sun.util.calendar.CalendarUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of qbicc-rt-java.base Show documentation
Show all versions of qbicc-rt-java.base Show documentation
The Qbicc builder for the java.base JDK module
/*
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.util.calendar;
import java.util.HashMap;
import java.util.Map;
public class CalendarUtils {
/**
* Returns whether the specified year is a leap year in the Gregorian
* calendar system.
*
* @param gregorianYear a Gregorian calendar year
* @return true if the given year is a leap year in the Gregorian
* calendar system.
* @see CalendarDate#isLeapYear
*/
public static final boolean isGregorianLeapYear(int gregorianYear) {
return (((gregorianYear % 4) == 0)
&& (((gregorianYear % 100) != 0) || ((gregorianYear % 400) == 0)));
}
/**
* Returns whether the specified year is a leap year in the Julian
* calendar system. The year number must be a normalized one
* (e.g., 45 B.C.E. is 1-45).
*
* @param normalizedJulianYear a normalized Julian calendar year
* @return true if the given year is a leap year in the Julian
* calendar system.
* @see CalendarDate#isLeapYear
*/
public static final boolean isJulianLeapYear(int normalizedJulianYear) {
return (normalizedJulianYear % 4) == 0;
}
/**
* Divides two integers and returns the floor of the quotient.
* For example, floorDivide(-1, 4)
returns -1 while
* -1/4 is 0.
*
* @param n the numerator
* @param d a divisor that must be greater than 0
* @return the floor of the quotient
*/
public static final long floorDivide(long n, long d) {
return ((n >= 0) ?
(n / d) : (((n + 1L) / d) - 1L));
}
/**
* Divides two integers and returns the floor of the quotient.
* For example, floorDivide(-1, 4)
returns -1 while
* -1/4 is 0.
*
* @param n the numerator
* @param d a divisor that must be greater than 0
* @return the floor of the quotient
*/
public static final int floorDivide(int n, int d) {
return ((n >= 0) ?
(n / d) : (((n + 1) / d) - 1));
}
/**
* Divides two integers and returns the floor of the quotient and
* the modulus remainder. For example,
* floorDivide(-1,4)
returns -1
with
* 3
as its remainder, while -1/4
is
* 0
and -1%4
is -1
.
*
* @param n the numerator
* @param d a divisor which must be {@literal > 0}
* @param r an array of at least one element in which the value
* mod(n, d)
is returned.
* @return the floor of the quotient.
*/
public static final int floorDivide(int n, int d, int[] r) {
if (n >= 0) {
r[0] = n % d;
return n / d;
}
int q = ((n + 1) / d) - 1;
r[0] = n - (q * d);
return q;
}
/**
* Divides two integers and returns the floor of the quotient and
* the modulus remainder. For example,
* floorDivide(-1,4)
returns -1
with
* 3
as its remainder, while -1/4
is
* 0
and -1%4
is -1
.
*
* @param n the numerator
* @param d a divisor which must be {@literal > 0}
* @param r an array of at least one element in which the value
* mod(n, d)
is returned.
* @return the floor of the quotient.
*/
public static final int floorDivide(long n, int d, int[] r) {
if (n >= 0) {
r[0] = (int)(n % d);
return (int)(n / d);
}
int q = (int)(((n + 1) / d) - 1);
r[0] = (int)(n - (q * d));
return q;
}
public static final long mod(long x, long y) {
return (x - y * floorDivide(x, y));
}
public static final int mod(int x, int y) {
return (x - y * floorDivide(x, y));
}
public static final int amod(int x, int y) {
int z = mod(x, y);
return (z == 0) ? y : z;
}
public static final long amod(long x, long y) {
long z = mod(x, y);
return (z == 0) ? y : z;
}
/**
* Mimics sprintf(buf, "%0*d", decaimal, width).
*/
public static final StringBuilder sprintf0d(StringBuilder sb, int value, int width) {
long d = value;
if (d < 0) {
sb.append('-');
d = -d;
--width;
}
int n = 10;
for (int i = 2; i < width; i++) {
n *= 10;
}
for (int i = 1; i < width && d < n; i++) {
sb.append('0');
n /= 10;
}
sb.append(d);
return sb;
}
public static final StringBuffer sprintf0d(StringBuffer sb, int value, int width) {
long d = value;
if (d < 0) {
sb.append('-');
d = -d;
--width;
}
int n = 10;
for (int i = 2; i < width; i++) {
n *= 10;
}
for (int i = 1; i < width && d < n; i++) {
sb.append('0');
n /= 10;
}
sb.append(d);
return sb;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy