All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.lang.FdLibm Maven / Gradle / Ivy

There is a newer version: 17.alpha.0.57
Show newest version
/*
 * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang;

/**
 * Port of the "Freely Distributable Math Library", version 5.3, from
 * C to Java.
 *
 * 

The C version of fdlibm relied on the idiom of pointer aliasing * a 64-bit double floating-point value as a two-element array of * 32-bit integers and reading and writing the two halves of the * double independently. This coding pattern was problematic to C * optimizers and not directly expressible in Java. Therefore, rather * than a memory level overlay, if portions of a double need to be * operated on as integer values, the standard library methods for * bitwise floating-point to integer conversion, * Double.longBitsToDouble and Double.doubleToRawLongBits, are directly * or indirectly used. * *

The C version of fdlibm also took some pains to signal the * correct IEEE 754 exceptional conditions divide by zero, invalid, * overflow and underflow. For example, overflow would be signaled by * {@code huge * huge} where {@code huge} was a large constant that * would overflow when squared. Since IEEE floating-point exceptional * handling is not supported natively in the JVM, such coding patterns * have been omitted from this port. For example, rather than {@code * return huge * huge}, this port will use {@code return INFINITY}. * *

Various comparison and arithmetic operations in fdlibm could be * done either based on the integer view of a value or directly on the * floating-point representation. Which idiom is faster may depend on * platform specific factors. However, for code clarity if no other * reason, this port will favor expressing the semantics of those * operations in terms of floating-point operations when convenient to * do so. */ class FdLibm { // Constants used by multiple algorithms private static final double INFINITY = Double.POSITIVE_INFINITY; private FdLibm() { throw new UnsupportedOperationException("No FdLibm instances for you."); } /** * Return the low-order 32 bits of the double argument as an int. */ private static int __LO(double x) { long transducer = Double.doubleToRawLongBits(x); return (int)transducer; } /** * Return a double with its low-order bits of the second argument * and the high-order bits of the first argument.. */ private static double __LO(double x, int low) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) | (low & 0x0000_0000_FFFF_FFFFL)); } /** * Return the high-order 32 bits of the double argument as an int. */ private static int __HI(double x) { long transducer = Double.doubleToRawLongBits(x); return (int)(transducer >> 32); } /** * Return a double with its high-order bits of the second argument * and the low-order bits of the first argument.. */ private static double __HI(double x, int high) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) | ( ((long)high)) << 32 ); } /** * cbrt(x) * Return cube root of x */ public static class Cbrt { // unsigned private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */ private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ private static final double C = 0x1.15f15f15f15f1p-1; // 19/35 ~= 5.42857142857142815906e-01 private static final double D = -0x1.691de2532c834p-1; // -864/1225 ~= 7.05306122448979611050e-01 private static final double E = 0x1.6a0ea0ea0ea0fp0; // 99/70 ~= 1.41428571428571436819e+00 private static final double F = 0x1.9b6db6db6db6ep0; // 45/28 ~= 1.60714285714285720630e+00 private static final double G = 0x1.6db6db6db6db7p-2; // 5/14 ~= 3.57142857142857150787e-01 private Cbrt() { throw new UnsupportedOperationException(); } public static double compute(double x) { double t = 0.0; double sign; if (x == 0.0 || !Double.isFinite(x)) return x; // Handles signed zeros properly sign = (x < 0.0) ? -1.0: 1.0; x = Math.abs(x); // x <- |x| // Rough cbrt to 5 bits if (x < 0x1.0p-1022) { // subnormal number t = 0x1.0p54; // set t= 2**54 t *= x; t = __HI(t, __HI(t)/3 + B2); } else { int hx = __HI(x); // high word of x t = __HI(t, hx/3 + B1); } // New cbrt to 23 bits, may be implemented in single precision double r, s, w; r = t * t/x; s = C + r*t; t *= G + F/(s + E + D/s); // Chopped to 20 bits and make it larger than cbrt(x) t = __LO(t, 0); t = __HI(t, __HI(t) + 0x00000001); // One step newton iteration to 53 bits with error less than 0.667 ulps s = t * t; // t*t is exact r = x / s; w = t + t; r = (r - t)/(w + r); // r-s is exact t = t + t*r; // Restore the original sign bit return sign * t; } } /** * hypot(x,y) * * Method : * If (assume round-to-nearest) z = x*x + y*y * has error less than sqrt(2)/2 ulp, than * sqrt(z) has error less than 1 ulp (exercise). * * So, compute sqrt(x*x + y*y) with some care as * follows to get the error below 1 ulp: * * Assume x > y > 0; * (if possible, set rounding to round-to-nearest) * 1. if x > 2y use * x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y * where x1 = x with lower 32 bits cleared, x2 = x - x1; else * 2. if x <= 2y use * t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y)) * where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1, * y1= y with lower 32 bits chopped, y2 = y - y1. * * NOTE: scaling may be necessary if some argument is too * large or too tiny * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns sqrt(x^2 + y^2) with error less * than 1 ulp (unit in the last place) */ public static class Hypot { public static final double TWO_MINUS_600 = 0x1.0p-600; public static final double TWO_PLUS_600 = 0x1.0p+600; private Hypot() { throw new UnsupportedOperationException(); } public static double compute(double x, double y) { double a = Math.abs(x); double b = Math.abs(y); if (!Double.isFinite(a) || !Double.isFinite(b)) { if (a == INFINITY || b == INFINITY) return INFINITY; else return a + b; // Propagate NaN significand bits } if (b > a) { double tmp = a; a = b; b = tmp; } assert a >= b; // Doing bitwise conversion after screening for NaN allows // the code to not worry about the possibility of // "negative" NaN values. // Note: the ha and hb variables are the high-order // 32-bits of a and b stored as integer values. The ha and // hb values are used first for a rough magnitude // comparison of a and b and second for simulating higher // precision by allowing a and b, respectively, to be // decomposed into non-overlapping portions. Both of these // uses could be eliminated. The magnitude comparison // could be eliminated by extracting and comparing the // exponents of a and b or just be performing a // floating-point divide. Splitting a floating-point // number into non-overlapping portions can be // accomplished by judicious use of multiplies and // additions. For details see T. J. Dekker, A Floating-Point // Technique for Extending the Available Precision, // Numerische Mathematik, vol. 18, 1971, pp.224-242 and // subsequent work. int ha = __HI(a); // high word of a int hb = __HI(b); // high word of b if ((ha - hb) > 0x3c00000) { return a + b; // x / y > 2**60 } int k = 0; if (a > 0x1.00000_ffff_ffffp500) { // a > ~2**500 // scale a and b by 2**-600 ha -= 0x25800000; hb -= 0x25800000; a = a * TWO_MINUS_600; b = b * TWO_MINUS_600; k += 600; } double t1, t2; if (b < 0x1.0p-500) { // b < 2**-500 if (b < Double.MIN_NORMAL) { // subnormal b or 0 */ if (b == 0.0) return a; t1 = 0x1.0p1022; // t1 = 2^1022 b *= t1; a *= t1; k -= 1022; } else { // scale a and b by 2^600 ha += 0x25800000; // a *= 2^600 hb += 0x25800000; // b *= 2^600 a = a * TWO_PLUS_600; b = b * TWO_PLUS_600; k -= 600; } } // medium size a and b double w = a - b; if (w > b) { t1 = 0; t1 = __HI(t1, ha); t2 = a - t1; w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1))); } else { double y1, y2; a = a + a; y1 = 0; y1 = __HI(y1, hb); y2 = b - y1; t1 = 0; t1 = __HI(t1, ha + 0x00100000); t2 = a - t1; w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b))); } if (k != 0) { return Math.powerOfTwoD(k) * w; } else return w; } } /** * Compute x**y * n * Method: Let x = 2 * (1+f) * 1. Compute and return log2(x) in two pieces: * log2(x) = w1 + w2, * where w1 has 53 - 24 = 29 bit trailing zeros. * 2. Perform y*log2(x) = n+y' by simulating multi-precision * arithmetic, where |y'| <= 0.5. * 3. Return x**y = 2**n*exp(y'*log2) * * Special cases: * 1. (anything) ** 0 is 1 * 2. (anything) ** 1 is itself * 3. (anything) ** NAN is NAN * 4. NAN ** (anything except 0) is NAN * 5. +-(|x| > 1) ** +INF is +INF * 6. +-(|x| > 1) ** -INF is +0 * 7. +-(|x| < 1) ** +INF is +0 * 8. +-(|x| < 1) ** -INF is +INF * 9. +-1 ** +-INF is NAN * 10. +0 ** (+anything except 0, NAN) is +0 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 12. +0 ** (-anything except 0, NAN) is +INF * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 15. +INF ** (+anything except 0,NAN) is +INF * 16. +INF ** (-anything except 0,NAN) is +0 * 17. -INF ** (anything) = -0 ** (-anything) * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) * 19. (-anything except 0 and inf) ** (non-integer) is NAN * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular * pow(integer,integer) * always returns the correct integer provided it is * representable. */ public static class Pow { private Pow() { throw new UnsupportedOperationException(); } public static double compute(final double x, final double y) { double z; double r, s, t, u, v, w; int i, j, k, n; // y == zero: x**0 = 1 if (y == 0.0) return 1.0; // +/-NaN return x + y to propagate NaN significands if (Double.isNaN(x) || Double.isNaN(y)) return x + y; final double y_abs = Math.abs(y); double x_abs = Math.abs(x); // Special values of y if (y == 2.0) { return x * x; } else if (y == 0.5) { if (x >= -Double.MAX_VALUE) // Handle x == -infinity later return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0 } else if (y_abs == 1.0) { // y is +/-1 return (y == 1.0) ? x : 1.0 / x; } else if (y_abs == INFINITY) { // y is +/-infinity if (x_abs == 1.0) return y - y; // inf**+/-1 is NaN else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0 return (y >= 0) ? y : 0.0; else // (|x| < 1)**-/+inf = inf, 0 return (y < 0) ? -y : 0.0; } final int hx = __HI(x); int ix = hx & 0x7fffffff; /* * When x < 0, determine if y is an odd integer: * y_is_int = 0 ... y is not an integer * y_is_int = 1 ... y is an odd int * y_is_int = 2 ... y is an even int */ int y_is_int = 0; if (hx < 0) { if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15 y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0 else if (y_abs >= 1.0) { // |y| >= 1.0 long y_abs_as_long = (long) y_abs; if ( ((double) y_abs_as_long) == y_abs) { y_is_int = 2 - (int)(y_abs_as_long & 0x1L); } } } // Special value of x if (x_abs == 0.0 || x_abs == INFINITY || x_abs == 1.0) { z = x_abs; // x is +/-0, +/-inf, +/-1 if (y < 0.0) z = 1.0/z; // z = (1/|x|) if (hx < 0) { if (((ix - 0x3ff00000) | y_is_int) == 0) { z = (z-z)/(z-z); // (-1)**non-int is NaN } else if (y_is_int == 1) z = -1.0 * z; // (x < 0)**odd = -(|x|**odd) } return z; } n = (hx >> 31) + 1; // (x < 0)**(non-int) is NaN if ((n | y_is_int) == 0) return (x-x)/(x-x); s = 1.0; // s (sign of result -ve**odd) = -1 else = 1 if ( (n | (y_is_int - 1)) == 0) s = -1.0; // (-ve)**(odd int) double p_h, p_l, t1, t2; // |y| is huge if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31 final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2 final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2 final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail // Over/underflow if x is not close to one if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418 return (y < 0.0) ? s * INFINITY : s * 0.0; if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0 return (y > 0.0) ? s * INFINITY : s * 0.0; /* * now |1-x| is tiny <= 2**-20, sufficient to compute * log(x) by x - x^2/2 + x^3/3 - x^4/4 */ t = x_abs - 1.0; // t has 20 trailing zeros w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits v = t * INV_LN2_L - w * INV_LN2; t1 = u + v; t1 =__LO(t1, 0); t2 = v - (t1 - u); } else { final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2) final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l; n = 0; // Take care of subnormal numbers if (ix < 0x00100000) { x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0 n -= 53; ix = __HI(x_abs); } n += ((ix) >> 20) - 0x3ff; j = ix & 0x000fffff; // Determine interval ix = j | 0x3ff00000; // Normalize ix if (j <= 0x3988E) k = 0; // |x| > 1) | 0x20000000) + 0x00080000 + (k << 18) ); t_l = x_abs - (t_h - BP[k]); s_l = v * ((u - s_h * t_h) - s_h * t_l); // Compute log(x_abs) s2 = ss * ss; r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + ss); s2 = s_h * s_h; t_h = 3.0 + s2 + r; t_h = __LO(t_h, 0); t_l = r - ((t_h - 3.0) - s2); // u+v = ss*(1+...) u = s_h * t_h; v = s_l * t_h + t_l * ss; // 2/(3log2)*(ss + ...) p_h = u + v; p_h = __LO(p_h, 0); p_l = v - (p_h - u); z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2) z_l = CP_L * p_h + p_l * CP + DP_L[k]; // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l t = (double)n; t1 = (((z_h + z_l) + DP_H[k]) + t); t1 = __LO(t1, 0); t2 = z_l - (((t1 - t) - DP_H[k]) - z_h); } // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2) double y1 = y; y1 = __LO(y1, 0); p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; j = __HI(z); i = __LO(z); if (j >= 0x40900000) { // z >= 1024 if (((j - 0x40900000) | i)!=0) // if z > 1024 return s * INFINITY; // Overflow else { final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp)) if (p_l + OVT > z - p_h) return s * INFINITY; // Overflow } } else if ((j & 0x7fffffff) >= 0x4090cc00 ) { // z <= -1075 if (((j - 0xc090cc00) | i)!=0) // z < -1075 return s * 0.0; // Underflow else { if (p_l <= z - p_h) return s * 0.0; // Underflow } } /* * Compute 2**(p_h+p_l) */ // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3 final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01 final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03 final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05 final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06 final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08 final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01 final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01 final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09 i = j & 0x7fffffff; k = (i >> 20) - 0x3ff; n = 0; if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5] n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n t = 0.0; t = __HI(t, (n & ~(0x000fffff >> k)) ); n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if (j < 0) n = -n; p_h -= t; } t = p_l + p_h; t = __LO(t, 0); u = t * LG2_H; v = (p_l - (t - p_h)) * LG2 + t * LG2_L; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); r = (z * t1)/(t1 - 2.0) - (w + z * w); z = 1.0 - (r - z); j = __HI(z); j += (n << 20); if ((j >> 20) <= 0) z = Math.scalb(z, n); // subnormal output else { int z_hi = __HI(z); z_hi += (n << 20); z = __HI(z, z_hi); } return s * z; } } /** * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Reme algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static class Exp { private static final double one = 1.0; private static final double[] half = {0.5, -0.5,}; private static final double huge = 1.0e+300; private static final double twom1000= 0x1.0p-1000; // 9.33263618503218878990e-302 = 2^-1000 private static final double o_threshold= 0x1.62e42fefa39efp9; // 7.09782712893383973096e+02 private static final double u_threshold= -0x1.74910d52d3051p9; // -7.45133219101941108420e+02; private static final double[] ln2HI ={ 0x1.62e42feep-1, // 6.93147180369123816490e-01 -0x1.62e42feep-1}; // -6.93147180369123816490e-01 private static final double[] ln2LO ={ 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10 -0x1.a39ef35793c76p-33}; // -1.90821492927058770002e-10 private static final double invln2 = 0x1.71547652b82fep0; // 1.44269504088896338700e+00 private static final double P1 = 0x1.555555555553ep-3; // 1.66666666666666019037e-01 private static final double P2 = -0x1.6c16c16bebd93p-9; // -2.77777777770155933842e-03 private static final double P3 = 0x1.1566aaf25de2cp-14; // 6.61375632143793436117e-05 private static final double P4 = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06 private static final double P5 = 0x1.6376972bea4d0p-25; // 4.13813679705723846039e-08 private Exp() { throw new UnsupportedOperationException(); } public static double compute(double x) { double y; double hi = 0.0; double lo = 0.0; double c; double t; int k = 0; int xsb; /*unsigned*/ int hx; hx = __HI(x); /* high word of x */ xsb = (hx >> 31) & 1; /* sign bit of x */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out non-finite argument */ if (hx >= 0x40862E42) { /* if |x| >= 709.78... */ if (hx >= 0x7ff00000) { if (((hx & 0xfffff) | __LO(x)) != 0) return x + x; /* NaN */ else return (xsb == 0) ? x : 0.0; /* exp(+-inf) = {inf, 0} */ } if (x > o_threshold) return huge * huge; /* overflow */ if (x < u_threshold) // unsigned compare needed here? return twom1000 * twom1000; /* underflow */ } /* argument reduction */ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x - ln2HI[xsb]; lo=ln2LO[xsb]; k = 1 - xsb - xsb; } else { k = (int)(invln2 * x + half[xsb]); t = k; hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ lo = t*ln2LO[0]; } x = hi - lo; } else if (hx < 0x3e300000) { /* when |x|<2**-28 */ if (huge + x > one) return one + x; /* trigger inexact */ } else { k = 0; } /* x is now in primary range */ t = x * x; c = x - t*(P1 + t*(P2 + t*(P3 + t*(P4 + t*P5)))); if (k == 0) return one - ((x*c)/(c - 2.0) - x); else y = one - ((lo - (x*c)/(2.0 - c)) - hi); if(k >= -1021) { y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */ return y; } else { y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */ return y * twom1000; } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy