All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.util.zip.Deflater Maven / Gradle / Ivy

/*
 * Copyright (c) 1996, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util.zip;

import java.lang.ref.Cleaner.Cleanable;
import java.lang.ref.Reference;
import java.nio.ByteBuffer;
import java.nio.ReadOnlyBufferException;
import java.util.Objects;

import jdk.internal.ref.CleanerFactory;
import sun.nio.ch.DirectBuffer;

/**
 * This class provides support for general purpose compression using the
 * popular ZLIB compression library. The ZLIB compression library was
 * initially developed as part of the PNG graphics standard and is not
 * protected by patents. It is fully described in the specifications at
 * the java.util.zip
 * package description.
 * 

* This class deflates sequences of bytes into ZLIB compressed data format. * The input byte sequence is provided in either byte array or byte buffer, * via one of the {@code setInput()} methods. The output byte sequence is * written to the output byte array or byte buffer passed to the * {@code deflate()} methods. *

* The following code fragment demonstrates a trivial compression * and decompression of a string using {@code Deflater} and * {@code Inflater}. * *

 * try {
 *     // Encode a String into bytes
 *     String inputString = "blahblahblah";
 *     byte[] input = inputString.getBytes("UTF-8");
 *
 *     // Compress the bytes
 *     byte[] output = new byte[100];
 *     Deflater compresser = new Deflater();
 *     compresser.setInput(input);
 *     compresser.finish();
 *     int compressedDataLength = compresser.deflate(output);
 *     compresser.end();
 *
 *     // Decompress the bytes
 *     Inflater decompresser = new Inflater();
 *     decompresser.setInput(output, 0, compressedDataLength);
 *     byte[] result = new byte[100];
 *     int resultLength = decompresser.inflate(result);
 *     decompresser.end();
 *
 *     // Decode the bytes into a String
 *     String outputString = new String(result, 0, resultLength, "UTF-8");
 * } catch (java.io.UnsupportedEncodingException ex) {
 *     // handle
 * } catch (java.util.zip.DataFormatException ex) {
 *     // handle
 * }
 * 
* * @apiNote * To release resources used by this {@code Deflater}, the {@link #end()} method * should be called explicitly. Subclasses are responsible for the cleanup of resources * acquired by the subclass. Subclasses that override {@link #finalize()} in order * to perform cleanup should be modified to use alternative cleanup mechanisms such * as {@link java.lang.ref.Cleaner} and remove the overriding {@code finalize} method. * * @see Inflater * @author David Connelly * @since 1.1 */ public class Deflater { private final DeflaterZStreamRef zsRef; private ByteBuffer input = ZipUtils.defaultBuf; private byte[] inputArray; private int inputPos, inputLim; private int level, strategy; private boolean setParams; private boolean finish, finished; private long bytesRead; private long bytesWritten; /** * Compression method for the deflate algorithm (the only one currently * supported). */ public static final int DEFLATED = 8; /** * Compression level for no compression. */ public static final int NO_COMPRESSION = 0; /** * Compression level for fastest compression. */ public static final int BEST_SPEED = 1; /** * Compression level for best compression. */ public static final int BEST_COMPRESSION = 9; /** * Default compression level. */ public static final int DEFAULT_COMPRESSION = -1; /** * Compression strategy best used for data consisting mostly of small * values with a somewhat random distribution. Forces more Huffman coding * and less string matching. */ public static final int FILTERED = 1; /** * Compression strategy for Huffman coding only. */ public static final int HUFFMAN_ONLY = 2; /** * Default compression strategy. */ public static final int DEFAULT_STRATEGY = 0; /** * Compression flush mode used to achieve best compression result. * * @see Deflater#deflate(byte[], int, int, int) * @since 1.7 */ public static final int NO_FLUSH = 0; /** * Compression flush mode used to flush out all pending output; may * degrade compression for some compression algorithms. * * @see Deflater#deflate(byte[], int, int, int) * @since 1.7 */ public static final int SYNC_FLUSH = 2; /** * Compression flush mode used to flush out all pending output and * reset the deflater. Using this mode too often can seriously degrade * compression. * * @see Deflater#deflate(byte[], int, int, int) * @since 1.7 */ public static final int FULL_FLUSH = 3; /** * Flush mode to use at the end of output. Can only be provided by the * user by way of {@link #finish()}. */ private static final int FINISH = 4; static { ZipUtils.loadLibrary(); } /** * Creates a new compressor using the specified compression level. * If 'nowrap' is true then the ZLIB header and checksum fields will * not be used in order to support the compression format used in * both GZIP and PKZIP. * @param level the compression level (0-9) * @param nowrap if true then use GZIP compatible compression */ public Deflater(int level, boolean nowrap) { this.level = level; this.strategy = DEFAULT_STRATEGY; this.zsRef = new DeflaterZStreamRef(this, init(level, DEFAULT_STRATEGY, nowrap)); } /** * Creates a new compressor using the specified compression level. * Compressed data will be generated in ZLIB format. * @param level the compression level (0-9) */ public Deflater(int level) { this(level, false); } /** * Creates a new compressor with the default compression level. * Compressed data will be generated in ZLIB format. */ public Deflater() { this(DEFAULT_COMPRESSION, false); } /** * Sets input data for compression. *

* One of the {@code setInput()} methods should be called whenever * {@code needsInput()} returns true indicating that more input data * is required. * @param input the input data bytes * @param off the start offset of the data * @param len the length of the data * @see Deflater#needsInput */ public void setInput(byte[] input, int off, int len) { if (off < 0 || len < 0 || off > input.length - len) { throw new ArrayIndexOutOfBoundsException(); } synchronized (zsRef) { this.input = null; this.inputArray = input; this.inputPos = off; this.inputLim = off + len; } } /** * Sets input data for compression. *

* One of the {@code setInput()} methods should be called whenever * {@code needsInput()} returns true indicating that more input data * is required. * @param input the input data bytes * @see Deflater#needsInput */ public void setInput(byte[] input) { setInput(input, 0, input.length); } /** * Sets input data for compression. *

* One of the {@code setInput()} methods should be called whenever * {@code needsInput()} returns true indicating that more input data * is required. *

* The given buffer's position will be advanced as deflate * operations are performed, up to the buffer's limit. * The input buffer may be modified (refilled) between deflate * operations; doing so is equivalent to creating a new buffer * and setting it with this method. *

* Modifying the input buffer's contents, position, or limit * concurrently with an deflate operation will result in * undefined behavior, which may include incorrect operation * results or operation failure. * * @param input the input data bytes * @see Deflater#needsInput * @since 11 */ public void setInput(ByteBuffer input) { Objects.requireNonNull(input); synchronized (zsRef) { this.input = input; this.inputArray = null; } } /** * Sets preset dictionary for compression. A preset dictionary is used * when the history buffer can be predetermined. When the data is later * uncompressed with Inflater.inflate(), Inflater.getAdler() can be called * in order to get the Adler-32 value of the dictionary required for * decompression. * @param dictionary the dictionary data bytes * @param off the start offset of the data * @param len the length of the data * @see Inflater#inflate * @see Inflater#getAdler */ public void setDictionary(byte[] dictionary, int off, int len) { if (off < 0 || len < 0 || off > dictionary.length - len) { throw new ArrayIndexOutOfBoundsException(); } synchronized (zsRef) { ensureOpen(); setDictionary(zsRef.address(), dictionary, off, len); } } /** * Sets preset dictionary for compression. A preset dictionary is used * when the history buffer can be predetermined. When the data is later * uncompressed with Inflater.inflate(), Inflater.getAdler() can be called * in order to get the Adler-32 value of the dictionary required for * decompression. * @param dictionary the dictionary data bytes * @see Inflater#inflate * @see Inflater#getAdler */ public void setDictionary(byte[] dictionary) { setDictionary(dictionary, 0, dictionary.length); } /** * Sets preset dictionary for compression. A preset dictionary is used * when the history buffer can be predetermined. When the data is later * uncompressed with Inflater.inflate(), Inflater.getAdler() can be called * in order to get the Adler-32 value of the dictionary required for * decompression. *

* The bytes in given byte buffer will be fully consumed by this method. On * return, its position will equal its limit. * * @param dictionary the dictionary data bytes * @see Inflater#inflate * @see Inflater#getAdler */ public void setDictionary(ByteBuffer dictionary) { synchronized (zsRef) { int position = dictionary.position(); int remaining = Math.max(dictionary.limit() - position, 0); ensureOpen(); if (dictionary.isDirect()) { long address = ((DirectBuffer) dictionary).address(); try { setDictionaryBuffer(zsRef.address(), address + position, remaining); } finally { Reference.reachabilityFence(dictionary); } } else { byte[] array = ZipUtils.getBufferArray(dictionary); int offset = ZipUtils.getBufferOffset(dictionary); setDictionary(zsRef.address(), array, offset + position, remaining); } dictionary.position(position + remaining); } } /** * Sets the compression strategy to the specified value. * *

If the compression strategy is changed, the next invocation * of {@code deflate} will compress the input available so far with * the old strategy (and may be flushed); the new strategy will take * effect only after that invocation. * * @param strategy the new compression strategy * @throws IllegalArgumentException if the compression strategy is * invalid */ public void setStrategy(int strategy) { switch (strategy) { case DEFAULT_STRATEGY: case FILTERED: case HUFFMAN_ONLY: break; default: throw new IllegalArgumentException(); } synchronized (zsRef) { if (this.strategy != strategy) { this.strategy = strategy; setParams = true; } } } /** * Sets the compression level to the specified value. * *

If the compression level is changed, the next invocation * of {@code deflate} will compress the input available so far * with the old level (and may be flushed); the new level will * take effect only after that invocation. * * @param level the new compression level (0-9) * @throws IllegalArgumentException if the compression level is invalid */ public void setLevel(int level) { if ((level < 0 || level > 9) && level != DEFAULT_COMPRESSION) { throw new IllegalArgumentException("invalid compression level"); } synchronized (zsRef) { if (this.level != level) { this.level = level; setParams = true; } } } /** * Returns true if no data remains in the input buffer. This can * be used to determine if one of the {@code setInput()} methods should be * called in order to provide more input. * * @return true if the input data buffer is empty and setInput() * should be called in order to provide more input */ public boolean needsInput() { synchronized (zsRef) { ByteBuffer input = this.input; return input == null ? inputLim == inputPos : ! input.hasRemaining(); } } /** * When called, indicates that compression should end with the current * contents of the input buffer. */ public void finish() { synchronized (zsRef) { finish = true; } } /** * Returns true if the end of the compressed data output stream has * been reached. * @return true if the end of the compressed data output stream has * been reached */ public boolean finished() { synchronized (zsRef) { return finished; } } /** * Compresses the input data and fills specified buffer with compressed * data. Returns actual number of bytes of compressed data. A return value * of 0 indicates that {@link #needsInput() needsInput} should be called * in order to determine if more input data is required. * *

This method uses {@link #NO_FLUSH} as its compression flush mode. * An invocation of this method of the form {@code deflater.deflate(b, off, len)} * yields the same result as the invocation of * {@code deflater.deflate(b, off, len, Deflater.NO_FLUSH)}. * * @param output the buffer for the compressed data * @param off the start offset of the data * @param len the maximum number of bytes of compressed data * @return the actual number of bytes of compressed data written to the * output buffer */ public int deflate(byte[] output, int off, int len) { return deflate(output, off, len, NO_FLUSH); } /** * Compresses the input data and fills specified buffer with compressed * data. Returns actual number of bytes of compressed data. A return value * of 0 indicates that {@link #needsInput() needsInput} should be called * in order to determine if more input data is required. * *

This method uses {@link #NO_FLUSH} as its compression flush mode. * An invocation of this method of the form {@code deflater.deflate(b)} * yields the same result as the invocation of * {@code deflater.deflate(b, 0, b.length, Deflater.NO_FLUSH)}. * * @param output the buffer for the compressed data * @return the actual number of bytes of compressed data written to the * output buffer */ public int deflate(byte[] output) { return deflate(output, 0, output.length, NO_FLUSH); } /** * Compresses the input data and fills specified buffer with compressed * data. Returns actual number of bytes of compressed data. A return value * of 0 indicates that {@link #needsInput() needsInput} should be called * in order to determine if more input data is required. * *

This method uses {@link #NO_FLUSH} as its compression flush mode. * An invocation of this method of the form {@code deflater.deflate(output)} * yields the same result as the invocation of * {@code deflater.deflate(output, Deflater.NO_FLUSH)}. * * @param output the buffer for the compressed data * @return the actual number of bytes of compressed data written to the * output buffer * @since 11 */ public int deflate(ByteBuffer output) { return deflate(output, NO_FLUSH); } /** * Compresses the input data and fills the specified buffer with compressed * data. Returns actual number of bytes of data compressed. * *

Compression flush mode is one of the following three modes: * *

    *
  • {@link #NO_FLUSH}: allows the deflater to decide how much data * to accumulate, before producing output, in order to achieve the best * compression (should be used in normal use scenario). A return value * of 0 in this flush mode indicates that {@link #needsInput()} should * be called in order to determine if more input data is required. * *
  • {@link #SYNC_FLUSH}: all pending output in the deflater is flushed, * to the specified output buffer, so that an inflater that works on * compressed data can get all input data available so far (In particular * the {@link #needsInput()} returns {@code true} after this invocation * if enough output space is provided). Flushing with {@link #SYNC_FLUSH} * may degrade compression for some compression algorithms and so it * should be used only when necessary. * *
  • {@link #FULL_FLUSH}: all pending output is flushed out as with * {@link #SYNC_FLUSH}. The compression state is reset so that the inflater * that works on the compressed output data can restart from this point * if previous compressed data has been damaged or if random access is * desired. Using {@link #FULL_FLUSH} too often can seriously degrade * compression. *
* *

In the case of {@link #FULL_FLUSH} or {@link #SYNC_FLUSH}, if * the return value is {@code len}, the space available in output * buffer {@code b}, this method should be invoked again with the same * {@code flush} parameter and more output space. Make sure that * {@code len} is greater than 6 to avoid flush marker (5 bytes) being * repeatedly output to the output buffer every time this method is * invoked. * *

If the {@link #setInput(ByteBuffer)} method was called to provide a buffer * for input, the input buffer's position will be advanced by the number of bytes * consumed by this operation. * * @param output the buffer for the compressed data * @param off the start offset of the data * @param len the maximum number of bytes of compressed data * @param flush the compression flush mode * @return the actual number of bytes of compressed data written to * the output buffer * * @throws IllegalArgumentException if the flush mode is invalid * @since 1.7 */ public int deflate(byte[] output, int off, int len, int flush) { if (off < 0 || len < 0 || off > output.length - len) { throw new ArrayIndexOutOfBoundsException(); } if (flush != NO_FLUSH && flush != SYNC_FLUSH && flush != FULL_FLUSH) { throw new IllegalArgumentException(); } synchronized (zsRef) { ensureOpen(); ByteBuffer input = this.input; if (finish) { // disregard given flush mode in this case flush = FINISH; } int params; if (setParams) { // bit 0: true to set params // bit 1-2: strategy (0, 1, or 2) // bit 3-31: level (0..9 or -1) params = 1 | strategy << 1 | level << 3; } else { params = 0; } int inputPos; long result; if (input == null) { inputPos = this.inputPos; result = deflateBytesBytes(zsRef.address(), inputArray, inputPos, inputLim - inputPos, output, off, len, flush, params); } else { inputPos = input.position(); int inputRem = Math.max(input.limit() - inputPos, 0); if (input.isDirect()) { try { long inputAddress = ((DirectBuffer) input).address(); result = deflateBufferBytes(zsRef.address(), inputAddress + inputPos, inputRem, output, off, len, flush, params); } finally { Reference.reachabilityFence(input); } } else { byte[] inputArray = ZipUtils.getBufferArray(input); int inputOffset = ZipUtils.getBufferOffset(input); result = deflateBytesBytes(zsRef.address(), inputArray, inputOffset + inputPos, inputRem, output, off, len, flush, params); } } int read = (int) (result & 0x7fff_ffffL); int written = (int) (result >>> 31 & 0x7fff_ffffL); if ((result >>> 62 & 1) != 0) { finished = true; } if (params != 0 && (result >>> 63 & 1) == 0) { setParams = false; } if (input != null) { input.position(inputPos + read); } else { this.inputPos = inputPos + read; } bytesWritten += written; bytesRead += read; return written; } } /** * Compresses the input data and fills the specified buffer with compressed * data. Returns actual number of bytes of data compressed. * *

Compression flush mode is one of the following three modes: * *

    *
  • {@link #NO_FLUSH}: allows the deflater to decide how much data * to accumulate, before producing output, in order to achieve the best * compression (should be used in normal use scenario). A return value * of 0 in this flush mode indicates that {@link #needsInput()} should * be called in order to determine if more input data is required. * *
  • {@link #SYNC_FLUSH}: all pending output in the deflater is flushed, * to the specified output buffer, so that an inflater that works on * compressed data can get all input data available so far (In particular * the {@link #needsInput()} returns {@code true} after this invocation * if enough output space is provided). Flushing with {@link #SYNC_FLUSH} * may degrade compression for some compression algorithms and so it * should be used only when necessary. * *
  • {@link #FULL_FLUSH}: all pending output is flushed out as with * {@link #SYNC_FLUSH}. The compression state is reset so that the inflater * that works on the compressed output data can restart from this point * if previous compressed data has been damaged or if random access is * desired. Using {@link #FULL_FLUSH} too often can seriously degrade * compression. *
* *

In the case of {@link #FULL_FLUSH} or {@link #SYNC_FLUSH}, if * the return value is equal to the {@linkplain ByteBuffer#remaining() remaining space} * of the buffer, this method should be invoked again with the same * {@code flush} parameter and more output space. Make sure that * the buffer has at least 6 bytes of remaining space to avoid the * flush marker (5 bytes) being repeatedly output to the output buffer * every time this method is invoked. * *

On success, the position of the given {@code output} byte buffer will be * advanced by as many bytes as were produced by the operation, which is equal * to the number returned by this method. * *

If the {@link #setInput(ByteBuffer)} method was called to provide a buffer * for input, the input buffer's position will be advanced by the number of bytes * consumed by this operation. * * @param output the buffer for the compressed data * @param flush the compression flush mode * @return the actual number of bytes of compressed data written to * the output buffer * * @throws IllegalArgumentException if the flush mode is invalid * @since 11 */ public int deflate(ByteBuffer output, int flush) { if (output.isReadOnly()) { throw new ReadOnlyBufferException(); } if (flush != NO_FLUSH && flush != SYNC_FLUSH && flush != FULL_FLUSH) { throw new IllegalArgumentException(); } synchronized (zsRef) { ensureOpen(); ByteBuffer input = this.input; if (finish) { // disregard given flush mode in this case flush = FINISH; } int params; if (setParams) { // bit 0: true to set params // bit 1-2: strategy (0, 1, or 2) // bit 3-31: level (0..9 or -1) params = 1 | strategy << 1 | level << 3; } else { params = 0; } int outputPos = output.position(); int outputRem = Math.max(output.limit() - outputPos, 0); int inputPos; long result; if (input == null) { inputPos = this.inputPos; if (output.isDirect()) { long outputAddress = ((DirectBuffer) output).address(); try { result = deflateBytesBuffer(zsRef.address(), inputArray, inputPos, inputLim - inputPos, outputAddress + outputPos, outputRem, flush, params); } finally { Reference.reachabilityFence(output); } } else { byte[] outputArray = ZipUtils.getBufferArray(output); int outputOffset = ZipUtils.getBufferOffset(output); result = deflateBytesBytes(zsRef.address(), inputArray, inputPos, inputLim - inputPos, outputArray, outputOffset + outputPos, outputRem, flush, params); } } else { inputPos = input.position(); int inputRem = Math.max(input.limit() - inputPos, 0); if (input.isDirect()) { long inputAddress = ((DirectBuffer) input).address(); try { if (output.isDirect()) { long outputAddress = outputPos + ((DirectBuffer) output).address(); try { result = deflateBufferBuffer(zsRef.address(), inputAddress + inputPos, inputRem, outputAddress, outputRem, flush, params); } finally { Reference.reachabilityFence(output); } } else { byte[] outputArray = ZipUtils.getBufferArray(output); int outputOffset = ZipUtils.getBufferOffset(output); result = deflateBufferBytes(zsRef.address(), inputAddress + inputPos, inputRem, outputArray, outputOffset + outputPos, outputRem, flush, params); } } finally { Reference.reachabilityFence(input); } } else { byte[] inputArray = ZipUtils.getBufferArray(input); int inputOffset = ZipUtils.getBufferOffset(input); if (output.isDirect()) { long outputAddress = ((DirectBuffer) output).address(); try { result = deflateBytesBuffer(zsRef.address(), inputArray, inputOffset + inputPos, inputRem, outputAddress + outputPos, outputRem, flush, params); } finally { Reference.reachabilityFence(output); } } else { byte[] outputArray = ZipUtils.getBufferArray(output); int outputOffset = ZipUtils.getBufferOffset(output); result = deflateBytesBytes(zsRef.address(), inputArray, inputOffset + inputPos, inputRem, outputArray, outputOffset + outputPos, outputRem, flush, params); } } } int read = (int) (result & 0x7fff_ffffL); int written = (int) (result >>> 31 & 0x7fff_ffffL); if ((result >>> 62 & 1) != 0) { finished = true; } if (params != 0 && (result >>> 63 & 1) == 0) { setParams = false; } if (input != null) { input.position(inputPos + read); } else { this.inputPos = inputPos + read; } output.position(outputPos + written); bytesWritten += written; bytesRead += read; return written; } } /** * Returns the ADLER-32 value of the uncompressed data. * @return the ADLER-32 value of the uncompressed data */ public int getAdler() { synchronized (zsRef) { ensureOpen(); return getAdler(zsRef.address()); } } /** * Returns the total number of uncompressed bytes input so far. * *

Since the number of bytes may be greater than * Integer.MAX_VALUE, the {@link #getBytesRead()} method is now * the preferred means of obtaining this information.

* * @return the total number of uncompressed bytes input so far */ public int getTotalIn() { return (int) getBytesRead(); } /** * Returns the total number of uncompressed bytes input so far. * * @return the total (non-negative) number of uncompressed bytes input so far * @since 1.5 */ public long getBytesRead() { synchronized (zsRef) { ensureOpen(); return bytesRead; } } /** * Returns the total number of compressed bytes output so far. * *

Since the number of bytes may be greater than * Integer.MAX_VALUE, the {@link #getBytesWritten()} method is now * the preferred means of obtaining this information.

* * @return the total number of compressed bytes output so far */ public int getTotalOut() { return (int) getBytesWritten(); } /** * Returns the total number of compressed bytes output so far. * * @return the total (non-negative) number of compressed bytes output so far * @since 1.5 */ public long getBytesWritten() { synchronized (zsRef) { ensureOpen(); return bytesWritten; } } /** * Resets deflater so that a new set of input data can be processed. * Keeps current compression level and strategy settings. */ public void reset() { synchronized (zsRef) { ensureOpen(); reset(zsRef.address()); finish = false; finished = false; input = ZipUtils.defaultBuf; inputArray = null; bytesRead = bytesWritten = 0; } } /** * Closes the compressor and discards any unprocessed input. * * This method should be called when the compressor is no longer * being used. Once this method is called, the behavior of the * Deflater object is undefined. */ public void end() { synchronized (zsRef) { zsRef.clean(); input = ZipUtils.defaultBuf; } } private void ensureOpen() { assert Thread.holdsLock(zsRef); if (zsRef.address() == 0) throw new NullPointerException("Deflater has been closed"); } private static native long init(int level, int strategy, boolean nowrap); private static native void setDictionary(long addr, byte[] b, int off, int len); private static native void setDictionaryBuffer(long addr, long bufAddress, int len); private native long deflateBytesBytes(long addr, byte[] inputArray, int inputOff, int inputLen, byte[] outputArray, int outputOff, int outputLen, int flush, int params); private native long deflateBytesBuffer(long addr, byte[] inputArray, int inputOff, int inputLen, long outputAddress, int outputLen, int flush, int params); private native long deflateBufferBytes(long addr, long inputAddress, int inputLen, byte[] outputArray, int outputOff, int outputLen, int flush, int params); private native long deflateBufferBuffer(long addr, long inputAddress, int inputLen, long outputAddress, int outputLen, int flush, int params); private static native int getAdler(long addr); private static native void reset(long addr); private static native void end(long addr); /** * A reference to the native zlib's z_stream structure. It also * serves as the "cleaner" to clean up the native resource when * the Deflater is ended, closed or cleaned. */ static class DeflaterZStreamRef implements Runnable { private long address; private final Cleanable cleanable; private DeflaterZStreamRef(Deflater owner, long addr) { this.cleanable = (owner != null) ? CleanerFactory.cleaner().register(owner, this) : null; this.address = addr; } long address() { return address; } void clean() { cleanable.clean(); } public synchronized void run() { long addr = address; address = 0; if (addr != 0) { end(addr); } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy