sun.security.provider.SHA3 Maven / Gradle / Ivy
/*
* Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.provider;
import jdk.internal.vm.annotation.IntrinsicCandidate;
import static sun.security.provider.ByteArrayAccess.*;
import java.nio.*;
import java.util.*;
import java.security.*;
/**
* This class implements the Secure Hash Algorithm SHA-3 developed by
* the National Institute of Standards and Technology along with the
* National Security Agency as defined in FIPS PUB 202.
*
* It implements java.security.MessageDigestSpi, and can be used
* through Java Cryptography Architecture (JCA), as a pluggable
* MessageDigest implementation.
*
* @since 9
* @author Valerie Peng
*/
abstract class SHA3 extends DigestBase {
private static final int WIDTH = 200; // in bytes, e.g. 1600 bits
private static final int DM = 5; // dimension of lanes
private static final int NR = 24; // number of rounds
// precomputed round constants needed by the step mapping Iota
private static final long[] RC_CONSTANTS = {
0x01L, 0x8082L, 0x800000000000808aL,
0x8000000080008000L, 0x808bL, 0x80000001L,
0x8000000080008081L, 0x8000000000008009L, 0x8aL,
0x88L, 0x80008009L, 0x8000000aL,
0x8000808bL, 0x800000000000008bL, 0x8000000000008089L,
0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L,
0x800aL, 0x800000008000000aL, 0x8000000080008081L,
0x8000000000008080L, 0x80000001L, 0x8000000080008008L,
};
private final byte suffix;
private byte[] state = new byte[WIDTH];
private long[] lanes = new long[DM*DM];
/**
* Creates a new SHA-3 object.
*/
SHA3(String name, int digestLength, byte suffix, int c) {
super(name, digestLength, (WIDTH - c));
this.suffix = suffix;
}
private void implCompressCheck(byte[] b, int ofs) {
Objects.requireNonNull(b);
}
/**
* Core compression function. Processes blockSize bytes at a time
* and updates the state of this object.
*/
void implCompress(byte[] b, int ofs) {
implCompressCheck(b, ofs);
implCompress0(b, ofs);
}
@IntrinsicCandidate
private void implCompress0(byte[] b, int ofs) {
for (int i = 0; i < buffer.length; i++) {
state[i] ^= b[ofs++];
}
keccak();
}
/**
* Return the digest. Subclasses do not need to reset() themselves,
* DigestBase calls implReset() when necessary.
*/
void implDigest(byte[] out, int ofs) {
int numOfPadding =
setPaddingBytes(suffix, buffer, (int)(bytesProcessed % buffer.length));
if (numOfPadding < 1) {
throw new ProviderException("Incorrect pad size: " + numOfPadding);
}
implCompress(buffer, 0);
System.arraycopy(state, 0, out, ofs, engineGetDigestLength());
}
/**
* Resets the internal state to start a new hash.
*/
void implReset() {
Arrays.fill(state, (byte)0);
Arrays.fill(lanes, 0L);
}
/**
* Utility function for padding the specified data based on the
* pad10*1 algorithm (section 5.1) and the 2-bit suffix "01" required
* for SHA-3 hash (section 6.1).
*/
private static int setPaddingBytes(byte suffix, byte[] in, int len) {
if (len != in.length) {
// erase leftover values
Arrays.fill(in, len, in.length, (byte)0);
// directly store the padding bytes into the input
// as the specified buffer is allocated w/ size = rateR
in[len] |= suffix;
in[in.length - 1] |= (byte) 0x80;
}
return (in.length - len);
}
/**
* Utility function for transforming the specified byte array 's'
* into array of lanes 'm' as defined in section 3.1.2.
*/
private static void bytes2Lanes(byte[] s, long[] m) {
int sOfs = 0;
// Conversion traverses along x-axis before y-axis
for (int y = 0; y < DM; y++, sOfs += 40) {
b2lLittle(s, sOfs, m, DM*y, 40);
}
}
/**
* Utility function for transforming the specified array of
* lanes 'm' into a byte array 's' as defined in section 3.1.3.
*/
private static void lanes2Bytes(long[] m, byte[] s) {
int sOfs = 0;
// Conversion traverses along x-axis before y-axis
for (int y = 0; y < DM; y++, sOfs += 40) {
l2bLittle(m, DM*y, s, sOfs, 40);
}
}
/**
* Step mapping Theta as defined in section 3.2.1 .
*/
private static long[] smTheta(long[] a) {
long c0 = a[0]^a[5]^a[10]^a[15]^a[20];
long c1 = a[1]^a[6]^a[11]^a[16]^a[21];
long c2 = a[2]^a[7]^a[12]^a[17]^a[22];
long c3 = a[3]^a[8]^a[13]^a[18]^a[23];
long c4 = a[4]^a[9]^a[14]^a[19]^a[24];
long d0 = c4 ^ Long.rotateLeft(c1, 1);
long d1 = c0 ^ Long.rotateLeft(c2, 1);
long d2 = c1 ^ Long.rotateLeft(c3, 1);
long d3 = c2 ^ Long.rotateLeft(c4, 1);
long d4 = c3 ^ Long.rotateLeft(c0, 1);
for (int y = 0; y < a.length; y += DM) {
a[y] ^= d0;
a[y+1] ^= d1;
a[y+2] ^= d2;
a[y+3] ^= d3;
a[y+4] ^= d4;
}
return a;
}
/**
* Merged Step mapping Rho (section 3.2.2) and Pi (section 3.2.3).
* for performance. Optimization is achieved by precalculating
* shift constants for the following loop
* int xNext, yNext;
* for (int t = 0, x = 1, y = 0; t <= 23; t++, x = xNext, y = yNext) {
* int numberOfShift = ((t + 1)*(t + 2)/2) % 64;
* a[y][x] = Long.rotateLeft(a[y][x], numberOfShift);
* xNext = y;
* yNext = (2 * x + 3 * y) % DM;
* }
* and with inplace permutation.
*/
private static long[] smPiRho(long[] a) {
long tmp = Long.rotateLeft(a[10], 3);
a[10] = Long.rotateLeft(a[1], 1);
a[1] = Long.rotateLeft(a[6], 44);
a[6] = Long.rotateLeft(a[9], 20);
a[9] = Long.rotateLeft(a[22], 61);
a[22] = Long.rotateLeft(a[14], 39);
a[14] = Long.rotateLeft(a[20], 18);
a[20] = Long.rotateLeft(a[2], 62);
a[2] = Long.rotateLeft(a[12], 43);
a[12] = Long.rotateLeft(a[13], 25);
a[13] = Long.rotateLeft(a[19], 8);
a[19] = Long.rotateLeft(a[23], 56);
a[23] = Long.rotateLeft(a[15], 41);
a[15] = Long.rotateLeft(a[4], 27);
a[4] = Long.rotateLeft(a[24], 14);
a[24] = Long.rotateLeft(a[21], 2);
a[21] = Long.rotateLeft(a[8], 55);
a[8] = Long.rotateLeft(a[16], 45);
a[16] = Long.rotateLeft(a[5], 36);
a[5] = Long.rotateLeft(a[3], 28);
a[3] = Long.rotateLeft(a[18], 21);
a[18] = Long.rotateLeft(a[17], 15);
a[17] = Long.rotateLeft(a[11], 10);
a[11] = Long.rotateLeft(a[7], 6);
a[7] = tmp;
return a;
}
/**
* Step mapping Chi as defined in section 3.2.4.
*/
private static long[] smChi(long[] a) {
for (int y = 0; y < a.length; y+=DM) {
long ay0 = a[y];
long ay1 = a[y+1];
long ay2 = a[y+2];
long ay3 = a[y+3];
long ay4 = a[y+4];
a[y] = ay0 ^ ((~ay1) & ay2);
a[y+1] = ay1 ^ ((~ay2) & ay3);
a[y+2] = ay2 ^ ((~ay3) & ay4);
a[y+3] = ay3 ^ ((~ay4) & ay0);
a[y+4] = ay4 ^ ((~ay0) & ay1);
}
return a;
}
/**
* Step mapping Iota as defined in section 3.2.5.
*/
private static long[] smIota(long[] a, int rndIndex) {
a[0] ^= RC_CONSTANTS[rndIndex];
return a;
}
/**
* The function Keccak as defined in section 5.2 with
* rate r = 1600 and capacity c = (digest length x 2).
*/
private void keccak() {
// convert the 200-byte state into 25 lanes
bytes2Lanes(state, lanes);
// process the lanes through step mappings
for (int ir = 0; ir < NR; ir++) {
smIota(smChi(smPiRho(smTheta(lanes))), ir);
}
// convert the resulting 25 lanes back into 200-byte state
lanes2Bytes(lanes, state);
}
public Object clone() throws CloneNotSupportedException {
SHA3 copy = (SHA3) super.clone();
copy.state = copy.state.clone();
copy.lanes = new long[DM*DM];
return copy;
}
/**
* SHA3-224 implementation class.
*/
public static final class SHA224 extends SHA3 {
public SHA224() {
super("SHA3-224", 28, (byte)0x06, 56);
}
}
/**
* SHA3-256 implementation class.
*/
public static final class SHA256 extends SHA3 {
public SHA256() {
super("SHA3-256", 32, (byte)0x06, 64);
}
}
/**
* SHAs-384 implementation class.
*/
public static final class SHA384 extends SHA3 {
public SHA384() {
super("SHA3-384", 48, (byte)0x06, 96);
}
}
/**
* SHA3-512 implementation class.
*/
public static final class SHA512 extends SHA3 {
public SHA512() {
super("SHA3-512", 64, (byte)0x06, 128);
}
}
}