } /** * Returns the length (character count). * * @return the length of the sequence of characters currently * represented by this object */ @Override public int length() { return count; } /** * Returns the current capacity. The capacity is the number of characters * that can be stored (including already written characters), beyond which * an allocation will occur. * * @return the current capacity */ public int capacity() { return value.length >> coder; } /** * Ensures that the capacity is at least equal to the specified minimum. * If the current capacity is less than the argument, then a new internal * array is allocated with greater capacity. The new capacity is the * larger of: *

    *
  • The {@code minimumCapacity} argument. *
  • Twice the old capacity, plus {@code 2}. *
* If the {@code minimumCapacity} argument is nonpositive, this * method takes no action and simply returns. * Note that subsequent operations on this object can reduce the * actual capacity below that requested here. * * @param minimumCapacity the minimum desired capacity. */ public void ensureCapacity(int minimumCapacity) { if (minimumCapacity > 0) { ensureCapacityInternal(minimumCapacity); } } /** * For positive values of {@code minimumCapacity}, this method * behaves like {@code ensureCapacity}, however it is never * synchronized. * If {@code minimumCapacity} is non positive due to numeric * overflow, this method throws {@code OutOfMemoryError}. */ private void ensureCapacityInternal(int minimumCapacity) { // overflow-conscious code int oldCapacity = value.length >> coder; if (minimumCapacity - oldCapacity > 0) { value = Arrays.copyOf(value, newCapacity(minimumCapacity) << coder); } } /** * The maximum size of array to allocate (unless necessary). * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Returns a capacity at least as large as the given minimum capacity. * Returns the current capacity increased by the current length + 2 if * that suffices. * Will not return a capacity greater than * {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity * is greater than that. * * @param minCapacity the desired minimum capacity * @throws OutOfMemoryError if minCapacity is less than zero or * greater than (Integer.MAX_VALUE >> coder) */ private int newCapacity(int minCapacity) { int oldLength = value.length; int newLength = minCapacity << coder; int growth = newLength - oldLength; int length = ArraysSupport.newLength(oldLength, growth, oldLength + (2 << coder)); if (length == Integer.MAX_VALUE) { throw new OutOfMemoryError("Required length exceeds implementation limit"); } return length >> coder; } /** * If the coder is "isLatin1", this inflates the internal 8-bit storage * to 16-bit pair storage. */ private void inflate() { if (!isLatin1()) { return; } byte[] buf = StringUTF16.newBytesFor(value.length); StringLatin1.inflate(value, 0, buf, 0, count); this.value = buf; this.coder = UTF16; } /** * Attempts to reduce storage used for the character sequence. * If the buffer is larger than necessary to hold its current sequence of * characters, then it may be resized to become more space efficient. * Calling this method may, but is not required to, affect the value * returned by a subsequent call to the {@link #capacity()} method. */ public void trimToSize() { int length = count << coder; if (length < value.length) { value = Arrays.copyOf(value, length); } } /** * Sets the length of the character sequence. * The sequence is changed to a new character sequence * whose length is specified by the argument. For every nonnegative * index k less than {@code newLength}, the character at * index k in the new character sequence is the same as the * character at index k in the old sequence if k is less * than the length of the old character sequence; otherwise, it is the * null character {@code '\u005Cu0000'}. * * In other words, if the {@code newLength} argument is less than * the current length, the length is changed to the specified length. *

* If the {@code newLength} argument is greater than or equal * to the current length, sufficient null characters * ({@code '\u005Cu0000'}) are appended so that * length becomes the {@code newLength} argument. *

* The {@code newLength} argument must be greater than or equal * to {@code 0}. * * @param newLength the new length * @throws IndexOutOfBoundsException if the * {@code newLength} argument is negative. */ public void setLength(int newLength) { if (newLength < 0) { throw new StringIndexOutOfBoundsException(newLength); } ensureCapacityInternal(newLength); if (count < newLength) { if (isLatin1()) { StringLatin1.fillNull(value, count, newLength); } else { StringUTF16.fillNull(value, count, newLength); } } count = newLength; } /** * Returns the {@code char} value in this sequence at the specified index. * The first {@code char} value is at index {@code 0}, the next at index * {@code 1}, and so on, as in array indexing. *

* The index argument must be greater than or equal to * {@code 0}, and less than the length of this sequence. * *

If the {@code char} value specified by the index is a * surrogate, the surrogate * value is returned. * * @param index the index of the desired {@code char} value. * @return the {@code char} value at the specified index. * @throws IndexOutOfBoundsException if {@code index} is * negative or greater than or equal to {@code length()}. */ @Override public char charAt(int index) { checkIndex(index, count); if (isLatin1()) { return (char)(value[index] & 0xff); } return StringUTF16.charAt(value, index); } /** * Returns the character (Unicode code point) at the specified * index. The index refers to {@code char} values * (Unicode code units) and ranges from {@code 0} to * {@link #length()}{@code - 1}. * *

If the {@code char} value specified at the given index * is in the high-surrogate range, the following index is less * than the length of this sequence, and the * {@code char} value at the following index is in the * low-surrogate range, then the supplementary code point * corresponding to this surrogate pair is returned. Otherwise, * the {@code char} value at the given index is returned. * * @param index the index to the {@code char} values * @return the code point value of the character at the * {@code index} * @throws IndexOutOfBoundsException if the {@code index} * argument is negative or not less than the length of this * sequence. */ public int codePointAt(int index) { int count = this.count; byte[] value = this.value; checkIndex(index, count); if (isLatin1()) { return value[index] & 0xff; } return StringUTF16.codePointAtSB(value, index, count); } /** * Returns the character (Unicode code point) before the specified * index. The index refers to {@code char} values * (Unicode code units) and ranges from {@code 1} to {@link * #length()}. * *

If the {@code char} value at {@code (index - 1)} * is in the low-surrogate range, {@code (index - 2)} is not * negative, and the {@code char} value at {@code (index - * 2)} is in the high-surrogate range, then the * supplementary code point value of the surrogate pair is * returned. If the {@code char} value at {@code index - * 1} is an unpaired low-surrogate or a high-surrogate, the * surrogate value is returned. * * @param index the index following the code point that should be returned * @return the Unicode code point value before the given index. * @throws IndexOutOfBoundsException if the {@code index} * argument is less than 1 or greater than the length * of this sequence. */ public int codePointBefore(int index) { int i = index - 1; if (i < 0 || i >= count) { throw new StringIndexOutOfBoundsException(index); } if (isLatin1()) { return value[i] & 0xff; } return StringUTF16.codePointBeforeSB(value, index); } /** * Returns the number of Unicode code points in the specified text * range of this sequence. The text range begins at the specified * {@code beginIndex} and extends to the {@code char} at * index {@code endIndex - 1}. Thus the length (in * {@code char}s) of the text range is * {@code endIndex-beginIndex}. Unpaired surrogates within * this sequence count as one code point each. * * @param beginIndex the index to the first {@code char} of * the text range. * @param endIndex the index after the last {@code char} of * the text range. * @return the number of Unicode code points in the specified text * range * @throws IndexOutOfBoundsException if the * {@code beginIndex} is negative, or {@code endIndex} * is larger than the length of this sequence, or * {@code beginIndex} is larger than {@code endIndex}. */ public int codePointCount(int beginIndex, int endIndex) { if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) { throw new IndexOutOfBoundsException(); } if (isLatin1()) { return endIndex - beginIndex; } return StringUTF16.codePointCountSB(value, beginIndex, endIndex); } /** * Returns the index within this sequence that is offset from the * given {@code index} by {@code codePointOffset} code * points. Unpaired surrogates within the text range given by * {@code index} and {@code codePointOffset} count as * one code point each. * * @param index the index to be offset * @param codePointOffset the offset in code points * @return the index within this sequence * @throws IndexOutOfBoundsException if {@code index} * is negative or larger then the length of this sequence, * or if {@code codePointOffset} is positive and the subsequence * starting with {@code index} has fewer than * {@code codePointOffset} code points, * or if {@code codePointOffset} is negative and the subsequence * before {@code index} has fewer than the absolute value of * {@code codePointOffset} code points. */ public int offsetByCodePoints(int index, int codePointOffset) { if (index < 0 || index > count) { throw new IndexOutOfBoundsException(); } return Character.offsetByCodePoints(this, index, codePointOffset); } /** * Characters are copied from this sequence into the * destination character array {@code dst}. The first character to * be copied is at index {@code srcBegin}; the last character to * be copied is at index {@code srcEnd-1}. The total number of * characters to be copied is {@code srcEnd-srcBegin}. The * characters are copied into the subarray of {@code dst} starting * at index {@code dstBegin} and ending at index: *

{@code
     * dstbegin + (srcEnd-srcBegin) - 1
     * }
* * @param srcBegin start copying at this offset. * @param srcEnd stop copying at this offset. * @param dst the array to copy the data into. * @param dstBegin offset into {@code dst}. * @throws IndexOutOfBoundsException if any of the following is true: *
    *
  • {@code srcBegin} is negative *
  • {@code dstBegin} is negative *
  • the {@code srcBegin} argument is greater than * the {@code srcEnd} argument. *
  • {@code srcEnd} is greater than * {@code this.length()}. *
  • {@code dstBegin+srcEnd-srcBegin} is greater than * {@code dst.length} *
*/ public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin) { checkRangeSIOOBE(srcBegin, srcEnd, count); // compatible to old version int n = srcEnd - srcBegin; checkRange(dstBegin, dstBegin + n, dst.length); if (isLatin1()) { StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin); } else { StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin); } } /** * The character at the specified index is set to {@code ch}. This * sequence is altered to represent a new character sequence that is * identical to the old character sequence, except that it contains the * character {@code ch} at position {@code index}. *

* The index argument must be greater than or equal to * {@code 0}, and less than the length of this sequence. * * @param index the index of the character to modify. * @param ch the new character. * @throws IndexOutOfBoundsException if {@code index} is * negative or greater than or equal to {@code length()}. */ public void setCharAt(int index, char ch) { checkIndex(index, count); if (isLatin1() && StringLatin1.canEncode(ch)) { value[index] = (byte)ch; } else { if (isLatin1()) { inflate(); } StringUTF16.putCharSB(value, index, ch); } } /** * Appends the string representation of the {@code Object} argument. *

* The overall effect is exactly as if the argument were converted * to a string by the method {@link String#valueOf(Object)}, * and the characters of that string were then * {@link #append(String) appended} to this character sequence. * * @param obj an {@code Object}. * @return a reference to this object. */ public AbstractStringBuilder append(Object obj) { return append(String.valueOf(obj)); } /** * Appends the specified string to this character sequence. *

* The characters of the {@code String} argument are appended, in * order, increasing the length of this sequence by the length of the * argument. If {@code str} is {@code null}, then the four * characters {@code "null"} are appended. *

* Let n be the length of this character sequence just prior to * execution of the {@code append} method. Then the character at * index k in the new character sequence is equal to the character * at index k in the old character sequence, if k is less * than n; otherwise, it is equal to the character at index * k-n in the argument {@code str}. * * @param str a string. * @return a reference to this object. */ public AbstractStringBuilder append(String str) { if (str == null) { return appendNull(); } int len = str.length(); ensureCapacityInternal(count + len); putStringAt(count, str); count += len; return this; } /** * Appends the specified {@code StringBuffer} to this sequence. * * @param sb the {@code StringBuffer} to append. * @return a reference to this object. */ public AbstractStringBuilder append(StringBuffer sb) { return this.append((AbstractStringBuilder)sb); } /** * @since 1.8 */ AbstractStringBuilder append(AbstractStringBuilder asb) { if (asb == null) { return appendNull(); } int len = asb.length(); ensureCapacityInternal(count + len); if (getCoder() != asb.getCoder()) { inflate(); } asb.getBytes(value, count, coder); count += len; return this; } // Documentation in subclasses because of synchro difference @Override public AbstractStringBuilder append(CharSequence s) { if (s == null) { return appendNull(); } if (s instanceof String) { return this.append((String)s); } if (s instanceof AbstractStringBuilder) { return this.append((AbstractStringBuilder)s); } return this.append(s, 0, s.length()); } private AbstractStringBuilder appendNull() { ensureCapacityInternal(count + 4); int count = this.count; byte[] val = this.value; if (isLatin1()) { val[count++] = 'n'; val[count++] = 'u'; val[count++] = 'l'; val[count++] = 'l'; } else { count = StringUTF16.putCharsAt(val, count, 'n', 'u', 'l', 'l'); } this.count = count; return this; } /** * Appends a subsequence of the specified {@code CharSequence} to this * sequence. *

* Characters of the argument {@code s}, starting at * index {@code start}, are appended, in order, to the contents of * this sequence up to the (exclusive) index {@code end}. The length * of this sequence is increased by the value of {@code end - start}. *

* Let n be the length of this character sequence just prior to * execution of the {@code append} method. Then the character at * index k in this character sequence becomes equal to the * character at index k in this sequence, if k is less than * n; otherwise, it is equal to the character at index * k+start-n in the argument {@code s}. *

* If {@code s} is {@code null}, then this method appends * characters as if the s parameter was a sequence containing the four * characters {@code "null"}. * * @param s the sequence to append. * @param start the starting index of the subsequence to be appended. * @param end the end index of the subsequence to be appended. * @return a reference to this object. * @throws IndexOutOfBoundsException if * {@code start} is negative, or * {@code start} is greater than {@code end} or * {@code end} is greater than {@code s.length()} */ @Override public AbstractStringBuilder append(CharSequence s, int start, int end) { if (s == null) { s = "null"; } checkRange(start, end, s.length()); int len = end - start; ensureCapacityInternal(count + len); if (s instanceof String) { appendChars((String)s, start, end); } else { appendChars(s, start, end); } return this; } /** * Appends the string representation of the {@code char} array * argument to this sequence. *

* The characters of the array argument are appended, in order, to * the contents of this sequence. The length of this sequence * increases by the length of the argument. *

* The overall effect is exactly as if the argument were converted * to a string by the method {@link String#valueOf(char[])}, * and the characters of that string were then * {@link #append(String) appended} to this character sequence. * * @param str the characters to be appended. * @return a reference to this object. */ public AbstractStringBuilder append(char[] str) { int len = str.length; ensureCapacityInternal(count + len); appendChars(str, 0, len); return this; } /** * Appends the string representation of a subarray of the * {@code char} array argument to this sequence. *

* Characters of the {@code char} array {@code str}, starting at * index {@code offset}, are appended, in order, to the contents * of this sequence. The length of this sequence increases * by the value of {@code len}. *

* The overall effect is exactly as if the arguments were converted * to a string by the method {@link String#valueOf(char[],int,int)}, * and the characters of that string were then * {@link #append(String) appended} to this character sequence. * * @param str the characters to be appended. * @param offset the index of the first {@code char} to append. * @param len the number of {@code char}s to append. * @return a reference to this object. * @throws IndexOutOfBoundsException * if {@code offset < 0} or {@code len < 0} * or {@code offset+len > str.length} */ public AbstractStringBuilder append(char[] str, int offset, int len) { int end = offset + len; checkRange(offset, end, str.length); ensureCapacityInternal(count + len); appendChars(str, offset, end); return this; } /** * Appends the string representation of the {@code boolean} * argument to the sequence. *

* The overall effect is exactly as if the argument were converted * to a string by the method {@link String#valueOf(boolean)}, * and the characters of that string were then * {@link #append(String) appended} to this character sequence. * * @param b a {@code boolean}. * @return a reference to this object. */ public AbstractStringBuilder append(boolean b) { ensureCapacityInternal(count + (b ? 4 : 5)); int count = this.count; byte[] val = this.value; if (isLatin1()) { if (b) { val[count++] = 't'; val[count++] = 'r'; val[count++] = 'u'; val[count++] = 'e'; } else { val[count++] = 'f'; val[count++] = 'a'; val[count++] = 'l'; val[count++] = 's'; val[count++] = 'e'; } } else { if (b) { count = StringUTF16.putCharsAt(val, count, 't', 'r', 'u', 'e'); } else { count = StringUTF16.putCharsAt(val, count, 'f', 'a', 'l', 's', 'e'); } } this.count = count; return this; } /** * Appends the string representation of the {@code char} * argument to this sequence. *

* The argument is appended to the contents of this sequence. * The length of this sequence increases by {@code 1}. *

* The overall effect is exactly as if the argument were converted * to a string by the method {@link String#valueOf(char)}, * and the character in that string were then * {@link #append(String) appended} to this character sequence. * * @param c a {@code char}. * @return a reference to this object. */ @Override public AbstractStringBuilder append(char c) { ensureCapacityInternal(count + 1); if (isLatin1() && StringLatin1.canEncode(c)) { value[count++] = (byte)c; } else { if (isLatin1()) { inflate(); } StringUTF16.putCharSB(value, count++, c); } return this; } /** * Appends the string representation of the {@code int} * argument to this sequence. *

* The overall effect is exactly as if the argument were converted * to a string by the method {@link String#valueOf(int)}, * and the characters of that string were then * {@link #append(String) appended} to this character sequence. * * @param i an {@code int}. * @return a reference to this object. */ public AbstractStringBuilder append(int i) { int count = this.count; int spaceNeeded = count + Integer.stringSize(i); ensureCapacityInternal(spaceNeeded); if (isLatin1()) { Integer.getChars(i, spaceNeeded, value); } else { StringUTF16.getChars(i, count, spaceNeeded, value); } this.count = spaceNeeded; return this; } /** * Appends the string representation of the {@code long} * argument to this sequence. *

* The overall effect is exactly as if the argument were converted * to a string by the method {@link String#valueOf(long)}, * and the characters of that string were then * {@link #append(String) appended} to this character sequence. * * @param l a {@code long}. * @return a reference to this object. */ public AbstractStringBuilder append(long l) { int count = this.count; int spaceNeeded = count + Long.stringSize(l); ensureCapacityInternal(spaceNeeded); if (isLatin1()) { Long.getChars(l, spaceNeeded, value); } else { StringUTF16.getChars(l, count, spaceNeeded, value); } this.count = spaceNeeded; return this; } /** * Appends the string representation of the {@code float} * argument to this sequence. *

* The overall effect is exactly as if the argument were converted * to a string by the method {@link String#valueOf(float)}, * and the characters of that string were then * {@link #append(String) appended} to this character sequence. * * @param f a {@code float}. * @return a reference to this object. */ public AbstractStringBuilder append(float f) { FloatingDecimal.appendTo(f,this); return this; } /** * Appends the string representation of the {@code double} * argument to this sequence. *

* The overall effect is exactly as if the argument were converted * to a string by the method {@link String#valueOf(double)}, * and the characters of that string were then * {@link #append(String) appended} to this character sequence. * * @param d a {@code double}. * @return a reference to this object. */ public AbstractStringBuilder append(double d) { FloatingDecimal.appendTo(d,this); return this; } /** * Removes the characters in a substring of this sequence. * The substring begins at the specified {@code start} and extends to * the character at index {@code end - 1} or to the end of the * sequence if no such character exists. If * {@code start} is equal to {@code end}, no changes are made. * * @param start The beginning index, inclusive. * @param end The ending index, exclusive. * @return This object. * @throws StringIndexOutOfBoundsException if {@code start} * is negative, greater than {@code length()}, or * greater than {@code end}. */ public AbstractStringBuilder delete(int start, int end) { int count = this.count; if (end > count) { end = count; } checkRangeSIOOBE(start, end, count); int len = end - start; if (len > 0) { shift(end, -len); this.count = count - len; } return this; } /** * Appends the string representation of the {@code codePoint} * argument to this sequence. * *

The argument is appended to the contents of this sequence. * The length of this sequence increases by * {@link Character#charCount(int) Character.charCount(codePoint)}. * *

The overall effect is exactly as if the argument were * converted to a {@code char} array by the method * {@link Character#toChars(int)} and the character in that array * were then {@link #append(char[]) appended} to this character * sequence. * * @param codePoint a Unicode code point * @return a reference to this object. * @throws IllegalArgumentException if the specified * {@code codePoint} isn't a valid Unicode code point */ public AbstractStringBuilder appendCodePoint(int codePoint) { if (Character.isBmpCodePoint(codePoint)) { return append((char)codePoint); } return append(Character.toChars(codePoint)); } /** * Removes the {@code char} at the specified position in this * sequence. This sequence is shortened by one {@code char}. * *

Note: If the character at the given index is a supplementary * character, this method does not remove the entire character. If * correct handling of supplementary characters is required, * determine the number of {@code char}s to remove by calling * {@code Character.charCount(thisSequence.codePointAt(index))}, * where {@code thisSequence} is this sequence. * * @param index Index of {@code char} to remove * @return This object. * @throws StringIndexOutOfBoundsException if the {@code index} * is negative or greater than or equal to * {@code length()}. */ public AbstractStringBuilder deleteCharAt(int index) { checkIndex(index, count); shift(index + 1, -1); count--; return this; } /** * Replaces the characters in a substring of this sequence * with characters in the specified {@code String}. The substring * begins at the specified {@code start} and extends to the character * at index {@code end - 1} or to the end of the * sequence if no such character exists. First the * characters in the substring are removed and then the specified * {@code String} is inserted at {@code start}. (This * sequence will be lengthened to accommodate the * specified String if necessary.) * * @param start The beginning index, inclusive. * @param end The ending index, exclusive. * @param str String that will replace previous contents. * @return This object. * @throws StringIndexOutOfBoundsException if {@code start} * is negative, greater than {@code length()}, or * greater than {@code end}. */ public AbstractStringBuilder replace(int start, int end, String str) { int count = this.count; if (end > count) { end = count; } checkRangeSIOOBE(start, end, count); int len = str.length(); int newCount = count + len - (end - start); ensureCapacityInternal(newCount); shift(end, newCount - count); this.count = newCount; putStringAt(start, str); return this; } /** * Returns a new {@code String} that contains a subsequence of * characters currently contained in this character sequence. The * substring begins at the specified index and extends to the end of * this sequence. * * @param start The beginning index, inclusive. * @return The new string. * @throws StringIndexOutOfBoundsException if {@code start} is * less than zero, or greater than the length of this object. */ public String substring(int start) { return substring(start, count); } /** * Returns a new character sequence that is a subsequence of this sequence. * *

An invocation of this method of the form * *

{@code
     * sb.subSequence(begin, end)}
* * behaves in exactly the same way as the invocation * *
{@code
     * sb.substring(begin, end)}
* * This method is provided so that this class can * implement the {@link CharSequence} interface. * * @param start the start index, inclusive. * @param end the end index, exclusive. * @return the specified subsequence. * * @throws IndexOutOfBoundsException * if {@code start} or {@code end} are negative, * if {@code end} is greater than {@code length()}, * or if {@code start} is greater than {@code end} */ @Override public CharSequence subSequence(int start, int end) { return substring(start, end); } /** * Returns a new {@code String} that contains a subsequence of * characters currently contained in this sequence. The * substring begins at the specified {@code start} and * extends to the character at index {@code end - 1}. * * @param start The beginning index, inclusive. * @param end The ending index, exclusive. * @return The new string. * @throws StringIndexOutOfBoundsException if {@code start} * or {@code end} are negative or greater than * {@code length()}, or {@code start} is * greater than {@code end}. */ public String substring(int start, int end) { checkRangeSIOOBE(start, end, count); if (isLatin1()) { return StringLatin1.newString(value, start, end - start); } return StringUTF16.newString(value, start, end - start); } private void shift(int offset, int n) { System.arraycopy(value, offset << coder, value, (offset + n) << coder, (count - offset) << coder); } /** * Inserts the string representation of a subarray of the {@code str} * array argument into this sequence. The subarray begins at the * specified {@code offset} and extends {@code len} {@code char}s. * The characters of the subarray are inserted into this sequence at * the position indicated by {@code index}. The length of this * sequence increases by {@code len} {@code char}s. * * @param index position at which to insert subarray. * @param str A {@code char} array. * @param offset the index of the first {@code char} in subarray to * be inserted. * @param len the number of {@code char}s in the subarray to * be inserted. * @return This object * @throws StringIndexOutOfBoundsException if {@code index} * is negative or greater than {@code length()}, or * {@code offset} or {@code len} are negative, or * {@code (offset+len)} is greater than * {@code str.length}. */ public AbstractStringBuilder insert(int index, char[] str, int offset, int len) { checkOffset(index, count); checkRangeSIOOBE(offset, offset + len, str.length); ensureCapacityInternal(count + len); shift(index, len); count += len; putCharsAt(index, str, offset, offset + len); return this; } /** * Inserts the string representation of the {@code Object} * argument into this character sequence. *

* The overall effect is exactly as if the second argument were * converted to a string by the method {@link String#valueOf(Object)}, * and the characters of that string were then * {@link #insert(int,String) inserted} into this character * sequence at the indicated offset. *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param obj an {@code Object}. * @return a reference to this object. * @throws StringIndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, Object obj) { return insert(offset, String.valueOf(obj)); } /** * Inserts the string into this character sequence. *

* The characters of the {@code String} argument are inserted, in * order, into this sequence at the indicated offset, moving up any * characters originally above that position and increasing the length * of this sequence by the length of the argument. If * {@code str} is {@code null}, then the four characters * {@code "null"} are inserted into this sequence. *

* The character at index k in the new character sequence is * equal to: *

    *
  • the character at index k in the old character sequence, if * k is less than {@code offset} *
  • the character at index k{@code -offset} in the * argument {@code str}, if k is not less than * {@code offset} but is less than {@code offset+str.length()} *
  • the character at index k{@code -str.length()} in the * old character sequence, if k is not less than * {@code offset+str.length()} *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param str a string. * @return a reference to this object. * @throws StringIndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, String str) { checkOffset(offset, count); if (str == null) { str = "null"; } int len = str.length(); ensureCapacityInternal(count + len); shift(offset, len); count += len; putStringAt(offset, str); return this; } /** * Inserts the string representation of the {@code char} array * argument into this sequence. *

* The characters of the array argument are inserted into the * contents of this sequence at the position indicated by * {@code offset}. The length of this sequence increases by * the length of the argument. *

* The overall effect is exactly as if the second argument were * converted to a string by the method {@link String#valueOf(char[])}, * and the characters of that string were then * {@link #insert(int,String) inserted} into this character * sequence at the indicated offset. *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param str a character array. * @return a reference to this object. * @throws StringIndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, char[] str) { checkOffset(offset, count); int len = str.length; ensureCapacityInternal(count + len); shift(offset, len); count += len; putCharsAt(offset, str, 0, len); return this; } /** * Inserts the specified {@code CharSequence} into this sequence. *

* The characters of the {@code CharSequence} argument are inserted, * in order, into this sequence at the indicated offset, moving up * any characters originally above that position and increasing the length * of this sequence by the length of the argument s. *

* The result of this method is exactly the same as if it were an * invocation of this object's * {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length()) * method. * *

If {@code s} is {@code null}, then the four characters * {@code "null"} are inserted into this sequence. * * @param dstOffset the offset. * @param s the sequence to be inserted * @return a reference to this object. * @throws IndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int dstOffset, CharSequence s) { if (s == null) { s = "null"; } return this.insert(dstOffset, s, 0, s.length()); } /** * Inserts a subsequence of the specified {@code CharSequence} into * this sequence. *

* The subsequence of the argument {@code s} specified by * {@code start} and {@code end} are inserted, * in order, into this sequence at the specified destination offset, moving * up any characters originally above that position. The length of this * sequence is increased by {@code end - start}. *

* The character at index k in this sequence becomes equal to: *

    *
  • the character at index k in this sequence, if * k is less than {@code dstOffset} *
  • the character at index k{@code +start-dstOffset} in * the argument {@code s}, if k is greater than or equal to * {@code dstOffset} but is less than {@code dstOffset+end-start} *
  • the character at index k{@code -(end-start)} in this * sequence, if k is greater than or equal to * {@code dstOffset+end-start} *

* The {@code dstOffset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. *

The start argument must be nonnegative, and not greater than * {@code end}. *

The end argument must be greater than or equal to * {@code start}, and less than or equal to the length of s. * *

If {@code s} is {@code null}, then this method inserts * characters as if the s parameter was a sequence containing the four * characters {@code "null"}. * * @param dstOffset the offset in this sequence. * @param s the sequence to be inserted. * @param start the starting index of the subsequence to be inserted. * @param end the end index of the subsequence to be inserted. * @return a reference to this object. * @throws IndexOutOfBoundsException if {@code dstOffset} * is negative or greater than {@code this.length()}, or * {@code start} or {@code end} are negative, or * {@code start} is greater than {@code end} or * {@code end} is greater than {@code s.length()} */ public AbstractStringBuilder insert(int dstOffset, CharSequence s, int start, int end) { if (s == null) { s = "null"; } checkOffset(dstOffset, count); checkRange(start, end, s.length()); int len = end - start; ensureCapacityInternal(count + len); shift(dstOffset, len); count += len; if (s instanceof String) { putStringAt(dstOffset, (String) s, start, end); } else { putCharsAt(dstOffset, s, start, end); } return this; } /** * Inserts the string representation of the {@code boolean} * argument into this sequence. *

* The overall effect is exactly as if the second argument were * converted to a string by the method {@link String#valueOf(boolean)}, * and the characters of that string were then * {@link #insert(int,String) inserted} into this character * sequence at the indicated offset. *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param b a {@code boolean}. * @return a reference to this object. * @throws StringIndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, boolean b) { return insert(offset, String.valueOf(b)); } /** * Inserts the string representation of the {@code char} * argument into this sequence. *

* The overall effect is exactly as if the second argument were * converted to a string by the method {@link String#valueOf(char)}, * and the character in that string were then * {@link #insert(int,String) inserted} into this character * sequence at the indicated offset. *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param c a {@code char}. * @return a reference to this object. * @throws IndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, char c) { checkOffset(offset, count); ensureCapacityInternal(count + 1); shift(offset, 1); count += 1; if (isLatin1() && StringLatin1.canEncode(c)) { value[offset] = (byte)c; } else { if (isLatin1()) { inflate(); } StringUTF16.putCharSB(value, offset, c); } return this; } /** * Inserts the string representation of the second {@code int} * argument into this sequence. *

* The overall effect is exactly as if the second argument were * converted to a string by the method {@link String#valueOf(int)}, * and the characters of that string were then * {@link #insert(int,String) inserted} into this character * sequence at the indicated offset. *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param i an {@code int}. * @return a reference to this object. * @throws StringIndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, int i) { return insert(offset, String.valueOf(i)); } /** * Inserts the string representation of the {@code long} * argument into this sequence. *

* The overall effect is exactly as if the second argument were * converted to a string by the method {@link String#valueOf(long)}, * and the characters of that string were then * {@link #insert(int,String) inserted} into this character * sequence at the indicated offset. *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param l a {@code long}. * @return a reference to this object. * @throws StringIndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, long l) { return insert(offset, String.valueOf(l)); } /** * Inserts the string representation of the {@code float} * argument into this sequence. *

* The overall effect is exactly as if the second argument were * converted to a string by the method {@link String#valueOf(float)}, * and the characters of that string were then * {@link #insert(int,String) inserted} into this character * sequence at the indicated offset. *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param f a {@code float}. * @return a reference to this object. * @throws StringIndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, float f) { return insert(offset, String.valueOf(f)); } /** * Inserts the string representation of the {@code double} * argument into this sequence. *

* The overall effect is exactly as if the second argument were * converted to a string by the method {@link String#valueOf(double)}, * and the characters of that string were then * {@link #insert(int,String) inserted} into this character * sequence at the indicated offset. *

* The {@code offset} argument must be greater than or equal to * {@code 0}, and less than or equal to the {@linkplain #length() length} * of this sequence. * * @param offset the offset. * @param d a {@code double}. * @return a reference to this object. * @throws StringIndexOutOfBoundsException if the offset is invalid. */ public AbstractStringBuilder insert(int offset, double d) { return insert(offset, String.valueOf(d)); } /** * Returns the index within this string of the first occurrence of the * specified substring. * *

The returned index is the smallest value {@code k} for which: *

{@code
     * this.toString().startsWith(str, k)
     * }
* If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @return the index of the first occurrence of the specified substring, * or {@code -1} if there is no such occurrence. */ public int indexOf(String str) { return indexOf(str, 0); } /** * Returns the index within this string of the first occurrence of the * specified substring, starting at the specified index. * *

The returned index is the smallest value {@code k} for which: *

{@code
     *     k >= Math.min(fromIndex, this.length()) &&
     *                   this.toString().startsWith(str, k)
     * }
* If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @param fromIndex the index from which to start the search. * @return the index of the first occurrence of the specified substring, * starting at the specified index, * or {@code -1} if there is no such occurrence. */ public int indexOf(String str, int fromIndex) { return String.indexOf(value, coder, count, str, fromIndex); } /** * Returns the index within this string of the last occurrence of the * specified substring. The last occurrence of the empty string "" is * considered to occur at the index value {@code this.length()}. * *

The returned index is the largest value {@code k} for which: *

{@code
     * this.toString().startsWith(str, k)
     * }
* If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @return the index of the last occurrence of the specified substring, * or {@code -1} if there is no such occurrence. */ public int lastIndexOf(String str) { return lastIndexOf(str, count); } /** * Returns the index within this string of the last occurrence of the * specified substring, searching backward starting at the specified index. * *

The returned index is the largest value {@code k} for which: *

{@code
     *     k <= Math.min(fromIndex, this.length()) &&
     *                   this.toString().startsWith(str, k)
     * }
* If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @param fromIndex the index to start the search from. * @return the index of the last occurrence of the specified substring, * searching backward from the specified index, * or {@code -1} if there is no such occurrence. */ public int lastIndexOf(String str, int fromIndex) { return String.lastIndexOf(value, coder, count, str, fromIndex); } /** * Causes this character sequence to be replaced by the reverse of * the sequence. If there are any surrogate pairs included in the * sequence, these are treated as single characters for the * reverse operation. Thus, the order of the high-low surrogates * is never reversed. * * Let n be the character length of this character sequence * (not the length in {@code char} values) just prior to * execution of the {@code reverse} method. Then the * character at index k in the new character sequence is * equal to the character at index n-k-1 in the old * character sequence. * *

Note that the reverse operation may result in producing * surrogate pairs that were unpaired low-surrogates and * high-surrogates before the operation. For example, reversing * "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is * a valid surrogate pair. * * @return a reference to this object. */ public AbstractStringBuilder reverse() { byte[] val = this.value; int count = this.count; int n = count - 1; if (isLatin1()) { for (int j = (n-1) >> 1; j >= 0; j--) { int k = n - j; byte cj = val[j]; val[j] = val[k]; val[k] = cj; } } else { StringUTF16.reverse(val, count); } return this; } /** * Returns a string representing the data in this sequence. * A new {@code String} object is allocated and initialized to * contain the character sequence currently represented by this * object. This {@code String} is then returned. Subsequent * changes to this sequence do not affect the contents of the * {@code String}. * * @return a string representation of this sequence of characters. */ @Override public abstract String toString(); /** * {@inheritDoc} * @since 9 */ @Override public IntStream chars() { // Reuse String-based spliterator. This requires a supplier to // capture the value and count when the terminal operation is executed return StreamSupport.intStream( () -> { // The combined set of field reads are not atomic and thread // safe but bounds checks will ensure no unsafe reads from // the byte array byte[] val = this.value; int count = this.count; byte coder = this.coder; return coder == LATIN1 ? new StringLatin1.CharsSpliterator(val, 0, count, 0) : new StringUTF16.CharsSpliterator(val, 0, count, 0); }, Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED, false); } /** * {@inheritDoc} * @since 9 */ @Override public IntStream codePoints() { // Reuse String-based spliterator. This requires a supplier to // capture the value and count when the terminal operation is executed return StreamSupport.intStream( () -> { // The combined set of field reads are not atomic and thread // safe but bounds checks will ensure no unsafe reads from // the byte array byte[] val = this.value; int count = this.count; byte coder = this.coder; return coder == LATIN1 ? new StringLatin1.CharsSpliterator(val, 0, count, 0) : new StringUTF16.CodePointsSpliterator(val, 0, count, 0); }, Spliterator.ORDERED, false); } /** * Needed by {@code String} for the contentEquals method. */ final byte[] getValue() { return value; } /* * Invoker guarantees it is in UTF16 (inflate itself for asb), if two * coders are different and the dstBegin has enough space * * @param dstBegin the char index, not offset of byte[] * @param coder the coder of dst[] */ void getBytes(byte[] dst, int dstBegin, byte coder) { if (this.coder == coder) { System.arraycopy(value, 0, dst, dstBegin << coder, count << coder); } else { // this.coder == LATIN && coder == UTF16 StringLatin1.inflate(value, 0, dst, dstBegin, count); } } /* for readObject() */ void initBytes(char[] value, int off, int len) { if (String.COMPACT_STRINGS) { this.value = StringUTF16.compress(value, off, len); if (this.value != null) { this.coder = LATIN1; return; } } this.coder = UTF16; this.value = StringUTF16.toBytes(value, off, len); } final byte getCoder() { return COMPACT_STRINGS ? coder : UTF16; } final boolean isLatin1() { return COMPACT_STRINGS && coder == LATIN1; } private final void putCharsAt(int index, char[] s, int off, int end) { if (isLatin1()) { byte[] val = this.value; for (int i = off, j = index; i < end; i++) { char c = s[i]; if (StringLatin1.canEncode(c)) { val[j++] = (byte)c; } else { inflate(); StringUTF16.putCharsSB(this.value, j, s, i, end); return; } } } else { StringUTF16.putCharsSB(this.value, index, s, off, end); } } private final void putCharsAt(int index, CharSequence s, int off, int end) { if (isLatin1()) { byte[] val = this.value; for (int i = off, j = index; i < end; i++) { char c = s.charAt(i); if (StringLatin1.canEncode(c)) { val[j++] = (byte)c; } else { inflate(); StringUTF16.putCharsSB(this.value, j, s, i, end); return; } } } else { StringUTF16.putCharsSB(this.value, index, s, off, end); } } private void putStringAt(int index, String str, int off, int end) { if (getCoder() != str.coder()) { inflate(); } str.getBytes(value, off, index, coder, end - off); } private void putStringAt(int index, String str) { putStringAt(index, str, 0, str.length()); } private final void appendChars(char[] s, int off, int end) { int count = this.count; if (isLatin1()) { byte[] val = this.value; for (int i = off, j = count; i < end; i++) { char c = s[i]; if (StringLatin1.canEncode(c)) { val[j++] = (byte)c; } else { this.count = count = j; inflate(); StringUTF16.putCharsSB(this.value, j, s, i, end); this.count = count + end - i; return; } } } else { StringUTF16.putCharsSB(this.value, count, s, off, end); } this.count = count + end - off; } private final void appendChars(String s, int off, int end) { if (isLatin1()) { if (s.isLatin1()) { System.arraycopy(s.value(), off, this.value, this.count, end - off); } else { // We might need to inflate, but do it as late as possible since // the range of characters we're copying might all be latin1 byte[] val = this.value; for (int i = off, j = count; i < end; i++) { char c = s.charAt(i); if (StringLatin1.canEncode(c)) { val[j++] = (byte) c; } else { count = j; inflate(); System.arraycopy(s.value(), i << UTF16, this.value, j << UTF16, (end - i) << UTF16); count += end - i; return; } } } } else if (s.isLatin1()) { StringUTF16.putCharsSB(this.value, this.count, s, off, end); } else { // both UTF16 System.arraycopy(s.value(), off << UTF16, this.value, this.count << UTF16, (end - off) << UTF16); } count += end - off; } private final void appendChars(CharSequence s, int off, int end) { if (isLatin1()) { byte[] val = this.value; for (int i = off, j = count; i < end; i++) { char c = s.charAt(i); if (StringLatin1.canEncode(c)) { val[j++] = (byte)c; } else { count = j; inflate(); StringUTF16.putCharsSB(this.value, j, s, i, end); count += end - i; return; } } } else { StringUTF16.putCharsSB(this.value, count, s, off, end); } count += end - off; } /* IndexOutOfBoundsException, if out of bounds */ private static void checkRange(int start, int end, int len) { if (start < 0 || start > end || end > len) { throw new IndexOutOfBoundsException( "start " + start + ", end " + end + ", length " + len); } } /* StringIndexOutOfBoundsException, if out of bounds */ private static void checkRangeSIOOBE(int start, int end, int len) { if (start < 0 || start > end || end > len) { throw new StringIndexOutOfBoundsException( "start " + start + ", end " + end + ", length " + len); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy