All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.util.concurrent.atomic.AtomicStampedReference Maven / Gradle / Ivy

/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent.atomic;

import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;

/**
 * An {@code AtomicStampedReference} maintains an object reference
 * along with an integer "stamp", that can be updated atomically.
 *
 * 

Implementation note: This implementation maintains stamped * references by creating internal objects representing "boxed" * [reference, integer] pairs. * * @since 1.5 * @author Doug Lea * @param The type of object referred to by this reference */ public class AtomicStampedReference { private static class Pair { final T reference; final int stamp; private Pair(T reference, int stamp) { this.reference = reference; this.stamp = stamp; } static Pair of(T reference, int stamp) { return new Pair(reference, stamp); } } private volatile Pair pair; /** * Creates a new {@code AtomicStampedReference} with the given * initial values. * * @param initialRef the initial reference * @param initialStamp the initial stamp */ public AtomicStampedReference(V initialRef, int initialStamp) { pair = Pair.of(initialRef, initialStamp); } /** * Returns the current value of the reference. * * @return the current value of the reference */ public V getReference() { return pair.reference; } /** * Returns the current value of the stamp. * * @return the current value of the stamp */ public int getStamp() { return pair.stamp; } /** * Returns the current values of both the reference and the stamp. * Typical usage is {@code int[1] holder; ref = v.get(holder); }. * * @param stampHolder an array of size of at least one. On return, * {@code stampHolder[0]} will hold the value of the stamp. * @return the current value of the reference */ public V get(int[] stampHolder) { Pair pair = this.pair; stampHolder[0] = pair.stamp; return pair.reference; } /** * Atomically sets the value of both the reference and stamp to * the given update values if the current reference is {@code ==} * to the expected reference and the current stamp is equal to the * expected stamp. This operation may fail spuriously and does not * provide ordering guarantees, so is only rarely an * appropriate alternative to {@code compareAndSet}. * * @param expectedReference the expected value of the reference * @param newReference the new value for the reference * @param expectedStamp the expected value of the stamp * @param newStamp the new value for the stamp * @return {@code true} if successful */ public boolean weakCompareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp) { return compareAndSet(expectedReference, newReference, expectedStamp, newStamp); } /** * Atomically sets the value of both the reference and stamp * to the given update values if the * current reference is {@code ==} to the expected reference * and the current stamp is equal to the expected stamp. * * @param expectedReference the expected value of the reference * @param newReference the new value for the reference * @param expectedStamp the expected value of the stamp * @param newStamp the new value for the stamp * @return {@code true} if successful */ public boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp) { Pair current = pair; return expectedReference == current.reference && expectedStamp == current.stamp && ((newReference == current.reference && newStamp == current.stamp) || casPair(current, Pair.of(newReference, newStamp))); } /** * Unconditionally sets the value of both the reference and stamp. * * @param newReference the new value for the reference * @param newStamp the new value for the stamp */ public void set(V newReference, int newStamp) { Pair current = pair; if (newReference != current.reference || newStamp != current.stamp) this.pair = Pair.of(newReference, newStamp); } /** * Atomically sets the value of the stamp to the given update value * if the current reference is {@code ==} to the expected * reference. Any given invocation of this operation may fail * (return {@code false}) spuriously, but repeated invocation * when the current value holds the expected value and no other * thread is also attempting to set the value will eventually * succeed. * * @param expectedReference the expected value of the reference * @param newStamp the new value for the stamp * @return {@code true} if successful */ public boolean attemptStamp(V expectedReference, int newStamp) { Pair current = pair; return expectedReference == current.reference && (newStamp == current.stamp || casPair(current, Pair.of(expectedReference, newStamp))); } // VarHandle mechanics private static final VarHandle PAIR; static { try { MethodHandles.Lookup l = MethodHandles.lookup(); PAIR = l.findVarHandle(AtomicStampedReference.class, "pair", Pair.class); } catch (ReflectiveOperationException e) { throw new ExceptionInInitializerError(e); } } private boolean casPair(Pair cmp, Pair val) { return PAIR.compareAndSet(this, cmp, val); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy