All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.util.BitSet Maven / Gradle / Ivy

/*
 * Copyright (c) 1995, 2020, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

import java.io.*;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.LongBuffer;
import java.util.function.IntConsumer;
import java.util.stream.IntStream;
import java.util.stream.StreamSupport;

/**
 * This class implements a vector of bits that grows as needed. Each
 * component of the bit set has a {@code boolean} value. The
 * bits of a {@code BitSet} are indexed by nonnegative integers.
 * Individual indexed bits can be examined, set, or cleared. One
 * {@code BitSet} may be used to modify the contents of another
 * {@code BitSet} through logical AND, logical inclusive OR, and
 * logical exclusive OR operations.
 *
 * 

By default, all bits in the set initially have the value * {@code false}. * *

Every bit set has a current size, which is the number of bits * of space currently in use by the bit set. Note that the size is * related to the implementation of a bit set, so it may change with * implementation. The length of a bit set relates to logical length * of a bit set and is defined independently of implementation. * *

Unless otherwise noted, passing a null parameter to any of the * methods in a {@code BitSet} will result in a * {@code NullPointerException}. * *

A {@code BitSet} is not safe for multithreaded use without * external synchronization. * * @author Arthur van Hoff * @author Michael McCloskey * @author Martin Buchholz * @since 1.0 */ public class BitSet implements Cloneable, java.io.Serializable { /* * BitSets are packed into arrays of "words." Currently a word is * a long, which consists of 64 bits, requiring 6 address bits. * The choice of word size is determined purely by performance concerns. */ private static final int ADDRESS_BITS_PER_WORD = 6; private static final int BITS_PER_WORD = 1 << ADDRESS_BITS_PER_WORD; private static final int BIT_INDEX_MASK = BITS_PER_WORD - 1; /* Used to shift left or right for a partial word mask */ private static final long WORD_MASK = 0xffffffffffffffffL; /** * @serialField bits long[] * * The bits in this BitSet. The ith bit is stored in bits[i/64] at * bit position i % 64 (where bit position 0 refers to the least * significant bit and 63 refers to the most significant bit). */ @java.io.Serial private static final ObjectStreamField[] serialPersistentFields = { new ObjectStreamField("bits", long[].class), }; /** * The internal field corresponding to the serialField "bits". */ private long[] words; /** * The number of words in the logical size of this BitSet. */ private transient int wordsInUse = 0; /** * Whether the size of "words" is user-specified. If so, we assume * the user knows what he's doing and try harder to preserve it. */ private transient boolean sizeIsSticky = false; /* use serialVersionUID from JDK 1.0.2 for interoperability */ @java.io.Serial private static final long serialVersionUID = 7997698588986878753L; /** * Given a bit index, return word index containing it. */ private static int wordIndex(int bitIndex) { return bitIndex >> ADDRESS_BITS_PER_WORD; } /** * Every public method must preserve these invariants. */ private void checkInvariants() { assert(wordsInUse == 0 || words[wordsInUse - 1] != 0); assert(wordsInUse >= 0 && wordsInUse <= words.length); assert(wordsInUse == words.length || words[wordsInUse] == 0); } /** * Sets the field wordsInUse to the logical size in words of the bit set. * WARNING:This method assumes that the number of words actually in use is * less than or equal to the current value of wordsInUse! */ private void recalculateWordsInUse() { // Traverse the bitset until a used word is found int i; for (i = wordsInUse-1; i >= 0; i--) if (words[i] != 0) break; wordsInUse = i+1; // The new logical size } /** * Creates a new bit set. All bits are initially {@code false}. */ public BitSet() { initWords(BITS_PER_WORD); sizeIsSticky = false; } /** * Creates a bit set whose initial size is large enough to explicitly * represent bits with indices in the range {@code 0} through * {@code nbits-1}. All bits are initially {@code false}. * * @param nbits the initial size of the bit set * @throws NegativeArraySizeException if the specified initial size * is negative */ public BitSet(int nbits) { // nbits can't be negative; size 0 is OK if (nbits < 0) throw new NegativeArraySizeException("nbits < 0: " + nbits); initWords(nbits); sizeIsSticky = true; } private void initWords(int nbits) { words = new long[wordIndex(nbits-1) + 1]; } /** * Creates a bit set using words as the internal representation. * The last word (if there is one) must be non-zero. */ private BitSet(long[] words) { this.words = words; this.wordsInUse = words.length; checkInvariants(); } /** * Returns a new bit set containing all the bits in the given long array. * *

More precisely, *
{@code BitSet.valueOf(longs).get(n) == ((longs[n/64] & (1L<<(n%64))) != 0)} *
for all {@code n < 64 * longs.length}. * *

This method is equivalent to * {@code BitSet.valueOf(LongBuffer.wrap(longs))}. * * @param longs a long array containing a little-endian representation * of a sequence of bits to be used as the initial bits of the * new bit set * @return a {@code BitSet} containing all the bits in the long array * @since 1.7 */ public static BitSet valueOf(long[] longs) { int n; for (n = longs.length; n > 0 && longs[n - 1] == 0; n--) ; return new BitSet(Arrays.copyOf(longs, n)); } /** * Returns a new bit set containing all the bits in the given long * buffer between its position and limit. * *

More precisely, *
{@code BitSet.valueOf(lb).get(n) == ((lb.get(lb.position()+n/64) & (1L<<(n%64))) != 0)} *
for all {@code n < 64 * lb.remaining()}. * *

The long buffer is not modified by this method, and no * reference to the buffer is retained by the bit set. * * @param lb a long buffer containing a little-endian representation * of a sequence of bits between its position and limit, to be * used as the initial bits of the new bit set * @return a {@code BitSet} containing all the bits in the buffer in the * specified range * @since 1.7 */ public static BitSet valueOf(LongBuffer lb) { lb = lb.slice(); int n; for (n = lb.remaining(); n > 0 && lb.get(n - 1) == 0; n--) ; long[] words = new long[n]; lb.get(words); return new BitSet(words); } /** * Returns a new bit set containing all the bits in the given byte array. * *

More precisely, *
{@code BitSet.valueOf(bytes).get(n) == ((bytes[n/8] & (1<<(n%8))) != 0)} *
for all {@code n < 8 * bytes.length}. * *

This method is equivalent to * {@code BitSet.valueOf(ByteBuffer.wrap(bytes))}. * * @param bytes a byte array containing a little-endian * representation of a sequence of bits to be used as the * initial bits of the new bit set * @return a {@code BitSet} containing all the bits in the byte array * @since 1.7 */ public static BitSet valueOf(byte[] bytes) { return BitSet.valueOf(ByteBuffer.wrap(bytes)); } /** * Returns a new bit set containing all the bits in the given byte * buffer between its position and limit. * *

More precisely, *
{@code BitSet.valueOf(bb).get(n) == ((bb.get(bb.position()+n/8) & (1<<(n%8))) != 0)} *
for all {@code n < 8 * bb.remaining()}. * *

The byte buffer is not modified by this method, and no * reference to the buffer is retained by the bit set. * * @param bb a byte buffer containing a little-endian representation * of a sequence of bits between its position and limit, to be * used as the initial bits of the new bit set * @return a {@code BitSet} containing all the bits in the buffer in the * specified range * @since 1.7 */ public static BitSet valueOf(ByteBuffer bb) { bb = bb.slice().order(ByteOrder.LITTLE_ENDIAN); int n; for (n = bb.remaining(); n > 0 && bb.get(n - 1) == 0; n--) ; long[] words = new long[(n + 7) / 8]; bb.limit(n); int i = 0; while (bb.remaining() >= 8) words[i++] = bb.getLong(); for (int remaining = bb.remaining(), j = 0; j < remaining; j++) words[i] |= (bb.get() & 0xffL) << (8 * j); return new BitSet(words); } /** * Returns a new byte array containing all the bits in this bit set. * *

More precisely, if *
{@code byte[] bytes = s.toByteArray();} *
then {@code bytes.length == (s.length()+7)/8} and *
{@code s.get(n) == ((bytes[n/8] & (1<<(n%8))) != 0)} *
for all {@code n < 8 * bytes.length}. * * @return a byte array containing a little-endian representation * of all the bits in this bit set * @since 1.7 */ public byte[] toByteArray() { int n = wordsInUse; if (n == 0) return new byte[0]; int len = 8 * (n-1); for (long x = words[n - 1]; x != 0; x >>>= 8) len++; byte[] bytes = new byte[len]; ByteBuffer bb = ByteBuffer.wrap(bytes).order(ByteOrder.LITTLE_ENDIAN); for (int i = 0; i < n - 1; i++) bb.putLong(words[i]); for (long x = words[n - 1]; x != 0; x >>>= 8) bb.put((byte) (x & 0xff)); return bytes; } /** * Returns a new long array containing all the bits in this bit set. * *

More precisely, if *
{@code long[] longs = s.toLongArray();} *
then {@code longs.length == (s.length()+63)/64} and *
{@code s.get(n) == ((longs[n/64] & (1L<<(n%64))) != 0)} *
for all {@code n < 64 * longs.length}. * * @return a long array containing a little-endian representation * of all the bits in this bit set * @since 1.7 */ public long[] toLongArray() { return Arrays.copyOf(words, wordsInUse); } /** * Ensures that the BitSet can hold enough words. * @param wordsRequired the minimum acceptable number of words. */ private void ensureCapacity(int wordsRequired) { if (words.length < wordsRequired) { // Allocate larger of doubled size or required size int request = Math.max(2 * words.length, wordsRequired); words = Arrays.copyOf(words, request); sizeIsSticky = false; } } /** * Ensures that the BitSet can accommodate a given wordIndex, * temporarily violating the invariants. The caller must * restore the invariants before returning to the user, * possibly using recalculateWordsInUse(). * @param wordIndex the index to be accommodated. */ private void expandTo(int wordIndex) { int wordsRequired = wordIndex+1; if (wordsInUse < wordsRequired) { ensureCapacity(wordsRequired); wordsInUse = wordsRequired; } } /** * Checks that fromIndex ... toIndex is a valid range of bit indices. */ private static void checkRange(int fromIndex, int toIndex) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex); if (toIndex < 0) throw new IndexOutOfBoundsException("toIndex < 0: " + toIndex); if (fromIndex > toIndex) throw new IndexOutOfBoundsException("fromIndex: " + fromIndex + " > toIndex: " + toIndex); } /** * Sets the bit at the specified index to the complement of its * current value. * * @param bitIndex the index of the bit to flip * @throws IndexOutOfBoundsException if the specified index is negative * @since 1.4 */ public void flip(int bitIndex) { if (bitIndex < 0) throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex); int wordIndex = wordIndex(bitIndex); expandTo(wordIndex); words[wordIndex] ^= (1L << bitIndex); recalculateWordsInUse(); checkInvariants(); } /** * Sets each bit from the specified {@code fromIndex} (inclusive) to the * specified {@code toIndex} (exclusive) to the complement of its current * value. * * @param fromIndex index of the first bit to flip * @param toIndex index after the last bit to flip * @throws IndexOutOfBoundsException if {@code fromIndex} is negative, * or {@code toIndex} is negative, or {@code fromIndex} is * larger than {@code toIndex} * @since 1.4 */ public void flip(int fromIndex, int toIndex) { checkRange(fromIndex, toIndex); if (fromIndex == toIndex) return; int startWordIndex = wordIndex(fromIndex); int endWordIndex = wordIndex(toIndex - 1); expandTo(endWordIndex); long firstWordMask = WORD_MASK << fromIndex; long lastWordMask = WORD_MASK >>> -toIndex; if (startWordIndex == endWordIndex) { // Case 1: One word words[startWordIndex] ^= (firstWordMask & lastWordMask); } else { // Case 2: Multiple words // Handle first word words[startWordIndex] ^= firstWordMask; // Handle intermediate words, if any for (int i = startWordIndex+1; i < endWordIndex; i++) words[i] ^= WORD_MASK; // Handle last word words[endWordIndex] ^= lastWordMask; } recalculateWordsInUse(); checkInvariants(); } /** * Sets the bit at the specified index to {@code true}. * * @param bitIndex a bit index * @throws IndexOutOfBoundsException if the specified index is negative * @since 1.0 */ public void set(int bitIndex) { if (bitIndex < 0) throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex); int wordIndex = wordIndex(bitIndex); expandTo(wordIndex); words[wordIndex] |= (1L << bitIndex); // Restores invariants checkInvariants(); } /** * Sets the bit at the specified index to the specified value. * * @param bitIndex a bit index * @param value a boolean value to set * @throws IndexOutOfBoundsException if the specified index is negative * @since 1.4 */ public void set(int bitIndex, boolean value) { if (value) set(bitIndex); else clear(bitIndex); } /** * Sets the bits from the specified {@code fromIndex} (inclusive) to the * specified {@code toIndex} (exclusive) to {@code true}. * * @param fromIndex index of the first bit to be set * @param toIndex index after the last bit to be set * @throws IndexOutOfBoundsException if {@code fromIndex} is negative, * or {@code toIndex} is negative, or {@code fromIndex} is * larger than {@code toIndex} * @since 1.4 */ public void set(int fromIndex, int toIndex) { checkRange(fromIndex, toIndex); if (fromIndex == toIndex) return; // Increase capacity if necessary int startWordIndex = wordIndex(fromIndex); int endWordIndex = wordIndex(toIndex - 1); expandTo(endWordIndex); long firstWordMask = WORD_MASK << fromIndex; long lastWordMask = WORD_MASK >>> -toIndex; if (startWordIndex == endWordIndex) { // Case 1: One word words[startWordIndex] |= (firstWordMask & lastWordMask); } else { // Case 2: Multiple words // Handle first word words[startWordIndex] |= firstWordMask; // Handle intermediate words, if any for (int i = startWordIndex+1; i < endWordIndex; i++) words[i] = WORD_MASK; // Handle last word (restores invariants) words[endWordIndex] |= lastWordMask; } checkInvariants(); } /** * Sets the bits from the specified {@code fromIndex} (inclusive) to the * specified {@code toIndex} (exclusive) to the specified value. * * @param fromIndex index of the first bit to be set * @param toIndex index after the last bit to be set * @param value value to set the selected bits to * @throws IndexOutOfBoundsException if {@code fromIndex} is negative, * or {@code toIndex} is negative, or {@code fromIndex} is * larger than {@code toIndex} * @since 1.4 */ public void set(int fromIndex, int toIndex, boolean value) { if (value) set(fromIndex, toIndex); else clear(fromIndex, toIndex); } /** * Sets the bit specified by the index to {@code false}. * * @param bitIndex the index of the bit to be cleared * @throws IndexOutOfBoundsException if the specified index is negative * @since 1.0 */ public void clear(int bitIndex) { if (bitIndex < 0) throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex); int wordIndex = wordIndex(bitIndex); if (wordIndex >= wordsInUse) return; words[wordIndex] &= ~(1L << bitIndex); recalculateWordsInUse(); checkInvariants(); } /** * Sets the bits from the specified {@code fromIndex} (inclusive) to the * specified {@code toIndex} (exclusive) to {@code false}. * * @param fromIndex index of the first bit to be cleared * @param toIndex index after the last bit to be cleared * @throws IndexOutOfBoundsException if {@code fromIndex} is negative, * or {@code toIndex} is negative, or {@code fromIndex} is * larger than {@code toIndex} * @since 1.4 */ public void clear(int fromIndex, int toIndex) { checkRange(fromIndex, toIndex); if (fromIndex == toIndex) return; int startWordIndex = wordIndex(fromIndex); if (startWordIndex >= wordsInUse) return; int endWordIndex = wordIndex(toIndex - 1); if (endWordIndex >= wordsInUse) { toIndex = length(); endWordIndex = wordsInUse - 1; } long firstWordMask = WORD_MASK << fromIndex; long lastWordMask = WORD_MASK >>> -toIndex; if (startWordIndex == endWordIndex) { // Case 1: One word words[startWordIndex] &= ~(firstWordMask & lastWordMask); } else { // Case 2: Multiple words // Handle first word words[startWordIndex] &= ~firstWordMask; // Handle intermediate words, if any for (int i = startWordIndex+1; i < endWordIndex; i++) words[i] = 0; // Handle last word words[endWordIndex] &= ~lastWordMask; } recalculateWordsInUse(); checkInvariants(); } /** * Sets all of the bits in this BitSet to {@code false}. * * @since 1.4 */ public void clear() { while (wordsInUse > 0) words[--wordsInUse] = 0; } /** * Returns the value of the bit with the specified index. The value * is {@code true} if the bit with the index {@code bitIndex} * is currently set in this {@code BitSet}; otherwise, the result * is {@code false}. * * @param bitIndex the bit index * @return the value of the bit with the specified index * @throws IndexOutOfBoundsException if the specified index is negative */ public boolean get(int bitIndex) { if (bitIndex < 0) throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex); checkInvariants(); int wordIndex = wordIndex(bitIndex); return (wordIndex < wordsInUse) && ((words[wordIndex] & (1L << bitIndex)) != 0); } /** * Returns a new {@code BitSet} composed of bits from this {@code BitSet} * from {@code fromIndex} (inclusive) to {@code toIndex} (exclusive). * * @param fromIndex index of the first bit to include * @param toIndex index after the last bit to include * @return a new {@code BitSet} from a range of this {@code BitSet} * @throws IndexOutOfBoundsException if {@code fromIndex} is negative, * or {@code toIndex} is negative, or {@code fromIndex} is * larger than {@code toIndex} * @since 1.4 */ public BitSet get(int fromIndex, int toIndex) { checkRange(fromIndex, toIndex); checkInvariants(); int len = length(); // If no set bits in range return empty bitset if (len <= fromIndex || fromIndex == toIndex) return new BitSet(0); // An optimization if (toIndex > len) toIndex = len; BitSet result = new BitSet(toIndex - fromIndex); int targetWords = wordIndex(toIndex - fromIndex - 1) + 1; int sourceIndex = wordIndex(fromIndex); boolean wordAligned = ((fromIndex & BIT_INDEX_MASK) == 0); // Process all words but the last word for (int i = 0; i < targetWords - 1; i++, sourceIndex++) result.words[i] = wordAligned ? words[sourceIndex] : (words[sourceIndex] >>> fromIndex) | (words[sourceIndex+1] << -fromIndex); // Process the last word long lastWordMask = WORD_MASK >>> -toIndex; result.words[targetWords - 1] = ((toIndex-1) & BIT_INDEX_MASK) < (fromIndex & BIT_INDEX_MASK) ? /* straddles source words */ ((words[sourceIndex] >>> fromIndex) | (words[sourceIndex+1] & lastWordMask) << -fromIndex) : ((words[sourceIndex] & lastWordMask) >>> fromIndex); // Set wordsInUse correctly result.wordsInUse = targetWords; result.recalculateWordsInUse(); result.checkInvariants(); return result; } /** * Returns the index of the first bit that is set to {@code true} * that occurs on or after the specified starting index. If no such * bit exists then {@code -1} is returned. * *

To iterate over the {@code true} bits in a {@code BitSet}, * use the following loop: * *

 {@code
     * for (int i = bs.nextSetBit(0); i >= 0; i = bs.nextSetBit(i+1)) {
     *     // operate on index i here
     *     if (i == Integer.MAX_VALUE) {
     *         break; // or (i+1) would overflow
     *     }
     * }}
* * @param fromIndex the index to start checking from (inclusive) * @return the index of the next set bit, or {@code -1} if there * is no such bit * @throws IndexOutOfBoundsException if the specified index is negative * @since 1.4 */ public int nextSetBit(int fromIndex) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex); checkInvariants(); int u = wordIndex(fromIndex); if (u >= wordsInUse) return -1; long word = words[u] & (WORD_MASK << fromIndex); while (true) { if (word != 0) return (u * BITS_PER_WORD) + Long.numberOfTrailingZeros(word); if (++u == wordsInUse) return -1; word = words[u]; } } /** * Returns the index of the first bit that is set to {@code false} * that occurs on or after the specified starting index. * * @param fromIndex the index to start checking from (inclusive) * @return the index of the next clear bit * @throws IndexOutOfBoundsException if the specified index is negative * @since 1.4 */ public int nextClearBit(int fromIndex) { // Neither spec nor implementation handle bitsets of maximal length. // See 4816253. if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex); checkInvariants(); int u = wordIndex(fromIndex); if (u >= wordsInUse) return fromIndex; long word = ~words[u] & (WORD_MASK << fromIndex); while (true) { if (word != 0) return (u * BITS_PER_WORD) + Long.numberOfTrailingZeros(word); if (++u == wordsInUse) return wordsInUse * BITS_PER_WORD; word = ~words[u]; } } /** * Returns the index of the nearest bit that is set to {@code true} * that occurs on or before the specified starting index. * If no such bit exists, or if {@code -1} is given as the * starting index, then {@code -1} is returned. * *

To iterate over the {@code true} bits in a {@code BitSet}, * use the following loop: * *

 {@code
     * for (int i = bs.length(); (i = bs.previousSetBit(i-1)) >= 0; ) {
     *     // operate on index i here
     * }}
* * @param fromIndex the index to start checking from (inclusive) * @return the index of the previous set bit, or {@code -1} if there * is no such bit * @throws IndexOutOfBoundsException if the specified index is less * than {@code -1} * @since 1.7 */ public int previousSetBit(int fromIndex) { if (fromIndex < 0) { if (fromIndex == -1) return -1; throw new IndexOutOfBoundsException( "fromIndex < -1: " + fromIndex); } checkInvariants(); int u = wordIndex(fromIndex); if (u >= wordsInUse) return length() - 1; long word = words[u] & (WORD_MASK >>> -(fromIndex+1)); while (true) { if (word != 0) return (u+1) * BITS_PER_WORD - 1 - Long.numberOfLeadingZeros(word); if (u-- == 0) return -1; word = words[u]; } } /** * Returns the index of the nearest bit that is set to {@code false} * that occurs on or before the specified starting index. * If no such bit exists, or if {@code -1} is given as the * starting index, then {@code -1} is returned. * * @param fromIndex the index to start checking from (inclusive) * @return the index of the previous clear bit, or {@code -1} if there * is no such bit * @throws IndexOutOfBoundsException if the specified index is less * than {@code -1} * @since 1.7 */ public int previousClearBit(int fromIndex) { if (fromIndex < 0) { if (fromIndex == -1) return -1; throw new IndexOutOfBoundsException( "fromIndex < -1: " + fromIndex); } checkInvariants(); int u = wordIndex(fromIndex); if (u >= wordsInUse) return fromIndex; long word = ~words[u] & (WORD_MASK >>> -(fromIndex+1)); while (true) { if (word != 0) return (u+1) * BITS_PER_WORD -1 - Long.numberOfLeadingZeros(word); if (u-- == 0) return -1; word = ~words[u]; } } /** * Returns the "logical size" of this {@code BitSet}: the index of * the highest set bit in the {@code BitSet} plus one. Returns zero * if the {@code BitSet} contains no set bits. * * @return the logical size of this {@code BitSet} * @since 1.2 */ public int length() { if (wordsInUse == 0) return 0; return BITS_PER_WORD * (wordsInUse - 1) + (BITS_PER_WORD - Long.numberOfLeadingZeros(words[wordsInUse - 1])); } /** * Returns true if this {@code BitSet} contains no bits that are set * to {@code true}. * * @return boolean indicating whether this {@code BitSet} is empty * @since 1.4 */ public boolean isEmpty() { return wordsInUse == 0; } /** * Returns true if the specified {@code BitSet} has any bits set to * {@code true} that are also set to {@code true} in this {@code BitSet}. * * @param set {@code BitSet} to intersect with * @return boolean indicating whether this {@code BitSet} intersects * the specified {@code BitSet} * @since 1.4 */ public boolean intersects(BitSet set) { for (int i = Math.min(wordsInUse, set.wordsInUse) - 1; i >= 0; i--) if ((words[i] & set.words[i]) != 0) return true; return false; } /** * Returns the number of bits set to {@code true} in this {@code BitSet}. * * @return the number of bits set to {@code true} in this {@code BitSet} * @since 1.4 */ public int cardinality() { int sum = 0; for (int i = 0; i < wordsInUse; i++) sum += Long.bitCount(words[i]); return sum; } /** * Performs a logical AND of this target bit set with the * argument bit set. This bit set is modified so that each bit in it * has the value {@code true} if and only if it both initially * had the value {@code true} and the corresponding bit in the * bit set argument also had the value {@code true}. * * @param set a bit set */ public void and(BitSet set) { if (this == set) return; while (wordsInUse > set.wordsInUse) words[--wordsInUse] = 0; // Perform logical AND on words in common for (int i = 0; i < wordsInUse; i++) words[i] &= set.words[i]; recalculateWordsInUse(); checkInvariants(); } /** * Performs a logical OR of this bit set with the bit set * argument. This bit set is modified so that a bit in it has the * value {@code true} if and only if it either already had the * value {@code true} or the corresponding bit in the bit set * argument has the value {@code true}. * * @param set a bit set */ public void or(BitSet set) { if (this == set) return; int wordsInCommon = Math.min(wordsInUse, set.wordsInUse); if (wordsInUse < set.wordsInUse) { ensureCapacity(set.wordsInUse); wordsInUse = set.wordsInUse; } // Perform logical OR on words in common for (int i = 0; i < wordsInCommon; i++) words[i] |= set.words[i]; // Copy any remaining words if (wordsInCommon < set.wordsInUse) System.arraycopy(set.words, wordsInCommon, words, wordsInCommon, wordsInUse - wordsInCommon); // recalculateWordsInUse() is unnecessary checkInvariants(); } /** * Performs a logical XOR of this bit set with the bit set * argument. This bit set is modified so that a bit in it has the * value {@code true} if and only if one of the following * statements holds: *
    *
  • The bit initially has the value {@code true}, and the * corresponding bit in the argument has the value {@code false}. *
  • The bit initially has the value {@code false}, and the * corresponding bit in the argument has the value {@code true}. *
* * @param set a bit set */ public void xor(BitSet set) { int wordsInCommon = Math.min(wordsInUse, set.wordsInUse); if (wordsInUse < set.wordsInUse) { ensureCapacity(set.wordsInUse); wordsInUse = set.wordsInUse; } // Perform logical XOR on words in common for (int i = 0; i < wordsInCommon; i++) words[i] ^= set.words[i]; // Copy any remaining words if (wordsInCommon < set.wordsInUse) System.arraycopy(set.words, wordsInCommon, words, wordsInCommon, set.wordsInUse - wordsInCommon); recalculateWordsInUse(); checkInvariants(); } /** * Clears all of the bits in this {@code BitSet} whose corresponding * bit is set in the specified {@code BitSet}. * * @param set the {@code BitSet} with which to mask this * {@code BitSet} * @since 1.2 */ public void andNot(BitSet set) { // Perform logical (a & !b) on words in common for (int i = Math.min(wordsInUse, set.wordsInUse) - 1; i >= 0; i--) words[i] &= ~set.words[i]; recalculateWordsInUse(); checkInvariants(); } /** * Returns the hash code value for this bit set. The hash code depends * only on which bits are set within this {@code BitSet}. * *

The hash code is defined to be the result of the following * calculation: *

 {@code
     * public int hashCode() {
     *     long h = 1234;
     *     long[] words = toLongArray();
     *     for (int i = words.length; --i >= 0; )
     *         h ^= words[i] * (i + 1);
     *     return (int)((h >> 32) ^ h);
     * }}
* Note that the hash code changes if the set of bits is altered. * * @return the hash code value for this bit set */ public int hashCode() { long h = 1234; for (int i = wordsInUse; --i >= 0; ) h ^= words[i] * (i + 1); return (int)((h >> 32) ^ h); } /** * Returns the number of bits of space actually in use by this * {@code BitSet} to represent bit values. * The maximum element in the set is the size - 1st element. * * @return the number of bits currently in this bit set */ public int size() { return words.length * BITS_PER_WORD; } /** * Compares this object against the specified object. * The result is {@code true} if and only if the argument is * not {@code null} and is a {@code BitSet} object that has * exactly the same set of bits set to {@code true} as this bit * set. That is, for every nonnegative {@code int} index {@code k}, *
((BitSet)obj).get(k) == this.get(k)
* must be true. The current sizes of the two bit sets are not compared. * * @param obj the object to compare with * @return {@code true} if the objects are the same; * {@code false} otherwise * @see #size() */ public boolean equals(Object obj) { if (!(obj instanceof BitSet set)) return false; if (this == obj) return true; checkInvariants(); set.checkInvariants(); if (wordsInUse != set.wordsInUse) return false; // Check words in use by both BitSets for (int i = 0; i < wordsInUse; i++) if (words[i] != set.words[i]) return false; return true; } /** * Cloning this {@code BitSet} produces a new {@code BitSet} * that is equal to it. * The clone of the bit set is another bit set that has exactly the * same bits set to {@code true} as this bit set. * * @return a clone of this bit set * @see #size() */ public Object clone() { if (! sizeIsSticky) trimToSize(); try { BitSet result = (BitSet) super.clone(); result.words = words.clone(); result.checkInvariants(); return result; } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Attempts to reduce internal storage used for the bits in this bit set. * Calling this method may, but is not required to, affect the value * returned by a subsequent call to the {@link #size()} method. */ private void trimToSize() { if (wordsInUse != words.length) { words = Arrays.copyOf(words, wordsInUse); checkInvariants(); } } /** * Save the state of the {@code BitSet} instance to a stream (i.e., * serialize it). */ @java.io.Serial private void writeObject(ObjectOutputStream s) throws IOException { checkInvariants(); if (! sizeIsSticky) trimToSize(); ObjectOutputStream.PutField fields = s.putFields(); fields.put("bits", words); s.writeFields(); } /** * Reconstitute the {@code BitSet} instance from a stream (i.e., * deserialize it). */ @java.io.Serial private void readObject(ObjectInputStream s) throws IOException, ClassNotFoundException { ObjectInputStream.GetField fields = s.readFields(); words = (long[]) fields.get("bits", null); // Assume maximum length then find real length // because recalculateWordsInUse assumes maintenance // or reduction in logical size wordsInUse = words.length; recalculateWordsInUse(); sizeIsSticky = (words.length > 0 && words[words.length-1] == 0L); // heuristic checkInvariants(); } /** * Returns a string representation of this bit set. For every index * for which this {@code BitSet} contains a bit in the set * state, the decimal representation of that index is included in * the result. Such indices are listed in order from lowest to * highest, separated by ", " (a comma and a space) and * surrounded by braces, resulting in the usual mathematical * notation for a set of integers. * *

Example: *

     * BitSet drPepper = new BitSet();
* Now {@code drPepper.toString()} returns "{@code {}}". *
     * drPepper.set(2);
* Now {@code drPepper.toString()} returns "{@code {2}}". *
     * drPepper.set(4);
     * drPepper.set(10);
* Now {@code drPepper.toString()} returns "{@code {2, 4, 10}}". * * @return a string representation of this bit set */ public String toString() { checkInvariants(); final int MAX_INITIAL_CAPACITY = Integer.MAX_VALUE - 8; int numBits = (wordsInUse > 128) ? cardinality() : wordsInUse * BITS_PER_WORD; // Avoid overflow in the case of a humongous numBits int initialCapacity = (numBits <= (MAX_INITIAL_CAPACITY - 2) / 6) ? 6 * numBits + 2 : MAX_INITIAL_CAPACITY; StringBuilder b = new StringBuilder(initialCapacity); b.append('{'); int i = nextSetBit(0); if (i != -1) { b.append(i); while (true) { if (++i < 0) break; if ((i = nextSetBit(i)) < 0) break; int endOfRun = nextClearBit(i); do { b.append(", ").append(i); } while (++i != endOfRun); } } b.append('}'); return b.toString(); } /** * Returns a stream of indices for which this {@code BitSet} * contains a bit in the set state. The indices are returned * in order, from lowest to highest. The size of the stream * is the number of bits in the set state, equal to the value * returned by the {@link #cardinality()} method. * *

The stream binds to this bit set when the terminal stream operation * commences (specifically, the spliterator for the stream is * late-binding). If the * bit set is modified during that operation then the result is undefined. * * @return a stream of integers representing set indices * @since 1.8 */ public IntStream stream() { class BitSetSpliterator implements Spliterator.OfInt { private int index; // current bit index for a set bit private int fence; // -1 until used; then one past last bit index private int est; // size estimate private boolean root; // true if root and not split // root == true then size estimate is accurate // index == -1 or index >= fence if fully traversed // Special case when the max bit set is Integer.MAX_VALUE BitSetSpliterator(int origin, int fence, int est, boolean root) { this.index = origin; this.fence = fence; this.est = est; this.root = root; } private int getFence() { int hi; if ((hi = fence) < 0) { // Round up fence to maximum cardinality for allocated words // This is sufficient and cheap for sequential access // When splitting this value is lowered hi = fence = (wordsInUse >= wordIndex(Integer.MAX_VALUE)) ? Integer.MAX_VALUE : wordsInUse << ADDRESS_BITS_PER_WORD; est = cardinality(); index = nextSetBit(0); } return hi; } @Override public boolean tryAdvance(IntConsumer action) { Objects.requireNonNull(action); int hi = getFence(); int i = index; if (i < 0 || i >= hi) { // Check if there is a final bit set for Integer.MAX_VALUE if (i == Integer.MAX_VALUE && hi == Integer.MAX_VALUE) { index = -1; action.accept(Integer.MAX_VALUE); return true; } return false; } index = nextSetBit(i + 1, wordIndex(hi - 1)); action.accept(i); return true; } @Override public void forEachRemaining(IntConsumer action) { Objects.requireNonNull(action); int hi = getFence(); int i = index; index = -1; if (i >= 0 && i < hi) { action.accept(i++); int u = wordIndex(i); // next lower word bound int v = wordIndex(hi - 1); // upper word bound words_loop: for (; u <= v && i <= hi; u++, i = u << ADDRESS_BITS_PER_WORD) { long word = words[u] & (WORD_MASK << i); while (word != 0) { i = (u << ADDRESS_BITS_PER_WORD) + Long.numberOfTrailingZeros(word); if (i >= hi) { // Break out of outer loop to ensure check of // Integer.MAX_VALUE bit set break words_loop; } // Flip the set bit word &= ~(1L << i); action.accept(i); } } } // Check if there is a final bit set for Integer.MAX_VALUE if (i == Integer.MAX_VALUE && hi == Integer.MAX_VALUE) { action.accept(Integer.MAX_VALUE); } } @Override public OfInt trySplit() { int hi = getFence(); int lo = index; if (lo < 0) { return null; } // Lower the fence to be the upper bound of last bit set // The index is the first bit set, thus this spliterator // covers one bit and cannot be split, or two or more // bits hi = fence = (hi < Integer.MAX_VALUE || !get(Integer.MAX_VALUE)) ? previousSetBit(hi - 1) + 1 : Integer.MAX_VALUE; // Find the mid point int mid = (lo + hi) >>> 1; if (lo >= mid) { return null; } // Raise the index of this spliterator to be the next set bit // from the mid point index = nextSetBit(mid, wordIndex(hi - 1)); root = false; // Don't lower the fence (mid point) of the returned spliterator, // traversal or further splitting will do that work return new BitSetSpliterator(lo, mid, est >>>= 1, false); } @Override public long estimateSize() { getFence(); // force init return est; } @Override public int characteristics() { // Only sized when root and not split return (root ? Spliterator.SIZED : 0) | Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED; } @Override public Comparator getComparator() { return null; } } return StreamSupport.intStream(new BitSetSpliterator(0, -1, 0, true), false); } /** * Returns the index of the first bit that is set to {@code true} * that occurs on or after the specified starting index and up to and * including the specified word index * If no such bit exists then {@code -1} is returned. * * @param fromIndex the index to start checking from (inclusive) * @param toWordIndex the last word index to check (inclusive) * @return the index of the next set bit, or {@code -1} if there * is no such bit */ private int nextSetBit(int fromIndex, int toWordIndex) { int u = wordIndex(fromIndex); // Check if out of bounds if (u > toWordIndex) return -1; long word = words[u] & (WORD_MASK << fromIndex); while (true) { if (word != 0) return (u * BITS_PER_WORD) + Long.numberOfTrailingZeros(word); // Check if out of bounds if (++u > toWordIndex) return -1; word = words[u]; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy