java.util.AbstractList Maven / Gradle / Ivy
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.util.function.Consumer;
/**
* This class provides a skeletal implementation of the {@link List}
* interface to minimize the effort required to implement this interface
* backed by a "random access" data store (such as an array). For sequential
* access data (such as a linked list), {@link AbstractSequentialList} should
* be used in preference to this class.
*
* To implement an unmodifiable list, the programmer needs only to extend
* this class and provide implementations for the {@link #get(int)} and
* {@link List#size() size()} methods.
*
*
To implement a modifiable list, the programmer must additionally
* override the {@link #set(int, Object) set(int, E)} method (which otherwise
* throws an {@code UnsupportedOperationException}). If the list is
* variable-size the programmer must additionally override the
* {@link #add(int, Object) add(int, E)} and {@link #remove(int)} methods.
*
*
The programmer should generally provide a void (no argument) and collection
* constructor, as per the recommendation in the {@link Collection} interface
* specification.
*
*
Unlike the other abstract collection implementations, the programmer does
* not have to provide an iterator implementation; the iterator and
* list iterator are implemented by this class, on top of the "random access"
* methods:
* {@link #get(int)},
* {@link #set(int, Object) set(int, E)},
* {@link #add(int, Object) add(int, E)} and
* {@link #remove(int)}.
*
*
The documentation for each non-abstract method in this class describes its
* implementation in detail. Each of these methods may be overridden if the
* collection being implemented admits a more efficient implementation.
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @author Josh Bloch
* @author Neal Gafter
* @since 1.2
*/
public abstract class AbstractList extends AbstractCollection implements List {
/**
* Sole constructor. (For invocation by subclass constructors, typically
* implicit.)
*/
protected AbstractList() {
}
/**
* Appends the specified element to the end of this list (optional
* operation).
*
* Lists that support this operation may place limitations on what
* elements may be added to this list. In particular, some
* lists will refuse to add null elements, and others will impose
* restrictions on the type of elements that may be added. List
* classes should clearly specify in their documentation any restrictions
* on what elements may be added.
*
* @implSpec
* This implementation calls {@code add(size(), e)}.
*
*
Note that this implementation throws an
* {@code UnsupportedOperationException} unless
* {@link #add(int, Object) add(int, E)} is overridden.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
* @throws UnsupportedOperationException if the {@code add} operation
* is not supported by this list
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this list
* @throws NullPointerException if the specified element is null and this
* list does not permit null elements
* @throws IllegalArgumentException if some property of this element
* prevents it from being added to this list
*/
public boolean add(E e) {
add(size(), e);
return true;
}
/**
* {@inheritDoc}
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public abstract E get(int index);
/**
* {@inheritDoc}
*
* @implSpec
* This implementation always throws an
* {@code UnsupportedOperationException}.
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* @implSpec
* This implementation always throws an
* {@code UnsupportedOperationException}.
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* @implSpec
* This implementation always throws an
* {@code UnsupportedOperationException}.
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
throw new UnsupportedOperationException();
}
// Search Operations
/**
* {@inheritDoc}
*
* @implSpec
* This implementation first gets a list iterator (with
* {@code listIterator()}). Then, it iterates over the list until the
* specified element is found or the end of the list is reached.
*
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public int indexOf(Object o) {
ListIterator it = listIterator();
if (o==null) {
while (it.hasNext())
if (it.next()==null)
return it.previousIndex();
} else {
while (it.hasNext())
if (o.equals(it.next()))
return it.previousIndex();
}
return -1;
}
/**
* {@inheritDoc}
*
* @implSpec
* This implementation first gets a list iterator that points to the end
* of the list (with {@code listIterator(size())}). Then, it iterates
* backwards over the list until the specified element is found, or the
* beginning of the list is reached.
*
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public int lastIndexOf(Object o) {
ListIterator it = listIterator(size());
if (o==null) {
while (it.hasPrevious())
if (it.previous()==null)
return it.nextIndex();
} else {
while (it.hasPrevious())
if (o.equals(it.previous()))
return it.nextIndex();
}
return -1;
}
// Bulk Operations
/**
* Removes all of the elements from this list (optional operation).
* The list will be empty after this call returns.
*
* @implSpec
* This implementation calls {@code removeRange(0, size())}.
*
* Note that this implementation throws an
* {@code UnsupportedOperationException} unless {@code remove(int
* index)} or {@code removeRange(int fromIndex, int toIndex)} is
* overridden.
*
* @throws UnsupportedOperationException if the {@code clear} operation
* is not supported by this list
*/
public void clear() {
removeRange(0, size());
}
/**
* {@inheritDoc}
*
* @implSpec
* This implementation gets an iterator over the specified collection
* and iterates over it, inserting the elements obtained from the
* iterator into this list at the appropriate position, one at a time,
* using {@code add(int, E)}.
* Many implementations will override this method for efficiency.
*
*
Note that this implementation throws an
* {@code UnsupportedOperationException} unless
* {@link #add(int, Object) add(int, E)} is overridden.
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
boolean modified = false;
for (E e : c) {
add(index++, e);
modified = true;
}
return modified;
}
// Iterators
/**
* Returns an iterator over the elements in this list in proper sequence.
*
* @implSpec
* This implementation returns a straightforward implementation of the
* iterator interface, relying on the backing list's {@code size()},
* {@code get(int)}, and {@code remove(int)} methods.
*
*
Note that the iterator returned by this method will throw an
* {@link UnsupportedOperationException} in response to its
* {@code remove} method unless the list's {@code remove(int)} method is
* overridden.
*
*
This implementation can be made to throw runtime exceptions in the
* face of concurrent modification, as described in the specification
* for the (protected) {@link #modCount} field.
*
* @return an iterator over the elements in this list in proper sequence
*/
public Iterator iterator() {
return new Itr();
}
/**
* {@inheritDoc}
*
* @implSpec
* This implementation returns {@code listIterator(0)}.
*
* @see #listIterator(int)
*/
public ListIterator listIterator() {
return listIterator(0);
}
/**
* {@inheritDoc}
*
* @implSpec
* This implementation returns a straightforward implementation of the
* {@code ListIterator} interface that extends the implementation of the
* {@code Iterator} interface returned by the {@code iterator()} method.
* The {@code ListIterator} implementation relies on the backing list's
* {@code get(int)}, {@code set(int, E)}, {@code add(int, E)}
* and {@code remove(int)} methods.
*
* Note that the list iterator returned by this implementation will
* throw an {@link UnsupportedOperationException} in response to its
* {@code remove}, {@code set} and {@code add} methods unless the
* list's {@code remove(int)}, {@code set(int, E)}, and
* {@code add(int, E)} methods are overridden.
*
*
This implementation can be made to throw runtime exceptions in the
* face of concurrent modification, as described in the specification for
* the (protected) {@link #modCount} field.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public ListIterator listIterator(final int index) {
rangeCheckForAdd(index);
return new ListItr(index);
}
private class Itr implements Iterator {
/**
* Index of element to be returned by subsequent call to next.
*/
int cursor = 0;
/**
* Index of element returned by most recent call to next or
* previous. Reset to -1 if this element is deleted by a call
* to remove.
*/
int lastRet = -1;
/**
* The modCount value that the iterator believes that the backing
* List should have. If this expectation is violated, the iterator
* has detected concurrent modification.
*/
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size();
}
public E next() {
checkForComodification();
try {
int i = cursor;
E next = get(i);
lastRet = i;
cursor = i + 1;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException(e);
}
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
private class ListItr extends Itr implements ListIterator {
ListItr(int index) {
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public E previous() {
checkForComodification();
try {
int i = cursor - 1;
E previous = get(i);
lastRet = cursor = i;
return previous;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException(e);
}
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor-1;
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.set(lastRet, e);
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
AbstractList.this.add(i, e);
lastRet = -1;
cursor = i + 1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
/**
* {@inheritDoc}
*
* @implSpec
* This implementation returns a list that subclasses
* {@code AbstractList}. The subclass stores, in private fields, the
* size of the subList (which can change over its lifetime), and the
* expected {@code modCount} value of the backing list. There are two
* variants of the subclass, one of which implements {@code RandomAccess}.
* If this list implements {@code RandomAccess} the returned list will
* be an instance of the subclass that implements {@code RandomAccess}.
*
* The subclass's {@code set(int, E)}, {@code get(int)},
* {@code add(int, E)}, {@code remove(int)}, {@code addAll(int,
* Collection)} and {@code removeRange(int, int)} methods all
* delegate to the corresponding methods on the backing abstract list,
* after bounds-checking the index and adjusting for the offset. The
* {@code addAll(Collection c)} method merely returns {@code addAll(size,
* c)}.
*
*
The {@code listIterator(int)} method returns a "wrapper object"
* over a list iterator on the backing list, which is created with the
* corresponding method on the backing list. The {@code iterator} method
* merely returns {@code listIterator()}, and the {@code size} method
* merely returns the subclass's {@code size} field.
*
*
All methods first check to see if the actual {@code modCount} of
* the backing list is equal to its expected value, and throw a
* {@code ConcurrentModificationException} if it is not.
*
* @throws IndexOutOfBoundsException if an endpoint index value is out of range
* {@code (fromIndex < 0 || toIndex > size)}
* @throws IllegalArgumentException if the endpoint indices are out of order
* {@code (fromIndex > toIndex)}
*/
public List subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size());
return (this instanceof RandomAccess ?
new RandomAccessSubList<>(this, fromIndex, toIndex) :
new SubList<>(this, fromIndex, toIndex));
}
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
}
// Comparison and hashing
/**
* Compares the specified object with this list for equality. Returns
* {@code true} if and only if the specified object is also a list, both
* lists have the same size, and all corresponding pairs of elements in
* the two lists are equal. (Two elements {@code e1} and
* {@code e2} are equal if {@code (e1==null ? e2==null :
* e1.equals(e2))}.) In other words, two lists are defined to be
* equal if they contain the same elements in the same order.
*
* @implSpec
* This implementation first checks if the specified object is this
* list. If so, it returns {@code true}; if not, it checks if the
* specified object is a list. If not, it returns {@code false}; if so,
* it iterates over both lists, comparing corresponding pairs of elements.
* If any comparison returns {@code false}, this method returns
* {@code false}. If either iterator runs out of elements before the
* other it returns {@code false} (as the lists are of unequal length);
* otherwise it returns {@code true} when the iterations complete.
*
* @param o the object to be compared for equality with this list
* @return {@code true} if the specified object is equal to this list
*/
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof List))
return false;
ListIterator e1 = listIterator();
ListIterator> e2 = ((List>) o).listIterator();
while (e1.hasNext() && e2.hasNext()) {
E o1 = e1.next();
Object o2 = e2.next();
if (!(o1==null ? o2==null : o1.equals(o2)))
return false;
}
return !(e1.hasNext() || e2.hasNext());
}
/**
* Returns the hash code value for this list.
*
* @implSpec
* This implementation uses exactly the code that is used to define the
* list hash function in the documentation for the {@link List#hashCode}
* method.
*
* @return the hash code value for this list
*/
public int hashCode() {
int hashCode = 1;
for (E e : this)
hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
return hashCode;
}
/**
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
*
* This method is called by the {@code clear} operation on this list
* and its subLists. Overriding this method to take advantage of
* the internals of the list implementation can substantially
* improve the performance of the {@code clear} operation on this list
* and its subLists.
*
* @implSpec
* This implementation gets a list iterator positioned before
* {@code fromIndex}, and repeatedly calls {@code ListIterator.next}
* followed by {@code ListIterator.remove} until the entire range has
* been removed. Note: if {@code ListIterator.remove} requires linear
* time, this implementation requires quadratic time.
*
* @param fromIndex index of first element to be removed
* @param toIndex index after last element to be removed
*/
protected void removeRange(int fromIndex, int toIndex) {
ListIterator it = listIterator(fromIndex);
for (int i=0, n=toIndex-fromIndex; istructurally modified.
* Structural modifications are those that change the size of the
* list, or otherwise perturb it in such a fashion that iterations in
* progress may yield incorrect results.
*
* This field is used by the iterator and list iterator implementation
* returned by the {@code iterator} and {@code listIterator} methods.
* If the value of this field changes unexpectedly, the iterator (or list
* iterator) will throw a {@code ConcurrentModificationException} in
* response to the {@code next}, {@code remove}, {@code previous},
* {@code set} or {@code add} operations. This provides
* fail-fast behavior, rather than non-deterministic behavior in
* the face of concurrent modification during iteration.
*
*
Use of this field by subclasses is optional. If a subclass
* wishes to provide fail-fast iterators (and list iterators), then it
* merely has to increment this field in its {@code add(int, E)} and
* {@code remove(int)} methods (and any other methods that it overrides
* that result in structural modifications to the list). A single call to
* {@code add(int, E)} or {@code remove(int)} must add no more than
* one to this field, or the iterators (and list iterators) will throw
* bogus {@code ConcurrentModificationExceptions}. If an implementation
* does not wish to provide fail-fast iterators, this field may be
* ignored.
*/
protected transient int modCount = 0;
private void rangeCheckForAdd(int index) {
if (index < 0 || index > size())
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size();
}
/**
* An index-based split-by-two, lazily initialized Spliterator covering
* a List that access elements via {@link List#get}.
*
* If access results in an IndexOutOfBoundsException then a
* ConcurrentModificationException is thrown instead (since the list has
* been structurally modified while traversing).
*
* If the List is an instance of AbstractList then concurrent modification
* checking is performed using the AbstractList's modCount field.
*/
static final class RandomAccessSpliterator implements Spliterator {
private final List list;
private int index; // current index, modified on advance/split
private int fence; // -1 until used; then one past last index
// The following fields are valid if covering an AbstractList
private final AbstractList alist;
private int expectedModCount; // initialized when fence set
RandomAccessSpliterator(List list) {
assert list instanceof RandomAccess;
this.list = list;
this.index = 0;
this.fence = -1;
this.alist = list instanceof AbstractList ? (AbstractList) list : null;
this.expectedModCount = alist != null ? alist.modCount : 0;
}
/** Create new spliterator covering the given range */
private RandomAccessSpliterator(RandomAccessSpliterator parent,
int origin, int fence) {
this.list = parent.list;
this.index = origin;
this.fence = fence;
this.alist = parent.alist;
this.expectedModCount = parent.expectedModCount;
}
private int getFence() { // initialize fence to size on first use
int hi;
List lst = list;
if ((hi = fence) < 0) {
if (alist != null) {
expectedModCount = alist.modCount;
}
hi = fence = lst.size();
}
return hi;
}
public Spliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null : // divide range in half unless too small
new RandomAccessSpliterator<>(this, lo, index = mid);
}
public boolean tryAdvance(Consumer super E> action) {
if (action == null)
throw new NullPointerException();
int hi = getFence(), i = index;
if (i < hi) {
index = i + 1;
action.accept(get(list, i));
checkAbstractListModCount(alist, expectedModCount);
return true;
}
return false;
}
public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action);
List lst = list;
int hi = getFence();
int i = index;
index = hi;
for (; i < hi; i++) {
action.accept(get(lst, i));
}
checkAbstractListModCount(alist, expectedModCount);
}
public long estimateSize() {
return (long) (getFence() - index);
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
private static E get(List list, int i) {
try {
return list.get(i);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
static void checkAbstractListModCount(AbstractList> alist, int expectedModCount) {
if (alist != null && alist.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
}
private static class SubList extends AbstractList {
private final AbstractList root;
private final SubList parent;
private final int offset;
protected int size;
/**
* Constructs a sublist of an arbitrary AbstractList, which is
* not a SubList itself.
*/
public SubList(AbstractList root, int fromIndex, int toIndex) {
this.root = root;
this.parent = null;
this.offset = fromIndex;
this.size = toIndex - fromIndex;
this.modCount = root.modCount;
}
/**
* Constructs a sublist of another SubList.
*/
protected SubList(SubList parent, int fromIndex, int toIndex) {
this.root = parent.root;
this.parent = parent;
this.offset = parent.offset + fromIndex;
this.size = toIndex - fromIndex;
this.modCount = root.modCount;
}
public E set(int index, E element) {
Objects.checkIndex(index, size);
checkForComodification();
return root.set(offset + index, element);
}
public E get(int index) {
Objects.checkIndex(index, size);
checkForComodification();
return root.get(offset + index);
}
public int size() {
checkForComodification();
return size;
}
public void add(int index, E element) {
rangeCheckForAdd(index);
checkForComodification();
root.add(offset + index, element);
updateSizeAndModCount(1);
}
public E remove(int index) {
Objects.checkIndex(index, size);
checkForComodification();
E result = root.remove(offset + index);
updateSizeAndModCount(-1);
return result;
}
protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
root.removeRange(offset + fromIndex, offset + toIndex);
updateSizeAndModCount(fromIndex - toIndex);
}
public boolean addAll(Collection extends E> c) {
return addAll(size, c);
}
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize==0)
return false;
checkForComodification();
root.addAll(offset + index, c);
updateSizeAndModCount(cSize);
return true;
}
public Iterator iterator() {
return listIterator();
}
public ListIterator listIterator(int index) {
checkForComodification();
rangeCheckForAdd(index);
return new ListIterator() {
private final ListIterator i =
root.listIterator(offset + index);
public boolean hasNext() {
return nextIndex() < size;
}
public E next() {
if (hasNext())
return i.next();
else
throw new NoSuchElementException();
}
public boolean hasPrevious() {
return previousIndex() >= 0;
}
public E previous() {
if (hasPrevious())
return i.previous();
else
throw new NoSuchElementException();
}
public int nextIndex() {
return i.nextIndex() - offset;
}
public int previousIndex() {
return i.previousIndex() - offset;
}
public void remove() {
i.remove();
updateSizeAndModCount(-1);
}
public void set(E e) {
i.set(e);
}
public void add(E e) {
i.add(e);
updateSizeAndModCount(1);
}
};
}
public List subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList<>(this, fromIndex, toIndex);
}
private void rangeCheckForAdd(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
private void checkForComodification() {
if (root.modCount != this.modCount)
throw new ConcurrentModificationException();
}
private void updateSizeAndModCount(int sizeChange) {
SubList slist = this;
do {
slist.size += sizeChange;
slist.modCount = root.modCount;
slist = slist.parent;
} while (slist != null);
}
}
private static class RandomAccessSubList
extends SubList implements RandomAccess {
/**
* Constructs a sublist of an arbitrary AbstractList, which is
* not a RandomAccessSubList itself.
*/
RandomAccessSubList(AbstractList root,
int fromIndex, int toIndex) {
super(root, fromIndex, toIndex);
}
/**
* Constructs a sublist of another RandomAccessSubList.
*/
RandomAccessSubList(RandomAccessSubList parent,
int fromIndex, int toIndex) {
super(parent, fromIndex, toIndex);
}
public List subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new RandomAccessSubList<>(this, fromIndex, toIndex);
}
}
}