java.lang.invoke.AbstractValidatingLambdaMetafactory Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of qbicc-rt-java.base Show documentation
Show all versions of qbicc-rt-java.base Show documentation
The Qbicc builder for the java.base JDK module
/*
* Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang.invoke;
import sun.invoke.util.Wrapper;
import java.lang.reflect.Modifier;
import static java.lang.invoke.MethodHandleInfo.*;
import static sun.invoke.util.Wrapper.forPrimitiveType;
import static sun.invoke.util.Wrapper.forWrapperType;
import static sun.invoke.util.Wrapper.isWrapperType;
/**
* Abstract implementation of a lambda metafactory which provides parameter
* unrolling and input validation.
*
* @see LambdaMetafactory
*/
/* package */ abstract class AbstractValidatingLambdaMetafactory {
/*
* For context, the comments for the following fields are marked in quotes
* with their values, given this program:
* interface II { Object foo(T x); }
* interface JJ extends II { }
* class CC { String impl(int i) { return "impl:"+i; }}
* class X {
* public static void main(String[] args) {
* JJ iii = (new CC())::impl;
* System.out.printf(">>> %s\n", iii.foo(44));
* }}
*/
final MethodHandles.Lookup caller; // The caller's lookup context
final Class> targetClass; // The class calling the meta-factory via invokedynamic "class X"
final MethodType factoryType; // The type of the invoked method "(CC)II"
final Class> interfaceClass; // The type of the returned instance "interface JJ"
final String interfaceMethodName; // Name of the method to implement "foo"
final MethodType interfaceMethodType; // Type of the method to implement "(Object)Object"
final MethodHandle implementation; // Raw method handle for the implementation method
final MethodType implMethodType; // Type of the implementation MethodHandle "(CC,int)String"
final MethodHandleInfo implInfo; // Info about the implementation method handle "MethodHandleInfo[5 CC.impl(int)String]"
final int implKind; // Invocation kind for implementation "5"=invokevirtual
final boolean implIsInstanceMethod; // Is the implementation an instance method "true"
final Class> implClass; // Class for referencing the implementation method "class CC"
final MethodType dynamicMethodType; // Dynamically checked method type "(Integer)Object"
final boolean isSerializable; // Should the returned instance be serializable
final Class>[] altInterfaces; // Additional interfaces to be implemented
final MethodType[] altMethods; // Signatures of additional methods to bridge
/**
* Meta-factory constructor.
*
* @param caller Stacked automatically by VM; represents a lookup context
* with the accessibility privileges of the caller.
* @param factoryType Stacked automatically by VM; the signature of the
* invoked method, which includes the expected static
* type of the returned lambda object, and the static
* types of the captured arguments for the lambda. In
* the event that the implementation method is an
* instance method, the first argument in the invocation
* signature will correspond to the receiver.
* @param interfaceMethodName Name of the method in the functional interface to
* which the lambda or method reference is being
* converted, represented as a String.
* @param interfaceMethodType Type of the method in the functional interface to
* which the lambda or method reference is being
* converted, represented as a MethodType.
* @param implementation The implementation method which should be called
* (with suitable adaptation of argument types, return
* types, and adjustment for captured arguments) when
* methods of the resulting functional interface instance
* are invoked.
* @param dynamicMethodType The signature of the primary functional
* interface method after type variables are
* substituted with their instantiation from
* the capture site
* @param isSerializable Should the lambda be made serializable? If set,
* either the target type or one of the additional SAM
* types must extend {@code Serializable}.
* @param altInterfaces Additional interfaces which the lambda object
* should implement.
* @param altMethods Method types for additional signatures to be
* implemented by invoking the implementation method
* @throws LambdaConversionException If any of the meta-factory protocol
* invariants are violated
* @throws SecurityException If a security manager is present, and it
* denies access
* from {@code caller} to the package of {@code implementation}.
*/
AbstractValidatingLambdaMetafactory(MethodHandles.Lookup caller,
MethodType factoryType,
String interfaceMethodName,
MethodType interfaceMethodType,
MethodHandle implementation,
MethodType dynamicMethodType,
boolean isSerializable,
Class>[] altInterfaces,
MethodType[] altMethods)
throws LambdaConversionException {
if (!caller.hasFullPrivilegeAccess()) {
throw new LambdaConversionException(String.format(
"Invalid caller: %s",
caller.lookupClass().getName()));
}
this.caller = caller;
this.targetClass = caller.lookupClass();
this.factoryType = factoryType;
this.interfaceClass = factoryType.returnType();
this.interfaceMethodName = interfaceMethodName;
this.interfaceMethodType = interfaceMethodType;
this.implementation = implementation;
this.implMethodType = implementation.type();
try {
this.implInfo = caller.revealDirect(implementation); // may throw SecurityException
} catch (IllegalArgumentException e) {
throw new LambdaConversionException(implementation + " is not direct or cannot be cracked");
}
switch (implInfo.getReferenceKind()) {
case REF_invokeVirtual:
case REF_invokeInterface:
this.implClass = implMethodType.parameterType(0);
// reference kind reported by implInfo may not match implMethodType's first param
// Example: implMethodType is (Cloneable)String, implInfo is for Object.toString
this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual;
this.implIsInstanceMethod = true;
break;
case REF_invokeSpecial:
// JDK-8172817: should use referenced class here, but we don't know what it was
this.implClass = implInfo.getDeclaringClass();
this.implIsInstanceMethod = true;
// Classes compiled prior to dynamic nestmate support invoke a private instance
// method with REF_invokeSpecial. Newer classes use REF_invokeVirtual or
// REF_invokeInterface, and we can use that instruction in the lambda class.
if (targetClass == implClass && Modifier.isPrivate(implInfo.getModifiers())) {
this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual;
} else {
this.implKind = REF_invokeSpecial;
}
break;
case REF_invokeStatic:
case REF_newInvokeSpecial:
// JDK-8172817: should use referenced class here for invokestatic, but we don't know what it was
this.implClass = implInfo.getDeclaringClass();
this.implKind = implInfo.getReferenceKind();
this.implIsInstanceMethod = false;
break;
default:
throw new LambdaConversionException(String.format("Unsupported MethodHandle kind: %s", implInfo));
}
this.dynamicMethodType = dynamicMethodType;
this.isSerializable = isSerializable;
this.altInterfaces = altInterfaces;
this.altMethods = altMethods;
if (interfaceMethodName.isEmpty() ||
interfaceMethodName.indexOf('.') >= 0 ||
interfaceMethodName.indexOf(';') >= 0 ||
interfaceMethodName.indexOf('[') >= 0 ||
interfaceMethodName.indexOf('/') >= 0 ||
interfaceMethodName.indexOf('<') >= 0 ||
interfaceMethodName.indexOf('>') >= 0) {
throw new LambdaConversionException(String.format(
"Method name '%s' is not legal",
interfaceMethodName));
}
if (!interfaceClass.isInterface()) {
throw new LambdaConversionException(String.format(
"%s is not an interface",
interfaceClass.getName()));
}
for (Class> c : altInterfaces) {
if (!c.isInterface()) {
throw new LambdaConversionException(String.format(
"%s is not an interface",
c.getName()));
}
}
}
/**
* Build the CallSite.
*
* @return a CallSite, which, when invoked, will return an instance of the
* functional interface
* @throws LambdaConversionException
*/
abstract CallSite buildCallSite()
throws LambdaConversionException;
/**
* Check the meta-factory arguments for errors
* @throws LambdaConversionException if there are improper conversions
*/
void validateMetafactoryArgs() throws LambdaConversionException {
// Check arity: captured + SAM == impl
final int implArity = implMethodType.parameterCount();
final int capturedArity = factoryType.parameterCount();
final int samArity = interfaceMethodType.parameterCount();
final int dynamicArity = dynamicMethodType.parameterCount();
if (implArity != capturedArity + samArity) {
throw new LambdaConversionException(
String.format("Incorrect number of parameters for %s method %s; %d captured parameters, %d functional interface method parameters, %d implementation parameters",
implIsInstanceMethod ? "instance" : "static", implInfo,
capturedArity, samArity, implArity));
}
if (dynamicArity != samArity) {
throw new LambdaConversionException(
String.format("Incorrect number of parameters for %s method %s; %d dynamic parameters, %d functional interface method parameters",
implIsInstanceMethod ? "instance" : "static", implInfo,
dynamicArity, samArity));
}
for (MethodType bridgeMT : altMethods) {
if (bridgeMT.parameterCount() != samArity) {
throw new LambdaConversionException(
String.format("Incorrect number of parameters for bridge signature %s; incompatible with %s",
bridgeMT, interfaceMethodType));
}
}
// If instance: first captured arg (receiver) must be subtype of class where impl method is defined
final int capturedStart; // index of first non-receiver capture parameter in implMethodType
final int samStart; // index of first non-receiver sam parameter in implMethodType
if (implIsInstanceMethod) {
final Class> receiverClass;
// implementation is an instance method, adjust for receiver in captured variables / SAM arguments
if (capturedArity == 0) {
// receiver is function parameter
capturedStart = 0;
samStart = 1;
receiverClass = dynamicMethodType.parameterType(0);
} else {
// receiver is a captured variable
capturedStart = 1;
samStart = capturedArity;
receiverClass = factoryType.parameterType(0);
}
// check receiver type
if (!implClass.isAssignableFrom(receiverClass)) {
throw new LambdaConversionException(
String.format("Invalid receiver type %s; not a subtype of implementation type %s",
receiverClass, implClass));
}
} else {
// no receiver
capturedStart = 0;
samStart = capturedArity;
}
// Check for exact match on non-receiver captured arguments
for (int i=capturedStart; i implParamType = implMethodType.parameterType(i);
Class> capturedParamType = factoryType.parameterType(i);
if (!capturedParamType.equals(implParamType)) {
throw new LambdaConversionException(
String.format("Type mismatch in captured lambda parameter %d: expecting %s, found %s",
i, capturedParamType, implParamType));
}
}
// Check for adaptation match on non-receiver SAM arguments
for (int i=samStart; i implParamType = implMethodType.parameterType(i);
Class> dynamicParamType = dynamicMethodType.parameterType(i - capturedArity);
if (!isAdaptableTo(dynamicParamType, implParamType, true)) {
throw new LambdaConversionException(
String.format("Type mismatch for lambda argument %d: %s is not convertible to %s",
i, dynamicParamType, implParamType));
}
}
// Adaptation match: return type
Class> expectedType = dynamicMethodType.returnType();
Class> actualReturnType = implMethodType.returnType();
if (!isAdaptableToAsReturn(actualReturnType, expectedType)) {
throw new LambdaConversionException(
String.format("Type mismatch for lambda return: %s is not convertible to %s",
actualReturnType, expectedType));
}
// Check descriptors of generated methods
checkDescriptor(interfaceMethodType);
for (MethodType bridgeMT : altMethods) {
checkDescriptor(bridgeMT);
}
}
/** Validate that the given descriptor's types are compatible with {@code dynamicMethodType} **/
private void checkDescriptor(MethodType descriptor) throws LambdaConversionException {
for (int i = 0; i < dynamicMethodType.parameterCount(); i++) {
Class> dynamicParamType = dynamicMethodType.parameterType(i);
Class> descriptorParamType = descriptor.parameterType(i);
if (!descriptorParamType.isAssignableFrom(dynamicParamType)) {
String msg = String.format("Type mismatch for dynamic parameter %d: %s is not a subtype of %s",
i, dynamicParamType, descriptorParamType);
throw new LambdaConversionException(msg);
}
}
Class> dynamicReturnType = dynamicMethodType.returnType();
Class> descriptorReturnType = descriptor.returnType();
if (!isAdaptableToAsReturnStrict(dynamicReturnType, descriptorReturnType)) {
String msg = String.format("Type mismatch for lambda expected return: %s is not convertible to %s",
dynamicReturnType, descriptorReturnType);
throw new LambdaConversionException(msg);
}
}
/**
* Check type adaptability for parameter types.
* @param fromType Type to convert from
* @param toType Type to convert to
* @param strict If true, do strict checks, else allow that fromType may be parameterized
* @return True if 'fromType' can be passed to an argument of 'toType'
*/
private boolean isAdaptableTo(Class> fromType, Class> toType, boolean strict) {
if (fromType.equals(toType)) {
return true;
}
if (fromType.isPrimitive()) {
Wrapper wfrom = forPrimitiveType(fromType);
if (toType.isPrimitive()) {
// both are primitive: widening
Wrapper wto = forPrimitiveType(toType);
return wto.isConvertibleFrom(wfrom);
} else {
// from primitive to reference: boxing
return toType.isAssignableFrom(wfrom.wrapperType());
}
} else {
if (toType.isPrimitive()) {
// from reference to primitive: unboxing
Wrapper wfrom;
if (isWrapperType(fromType) && (wfrom = forWrapperType(fromType)).primitiveType().isPrimitive()) {
// fromType is a primitive wrapper; unbox+widen
Wrapper wto = forPrimitiveType(toType);
return wto.isConvertibleFrom(wfrom);
} else {
// must be convertible to primitive
return !strict;
}
} else {
// both are reference types: fromType should be a superclass of toType.
return !strict || toType.isAssignableFrom(fromType);
}
}
}
/**
* Check type adaptability for return types --
* special handling of void type) and parameterized fromType
* @return True if 'fromType' can be converted to 'toType'
*/
private boolean isAdaptableToAsReturn(Class> fromType, Class> toType) {
return toType.equals(void.class)
|| !fromType.equals(void.class) && isAdaptableTo(fromType, toType, false);
}
private boolean isAdaptableToAsReturnStrict(Class> fromType, Class> toType) {
if (fromType.equals(void.class) || toType.equals(void.class)) return fromType.equals(toType);
else return isAdaptableTo(fromType, toType, true);
}
/*********** Logging support -- for debugging only, uncomment as needed
static final Executor logPool = Executors.newSingleThreadExecutor();
protected static void log(final String s) {
MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() {
@Override
public void run() {
System.out.println(s);
}
});
}
protected static void log(final String s, final Throwable e) {
MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() {
@Override
public void run() {
System.out.println(s);
e.printStackTrace(System.out);
}
});
}
***********************/
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy