sun.security.util.math.intpoly.IntegerPolynomial Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of qbicc-rt-java.base Show documentation
Show all versions of qbicc-rt-java.base Show documentation
The Qbicc builder for the java.base JDK module
/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.util.math.intpoly;
import sun.security.util.math.*;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.Arrays;
/**
* A large number polynomial representation using sparse limbs of signed
* long (64-bit) values. Limb values will always fit within a long, so inputs
* to multiplication must be less than 32 bits. All IntegerPolynomial
* implementations allow at most one addition before multiplication. Additions
* after that will result in an ArithmeticException.
*
* The following element operations are branch-free for all subclasses:
*
* fixed
* mutable
* add
* additiveInverse
* multiply
* square
* subtract
* conditionalSwapWith
* setValue (may branch on high-order byte parameter only)
* setSum
* setDifference
* setProduct
* setSquare
* addModPowerTwo
* asByteArray
*
* All other operations may branch in some subclasses.
*
*/
public abstract class IntegerPolynomial implements IntegerFieldModuloP {
protected static final BigInteger TWO = BigInteger.valueOf(2);
protected final int numLimbs;
private final BigInteger modulus;
protected final int bitsPerLimb;
private final long[] posModLimbs;
private final int maxAdds;
/**
* Reduce an IntegerPolynomial representation (a) and store the result
* in a. Requires that a.length == numLimbs.
*/
protected abstract void reduce(long[] a);
/**
* Multiply an IntegerPolynomial representation (a) with a long (b) and
* store the result in an IntegerPolynomial representation in a. Requires
* that a.length == numLimbs.
*/
protected void multByInt(long[] a, long b) {
for (int i = 0; i < a.length; i++) {
a[i] *= b;
}
reduce(a);
}
/**
* Multiply two IntegerPolynomial representations (a and b) and store the
* result in an IntegerPolynomial representation (r). Requires that
* a.length == b.length == r.length == numLimbs. It is allowed for a and r
* to be the same array.
*/
protected abstract void mult(long[] a, long[] b, long[] r);
/**
* Multiply an IntegerPolynomial representation (a) with itself and store
* the result in an IntegerPolynomialRepresentation (r). Requires that
* a.length == r.length == numLimbs. It is allowed for a and r
* to be the same array.
*/
protected abstract void square(long[] a, long[] r);
IntegerPolynomial(int bitsPerLimb,
int numLimbs,
int maxAdds,
BigInteger modulus) {
this.numLimbs = numLimbs;
this.modulus = modulus;
this.bitsPerLimb = bitsPerLimb;
this.maxAdds = maxAdds;
posModLimbs = setPosModLimbs();
}
private long[] setPosModLimbs() {
long[] result = new long[numLimbs];
setLimbsValuePositive(modulus, result);
return result;
}
protected int getNumLimbs() {
return numLimbs;
}
public int getMaxAdds() {
return maxAdds;
}
@Override
public BigInteger getSize() {
return modulus;
}
@Override
public ImmutableElement get0() {
return new ImmutableElement(false);
}
@Override
public ImmutableElement get1() {
return new ImmutableElement(true);
}
@Override
public ImmutableElement getElement(BigInteger v) {
return new ImmutableElement(v);
}
@Override
public SmallValue getSmallValue(int value) {
int maxMag = 1 << (bitsPerLimb - 1);
if (Math.abs(value) >= maxMag) {
throw new IllegalArgumentException("max magnitude is " + maxMag);
}
return new Limb(value);
}
protected abstract void reduceIn(long[] c, long v, int i);
private void reduceHigh(long[] limbs) {
// conservatively calculate how many reduce operations can be done
// before a carry is needed
int extraBits = 63 - 2 * bitsPerLimb;
int allowedAdds = 1 << extraBits;
int carryPeriod = allowedAdds / numLimbs;
int reduceCount = 0;
for (int i = limbs.length - 1; i >= numLimbs; i--) {
reduceIn(limbs, limbs[i], i);
limbs[i] = 0;
reduceCount++;
if (reduceCount % carryPeriod == 0) {
carry(limbs, 0, i);
reduceIn(limbs, limbs[i], i);
limbs[i] = 0;
}
}
}
/**
* This version of encode takes a ByteBuffer that is properly ordered, and
* may extract larger values (e.g. long) from the ByteBuffer for better
* performance. The implementation below only extracts bytes from the
* buffer, but this method may be overridden in field-specific
* implementations.
*/
protected void encode(ByteBuffer buf, int length, byte highByte,
long[] result) {
int numHighBits = 32 - Integer.numberOfLeadingZeros(highByte);
int numBits = 8 * length + numHighBits;
int requiredLimbs = (numBits + bitsPerLimb - 1) / bitsPerLimb;
if (requiredLimbs > numLimbs) {
long[] temp = new long[requiredLimbs];
encodeSmall(buf, length, highByte, temp);
reduceHigh(temp);
System.arraycopy(temp, 0, result, 0, result.length);
reduce(result);
} else {
encodeSmall(buf, length, highByte, result);
postEncodeCarry(result);
}
}
protected void encodeSmall(ByteBuffer buf, int length, byte highByte,
long[] result) {
int limbIndex = 0;
long curLimbValue = 0;
int bitPos = 0;
for (int i = 0; i < length; i++) {
long curV = buf.get() & 0xFF;
if (bitPos + 8 >= bitsPerLimb) {
int bitsThisLimb = bitsPerLimb - bitPos;
curLimbValue += (curV & (0xFF >> (8 - bitsThisLimb))) << bitPos;
result[limbIndex++] = curLimbValue;
curLimbValue = curV >> bitsThisLimb;
bitPos = 8 - bitsThisLimb;
}
else {
curLimbValue += curV << bitPos;
bitPos += 8;
}
}
// one more for the high byte
if (highByte != 0) {
long curV = highByte & 0xFF;
if (bitPos + 8 >= bitsPerLimb) {
int bitsThisLimb = bitsPerLimb - bitPos;
curLimbValue += (curV & (0xFF >> (8 - bitsThisLimb))) << bitPos;
result[limbIndex++] = curLimbValue;
curLimbValue = curV >> bitsThisLimb;
}
else {
curLimbValue += curV << bitPos;
}
}
if (limbIndex < result.length) {
result[limbIndex++] = curLimbValue;
}
Arrays.fill(result, limbIndex, result.length, 0);
}
protected void encode(byte[] v, int offset, int length, byte highByte,
long[] result) {
ByteBuffer buf = ByteBuffer.wrap(v, offset, length);
buf.order(ByteOrder.LITTLE_ENDIAN);
encode(buf, length, highByte, result);
}
// Encode does not produce compressed limbs. A simplified carry/reduce
// operation can be used to compress the limbs.
protected void postEncodeCarry(long[] v) {
reduce(v);
}
public ImmutableElement getElement(byte[] v, int offset, int length,
byte highByte) {
long[] result = new long[numLimbs];
encode(v, offset, length, highByte, result);
return new ImmutableElement(result, 0);
}
protected BigInteger evaluate(long[] limbs) {
BigInteger result = BigInteger.ZERO;
for (int i = limbs.length - 1; i >= 0; i--) {
result = result.shiftLeft(bitsPerLimb)
.add(BigInteger.valueOf(limbs[i]));
}
return result.mod(modulus);
}
protected long carryValue(long x) {
// compressing carry operation
// if large positive number, carry one more to make it negative
// if large negative number (closer to zero), carry one fewer
return (x + (1 << (bitsPerLimb - 1))) >> bitsPerLimb;
}
protected void carry(long[] limbs, int start, int end) {
for (int i = start; i < end; i++) {
long carry = carryOut(limbs, i);
limbs[i + 1] += carry;
}
}
protected void carry(long[] limbs) {
carry(limbs, 0, limbs.length - 1);
}
/**
* Carry out of the specified position and return the carry value.
*/
protected long carryOut(long[] limbs, int index) {
long carry = carryValue(limbs[index]);
limbs[index] -= (carry << bitsPerLimb);
return carry;
}
private void setLimbsValue(BigInteger v, long[] limbs) {
// set all limbs positive, and then carry
setLimbsValuePositive(v, limbs);
carry(limbs);
}
protected void setLimbsValuePositive(BigInteger v, long[] limbs) {
BigInteger mod = BigInteger.valueOf(1 << bitsPerLimb);
for (int i = 0; i < limbs.length; i++) {
limbs[i] = v.mod(mod).longValue();
v = v.shiftRight(bitsPerLimb);
}
}
/**
* Carry out of the last limb and reduce back in. This method will be
* called as part of the "finalReduce" operation that puts the
* representation into a fully-reduced form. It is representation-
* specific, because representations have different amounts of empty
* space in the high-order limb. Requires that limbs.length=numLimbs.
*/
protected abstract void finalCarryReduceLast(long[] limbs);
/**
* Convert reduced limbs into a number between 0 and MODULUS-1.
* Requires that limbs.length == numLimbs. This method only works if the
* modulus has at most three terms.
*/
protected void finalReduce(long[] limbs) {
// This method works by doing several full carry/reduce operations.
// Some representations have extra high bits, so the carry/reduce out
// of the high position is implementation-specific. The "unsigned"
// carry operation always carries some (negative) value out of a
// position occupied by a negative value. So after a number of
// passes, all negative values are removed.
// The first pass may leave a negative value in the high position, but
// this only happens if something was carried out of the previous
// position. So the previous position must have a "small" value. The
// next full carry is guaranteed not to carry out of that position.
for (int pass = 0; pass < 2; pass++) {
// unsigned carry out of last position and reduce in to
// first position
finalCarryReduceLast(limbs);
// unsigned carry on all positions
long carry = 0;
for (int i = 0; i < numLimbs - 1; i++) {
limbs[i] += carry;
carry = limbs[i] >> bitsPerLimb;
limbs[i] -= carry << bitsPerLimb;
}
limbs[numLimbs - 1] += carry;
}
// Limbs are positive and all less than 2^bitsPerLimb, and the
// high-order limb may be even smaller due to the representation-
// specific carry/reduce out of the high position.
// The value may still be greater than the modulus.
// Subtract the max limb values only if all limbs end up non-negative
// This only works if there is at most one position where posModLimbs
// is less than 2^bitsPerLimb - 1 (not counting the high-order limb,
// if it has extra bits that are cleared by finalCarryReduceLast).
int smallerNonNegative = 1;
long[] smaller = new long[numLimbs];
for (int i = numLimbs - 1; i >= 0; i--) {
smaller[i] = limbs[i] - posModLimbs[i];
// expression on right is 1 if smaller[i] is nonnegative,
// 0 otherwise
smallerNonNegative *= (int) (smaller[i] >> 63) + 1;
}
conditionalSwap(smallerNonNegative, limbs, smaller);
}
/**
* Decode the value in v and store it in dst. Requires that v is final
* reduced. I.e. all limbs in [0, 2^bitsPerLimb) and value in [0, modulus).
*/
protected void decode(long[] v, byte[] dst, int offset, int length) {
int nextLimbIndex = 0;
long curLimbValue = v[nextLimbIndex++];
int bitPos = 0;
for (int i = 0; i < length; i++) {
int dstIndex = i + offset;
if (bitPos + 8 >= bitsPerLimb) {
dst[dstIndex] = (byte) curLimbValue;
curLimbValue = 0;
if (nextLimbIndex < v.length) {
curLimbValue = v[nextLimbIndex++];
}
int bitsAdded = bitsPerLimb - bitPos;
int bitsLeft = 8 - bitsAdded;
dst[dstIndex] += (curLimbValue & (0xFF >> bitsAdded))
<< bitsAdded;
curLimbValue >>= bitsLeft;
bitPos = bitsLeft;
} else {
dst[dstIndex] = (byte) curLimbValue;
curLimbValue >>= 8;
bitPos += 8;
}
}
}
/**
* Add two IntegerPolynomial representations (a and b) and store the result
* in an IntegerPolynomialRepresentation (dst). Requires that
* a.length == b.length == dst.length. It is allowed for a and
* dst to be the same array.
*/
protected void addLimbs(long[] a, long[] b, long[] dst) {
for (int i = 0; i < dst.length; i++) {
dst[i] = a[i] + b[i];
}
}
/**
* Branch-free conditional assignment of b to a. Requires that set is 0 or
* 1, and that a.length == b.length. If set==0, then the values of a and b
* will be unchanged. If set==1, then the values of b will be assigned to a.
* The behavior is undefined if swap has any value other than 0 or 1.
*/
protected static void conditionalAssign(int set, long[] a, long[] b) {
int maskValue = 0 - set;
for (int i = 0; i < a.length; i++) {
long dummyLimbs = maskValue & (a[i] ^ b[i]);
a[i] = dummyLimbs ^ a[i];
}
}
/**
* Branch-free conditional swap of a and b. Requires that swap is 0 or 1,
* and that a.length == b.length. If swap==0, then the values of a and b
* will be unchanged. If swap==1, then the values of a and b will be
* swapped. The behavior is undefined if swap has any value other than
* 0 or 1.
*/
protected static void conditionalSwap(int swap, long[] a, long[] b) {
int maskValue = 0 - swap;
for (int i = 0; i < a.length; i++) {
long dummyLimbs = maskValue & (a[i] ^ b[i]);
a[i] = dummyLimbs ^ a[i];
b[i] = dummyLimbs ^ b[i];
}
}
/**
* Stores the reduced, little-endian value of limbs in result.
*/
protected void limbsToByteArray(long[] limbs, byte[] result) {
long[] reducedLimbs = limbs.clone();
finalReduce(reducedLimbs);
decode(reducedLimbs, result, 0, result.length);
}
/**
* Add the reduced number corresponding to limbs and other, and store
* the low-order bytes of the sum in result. Requires that
* limbs.length==other.length. The result array may have any length.
*/
protected void addLimbsModPowerTwo(long[] limbs, long[] other,
byte[] result) {
long[] reducedOther = other.clone();
long[] reducedLimbs = limbs.clone();
finalReduce(reducedOther);
finalReduce(reducedLimbs);
addLimbs(reducedLimbs, reducedOther, reducedLimbs);
// may carry out a value which can be ignored
long carry = 0;
for (int i = 0; i < numLimbs; i++) {
reducedLimbs[i] += carry;
carry = reducedLimbs[i] >> bitsPerLimb;
reducedLimbs[i] -= carry << bitsPerLimb;
}
decode(reducedLimbs, result, 0, result.length);
}
private abstract class Element implements IntegerModuloP {
protected long[] limbs;
protected int numAdds;
public Element(BigInteger v) {
limbs = new long[numLimbs];
setValue(v);
}
public Element(boolean v) {
this.limbs = new long[numLimbs];
this.limbs[0] = v ? 1l : 0l;
this.numAdds = 0;
}
private Element(long[] limbs, int numAdds) {
this.limbs = limbs;
this.numAdds = numAdds;
}
private void setValue(BigInteger v) {
setLimbsValue(v, limbs);
this.numAdds = 0;
}
@Override
public IntegerFieldModuloP getField() {
return IntegerPolynomial.this;
}
@Override
public BigInteger asBigInteger() {
return evaluate(limbs);
}
@Override
public MutableElement mutable() {
return new MutableElement(limbs.clone(), numAdds);
}
protected boolean isSummand() {
return numAdds < maxAdds;
}
@Override
public ImmutableElement add(IntegerModuloP genB) {
Element b = (Element) genB;
if (!(isSummand() && b.isSummand())) {
throw new ArithmeticException("Not a valid summand");
}
long[] newLimbs = new long[limbs.length];
for (int i = 0; i < limbs.length; i++) {
newLimbs[i] = limbs[i] + b.limbs[i];
}
int newNumAdds = Math.max(numAdds, b.numAdds) + 1;
return new ImmutableElement(newLimbs, newNumAdds);
}
@Override
public ImmutableElement additiveInverse() {
long[] newLimbs = new long[limbs.length];
for (int i = 0; i < limbs.length; i++) {
newLimbs[i] = -limbs[i];
}
ImmutableElement result = new ImmutableElement(newLimbs, numAdds);
return result;
}
protected long[] cloneLow(long[] limbs) {
long[] newLimbs = new long[numLimbs];
copyLow(limbs, newLimbs);
return newLimbs;
}
protected void copyLow(long[] limbs, long[] out) {
System.arraycopy(limbs, 0, out, 0, out.length);
}
@Override
public ImmutableElement multiply(IntegerModuloP genB) {
Element b = (Element) genB;
long[] newLimbs = new long[limbs.length];
mult(limbs, b.limbs, newLimbs);
return new ImmutableElement(newLimbs, 0);
}
@Override
public ImmutableElement square() {
long[] newLimbs = new long[limbs.length];
IntegerPolynomial.this.square(limbs, newLimbs);
return new ImmutableElement(newLimbs, 0);
}
public void addModPowerTwo(IntegerModuloP arg, byte[] result) {
Element other = (Element) arg;
if (!(isSummand() && other.isSummand())) {
throw new ArithmeticException("Not a valid summand");
}
addLimbsModPowerTwo(limbs, other.limbs, result);
}
public void asByteArray(byte[] result) {
if (!isSummand()) {
throw new ArithmeticException("Not a valid summand");
}
limbsToByteArray(limbs, result);
}
}
protected class MutableElement extends Element
implements MutableIntegerModuloP {
protected MutableElement(long[] limbs, int numAdds) {
super(limbs, numAdds);
}
@Override
public ImmutableElement fixed() {
return new ImmutableElement(limbs.clone(), numAdds);
}
@Override
public void conditionalSet(IntegerModuloP b, int set) {
Element other = (Element) b;
conditionalAssign(set, limbs, other.limbs);
numAdds = other.numAdds;
}
@Override
public void conditionalSwapWith(MutableIntegerModuloP b, int swap) {
MutableElement other = (MutableElement) b;
conditionalSwap(swap, limbs, other.limbs);
int numAddsTemp = numAdds;
numAdds = other.numAdds;
other.numAdds = numAddsTemp;
}
@Override
public MutableElement setValue(IntegerModuloP v) {
Element other = (Element) v;
System.arraycopy(other.limbs, 0, limbs, 0, other.limbs.length);
numAdds = other.numAdds;
return this;
}
@Override
public MutableElement setValue(byte[] arr, int offset,
int length, byte highByte) {
encode(arr, offset, length, highByte, limbs);
this.numAdds = 0;
return this;
}
@Override
public MutableElement setValue(ByteBuffer buf, int length,
byte highByte) {
encode(buf, length, highByte, limbs);
numAdds = 0;
return this;
}
@Override
public MutableElement setProduct(IntegerModuloP genB) {
Element b = (Element) genB;
mult(limbs, b.limbs, limbs);
numAdds = 0;
return this;
}
@Override
public MutableElement setProduct(SmallValue v) {
int value = ((Limb) v).value;
multByInt(limbs, value);
numAdds = 0;
return this;
}
@Override
public MutableElement setSum(IntegerModuloP genB) {
Element b = (Element) genB;
if (!(isSummand() && b.isSummand())) {
throw new ArithmeticException("Not a valid summand");
}
for (int i = 0; i < limbs.length; i++) {
limbs[i] = limbs[i] + b.limbs[i];
}
numAdds = Math.max(numAdds, b.numAdds) + 1;
return this;
}
@Override
public MutableElement setDifference(IntegerModuloP genB) {
Element b = (Element) genB;
if (!(isSummand() && b.isSummand())) {
throw new ArithmeticException("Not a valid summand");
}
for (int i = 0; i < limbs.length; i++) {
limbs[i] = limbs[i] - b.limbs[i];
}
numAdds = Math.max(numAdds, b.numAdds) + 1;
return this;
}
@Override
public MutableElement setSquare() {
IntegerPolynomial.this.square(limbs, limbs);
numAdds = 0;
return this;
}
@Override
public MutableElement setAdditiveInverse() {
for (int i = 0; i < limbs.length; i++) {
limbs[i] = -limbs[i];
}
return this;
}
@Override
public MutableElement setReduced() {
reduce(limbs);
numAdds = 0;
return this;
}
}
class ImmutableElement extends Element implements ImmutableIntegerModuloP {
protected ImmutableElement(BigInteger v) {
super(v);
}
protected ImmutableElement(boolean v) {
super(v);
}
protected ImmutableElement(long[] limbs, int numAdds) {
super(limbs, numAdds);
}
@Override
public ImmutableElement fixed() {
return this;
}
}
static class Limb implements SmallValue {
int value;
Limb(int value) {
this.value = value;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy