java.lang.FdLibm Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
/**
* Port of the "Freely Distributable Math Library", version 5.3, from
* C to Java.
*
* The C version of fdlibm relied on the idiom of pointer aliasing
* a 64-bit double floating-point value as a two-element array of
* 32-bit integers and reading and writing the two halves of the
* double independently. This coding pattern was problematic to C
* optimizers and not directly expressible in Java. Therefore, rather
* than a memory level overlay, if portions of a double need to be
* operated on as integer values, the standard library methods for
* bitwise floating-point to integer conversion,
* Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
* or indirectly used.
*
*
The C version of fdlibm also took some pains to signal the
* correct IEEE 754 exceptional conditions divide by zero, invalid,
* overflow and underflow. For example, overflow would be signaled by
* {@code huge * huge} where {@code huge} was a large constant that
* would overflow when squared. Since IEEE floating-point exceptional
* handling is not supported natively in the JVM, such coding patterns
* have been omitted from this port. For example, rather than {@code
* return huge * huge}, this port will use {@code return INFINITY}.
*
*
Various comparison and arithmetic operations in fdlibm could be
* done either based on the integer view of a value or directly on the
* floating-point representation. Which idiom is faster may depend on
* platform specific factors. However, for code clarity if no other
* reason, this port will favor expressing the semantics of those
* operations in terms of floating-point operations when convenient to
* do so.
*/
class FdLibm {
// Constants used by multiple algorithms
private static final double INFINITY = Double.POSITIVE_INFINITY;
private FdLibm() {
throw new UnsupportedOperationException("No FdLibm instances for you.");
}
/**
* Return the low-order 32 bits of the double argument as an int.
*/
private static int __LO(double x) {
long transducer = Double.doubleToRawLongBits(x);
return (int)transducer;
}
/**
* Return a double with its low-order bits of the second argument
* and the high-order bits of the first argument..
*/
private static double __LO(double x, int low) {
long transX = Double.doubleToRawLongBits(x);
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
(low & 0x0000_0000_FFFF_FFFFL));
}
/**
* Return the high-order 32 bits of the double argument as an int.
*/
private static int __HI(double x) {
long transducer = Double.doubleToRawLongBits(x);
return (int)(transducer >> 32);
}
/**
* Return a double with its high-order bits of the second argument
* and the low-order bits of the first argument..
*/
private static double __HI(double x, int high) {
long transX = Double.doubleToRawLongBits(x);
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
( ((long)high)) << 32 );
}
/**
* cbrt(x)
* Return cube root of x
*/
public static class Cbrt {
// unsigned
private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
private static final double C = 0x1.15f15f15f15f1p-1; // 19/35 ~= 5.42857142857142815906e-01
private static final double D = -0x1.691de2532c834p-1; // -864/1225 ~= 7.05306122448979611050e-01
private static final double E = 0x1.6a0ea0ea0ea0fp0; // 99/70 ~= 1.41428571428571436819e+00
private static final double F = 0x1.9b6db6db6db6ep0; // 45/28 ~= 1.60714285714285720630e+00
private static final double G = 0x1.6db6db6db6db7p-2; // 5/14 ~= 3.57142857142857150787e-01
private Cbrt() {
throw new UnsupportedOperationException();
}
public static double compute(double x) {
double t = 0.0;
double sign;
if (x == 0.0 || !Double.isFinite(x))
return x; // Handles signed zeros properly
sign = (x < 0.0) ? -1.0: 1.0;
x = Math.abs(x); // x <- |x|
// Rough cbrt to 5 bits
if (x < 0x1.0p-1022) { // subnormal number
t = 0x1.0p54; // set t= 2**54
t *= x;
t = __HI(t, __HI(t)/3 + B2);
} else {
int hx = __HI(x); // high word of x
t = __HI(t, hx/3 + B1);
}
// New cbrt to 23 bits, may be implemented in single precision
double r, s, w;
r = t * t/x;
s = C + r*t;
t *= G + F/(s + E + D/s);
// Chopped to 20 bits and make it larger than cbrt(x)
t = __LO(t, 0);
t = __HI(t, __HI(t) + 0x00000001);
// One step newton iteration to 53 bits with error less than 0.667 ulps
s = t * t; // t*t is exact
r = x / s;
w = t + t;
r = (r - t)/(w + r); // r-s is exact
t = t + t*r;
// Restore the original sign bit
return sign * t;
}
}
/**
* hypot(x,y)
*
* Method :
* If (assume round-to-nearest) z = x*x + y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x + y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x > y > 0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
* 2. if x <= 2y use
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
* y1= y with lower 32 bits chopped, y2 = y - y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
* than 1 ulp (unit in the last place)
*/
public static class Hypot {
public static final double TWO_MINUS_600 = 0x1.0p-600;
public static final double TWO_PLUS_600 = 0x1.0p+600;
private Hypot() {
throw new UnsupportedOperationException();
}
public static double compute(double x, double y) {
double a = Math.abs(x);
double b = Math.abs(y);
if (!Double.isFinite(a) || !Double.isFinite(b)) {
if (a == INFINITY || b == INFINITY)
return INFINITY;
else
return a + b; // Propagate NaN significand bits
}
if (b > a) {
double tmp = a;
a = b;
b = tmp;
}
assert a >= b;
// Doing bitwise conversion after screening for NaN allows
// the code to not worry about the possibility of
// "negative" NaN values.
// Note: the ha and hb variables are the high-order
// 32-bits of a and b stored as integer values. The ha and
// hb values are used first for a rough magnitude
// comparison of a and b and second for simulating higher
// precision by allowing a and b, respectively, to be
// decomposed into non-overlapping portions. Both of these
// uses could be eliminated. The magnitude comparison
// could be eliminated by extracting and comparing the
// exponents of a and b or just be performing a
// floating-point divide. Splitting a floating-point
// number into non-overlapping portions can be
// accomplished by judicious use of multiplies and
// additions. For details see T. J. Dekker, A Floating-Point
// Technique for Extending the Available Precision,
// Numerische Mathematik, vol. 18, 1971, pp.224-242 and
// subsequent work.
int ha = __HI(a); // high word of a
int hb = __HI(b); // high word of b
if ((ha - hb) > 0x3c00000) {
return a + b; // x / y > 2**60
}
int k = 0;
if (a > 0x1.00000_ffff_ffffp500) { // a > ~2**500
// scale a and b by 2**-600
ha -= 0x25800000;
hb -= 0x25800000;
a = a * TWO_MINUS_600;
b = b * TWO_MINUS_600;
k += 600;
}
double t1, t2;
if (b < 0x1.0p-500) { // b < 2**-500
if (b < Double.MIN_NORMAL) { // subnormal b or 0 */
if (b == 0.0)
return a;
t1 = 0x1.0p1022; // t1 = 2^1022
b *= t1;
a *= t1;
k -= 1022;
} else { // scale a and b by 2^600
ha += 0x25800000; // a *= 2^600
hb += 0x25800000; // b *= 2^600
a = a * TWO_PLUS_600;
b = b * TWO_PLUS_600;
k -= 600;
}
}
// medium size a and b
double w = a - b;
if (w > b) {
t1 = 0;
t1 = __HI(t1, ha);
t2 = a - t1;
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
} else {
double y1, y2;
a = a + a;
y1 = 0;
y1 = __HI(y1, hb);
y2 = b - y1;
t1 = 0;
t1 = __HI(t1, ha + 0x00100000);
t2 = a - t1;
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
}
if (k != 0) {
return Math.powerOfTwoD(k) * w;
} else
return w;
}
}
/**
* Compute x**y
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53 - 24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'| <= 0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*/
public static class Pow {
private Pow() {
throw new UnsupportedOperationException();
}
public static double compute(final double x, final double y) {
double z;
double r, s, t, u, v, w;
int i, j, k, n;
// y == zero: x**0 = 1
if (y == 0.0)
return 1.0;
// +/-NaN return x + y to propagate NaN significands
if (Double.isNaN(x) || Double.isNaN(y))
return x + y;
final double y_abs = Math.abs(y);
double x_abs = Math.abs(x);
// Special values of y
if (y == 2.0) {
return x * x;
} else if (y == 0.5) {
if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
} else if (y_abs == 1.0) { // y is +/-1
return (y == 1.0) ? x : 1.0 / x;
} else if (y_abs == INFINITY) { // y is +/-infinity
if (x_abs == 1.0)
return y - y; // inf**+/-1 is NaN
else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
return (y >= 0) ? y : 0.0;
else // (|x| < 1)**-/+inf = inf, 0
return (y < 0) ? -y : 0.0;
}
final int hx = __HI(x);
int ix = hx & 0x7fffffff;
/*
* When x < 0, determine if y is an odd integer:
* y_is_int = 0 ... y is not an integer
* y_is_int = 1 ... y is an odd int
* y_is_int = 2 ... y is an even int
*/
int y_is_int = 0;
if (hx < 0) {
if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15
y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
else if (y_abs >= 1.0) { // |y| >= 1.0
long y_abs_as_long = (long) y_abs;
if ( ((double) y_abs_as_long) == y_abs) {
y_is_int = 2 - (int)(y_abs_as_long & 0x1L);
}
}
}
// Special value of x
if (x_abs == 0.0 ||
x_abs == INFINITY ||
x_abs == 1.0) {
z = x_abs; // x is +/-0, +/-inf, +/-1
if (y < 0.0)
z = 1.0/z; // z = (1/|x|)
if (hx < 0) {
if (((ix - 0x3ff00000) | y_is_int) == 0) {
z = (z-z)/(z-z); // (-1)**non-int is NaN
} else if (y_is_int == 1)
z = -1.0 * z; // (x < 0)**odd = -(|x|**odd)
}
return z;
}
n = (hx >> 31) + 1;
// (x < 0)**(non-int) is NaN
if ((n | y_is_int) == 0)
return (x-x)/(x-x);
s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
if ( (n | (y_is_int - 1)) == 0)
s = -1.0; // (-ve)**(odd int)
double p_h, p_l, t1, t2;
// |y| is huge
if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31
final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2
final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2
final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail
// Over/underflow if x is not close to one
if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418
return (y < 0.0) ? s * INFINITY : s * 0.0;
if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0
return (y > 0.0) ? s * INFINITY : s * 0.0;
/*
* now |1-x| is tiny <= 2**-20, sufficient to compute
* log(x) by x - x^2/2 + x^3/3 - x^4/4
*/
t = x_abs - 1.0; // t has 20 trailing zeros
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits
v = t * INV_LN2_L - w * INV_LN2;
t1 = u + v;
t1 =__LO(t1, 0);
t2 = v - (t1 - u);
} else {
final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2)
final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp
final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
n = 0;
// Take care of subnormal numbers
if (ix < 0x00100000) {
x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
n -= 53;
ix = __HI(x_abs);
}
n += ((ix) >> 20) - 0x3ff;
j = ix & 0x000fffff;
// Determine interval
ix = j | 0x3ff00000; // Normalize ix
if (j <= 0x3988E)
k = 0; // |x| > 1) | 0x20000000) + 0x00080000 + (k << 18) );
t_l = x_abs - (t_h - BP[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
// Compute log(x_abs)
s2 = ss * ss;
r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
r += s_l * (s_h + ss);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
t_h = __LO(t_h, 0);
t_l = r - ((t_h - 3.0) - s2);
// u+v = ss*(1+...)
u = s_h * t_h;
v = s_l * t_h + t_l * ss;
// 2/(3log2)*(ss + ...)
p_h = u + v;
p_h = __LO(p_h, 0);
p_l = v - (p_h - u);
z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2)
z_l = CP_L * p_h + p_l * CP + DP_L[k];
// log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
t = (double)n;
t1 = (((z_h + z_l) + DP_H[k]) + t);
t1 = __LO(t1, 0);
t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
}
// Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
double y1 = y;
y1 = __LO(y1, 0);
p_l = (y - y1) * t1 + y * t2;
p_h = y1 * t1;
z = p_l + p_h;
j = __HI(z);
i = __LO(z);
if (j >= 0x40900000) { // z >= 1024
if (((j - 0x40900000) | i)!=0) // if z > 1024
return s * INFINITY; // Overflow
else {
final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
if (p_l + OVT > z - p_h)
return s * INFINITY; // Overflow
}
} else if ((j & 0x7fffffff) >= 0x4090cc00 ) { // z <= -1075
if (((j - 0xc090cc00) | i)!=0) // z < -1075
return s * 0.0; // Underflow
else {
if (p_l <= z - p_h)
return s * 0.0; // Underflow
}
}
/*
* Compute 2**(p_h+p_l)
*/
// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01
final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03
final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05
final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08
final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01
final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01
final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
i = j & 0x7fffffff;
k = (i >> 20) - 0x3ff;
n = 0;
if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5]
n = j + (0x00100000 >> (k + 1));
k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n
t = 0.0;
t = __HI(t, (n & ~(0x000fffff >> k)) );
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
if (j < 0)
n = -n;
p_h -= t;
}
t = p_l + p_h;
t = __LO(t, 0);
u = t * LG2_H;
v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
z = u + v;
w = v - (z - u);
t = z * z;
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
r = (z * t1)/(t1 - 2.0) - (w + z * w);
z = 1.0 - (r - z);
j = __HI(z);
j += (n << 20);
if ((j >> 20) <= 0)
z = Math.scalb(z, n); // subnormal output
else {
int z_hi = __HI(z);
z_hi += (n << 20);
z = __HI(z, z_hi);
}
return s * z;
}
}
/**
* Returns the exponential of x.
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Reme algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
static class Exp {
private static final double one = 1.0;
private static final double[] half = {0.5, -0.5,};
private static final double huge = 1.0e+300;
private static final double twom1000= 0x1.0p-1000; // 9.33263618503218878990e-302 = 2^-1000
private static final double o_threshold= 0x1.62e42fefa39efp9; // 7.09782712893383973096e+02
private static final double u_threshold= -0x1.74910d52d3051p9; // -7.45133219101941108420e+02;
private static final double[] ln2HI ={ 0x1.62e42feep-1, // 6.93147180369123816490e-01
-0x1.62e42feep-1}; // -6.93147180369123816490e-01
private static final double[] ln2LO ={ 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10
-0x1.a39ef35793c76p-33}; // -1.90821492927058770002e-10
private static final double invln2 = 0x1.71547652b82fep0; // 1.44269504088896338700e+00
private static final double P1 = 0x1.555555555553ep-3; // 1.66666666666666019037e-01
private static final double P2 = -0x1.6c16c16bebd93p-9; // -2.77777777770155933842e-03
private static final double P3 = 0x1.1566aaf25de2cp-14; // 6.61375632143793436117e-05
private static final double P4 = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06
private static final double P5 = 0x1.6376972bea4d0p-25; // 4.13813679705723846039e-08
private Exp() {
throw new UnsupportedOperationException();
}
public static double compute(double x) {
double y;
double hi = 0.0;
double lo = 0.0;
double c;
double t;
int k = 0;
int xsb;
/*unsigned*/ int hx;
hx = __HI(x); /* high word of x */
xsb = (hx >> 31) & 1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if (hx >= 0x40862E42) { /* if |x| >= 709.78... */
if (hx >= 0x7ff00000) {
if (((hx & 0xfffff) | __LO(x)) != 0)
return x + x; /* NaN */
else
return (xsb == 0) ? x : 0.0; /* exp(+-inf) = {inf, 0} */
}
if (x > o_threshold)
return huge * huge; /* overflow */
if (x < u_threshold) // unsigned compare needed here?
return twom1000 * twom1000; /* underflow */
}
/* argument reduction */
if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x - ln2HI[xsb];
lo=ln2LO[xsb];
k = 1 - xsb - xsb;
} else {
k = (int)(invln2 * x + half[xsb]);
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
} else if (hx < 0x3e300000) { /* when |x|<2**-28 */
if (huge + x > one)
return one + x; /* trigger inexact */
} else {
k = 0;
}
/* x is now in primary range */
t = x * x;
c = x - t*(P1 + t*(P2 + t*(P3 + t*(P4 + t*P5))));
if (k == 0)
return one - ((x*c)/(c - 2.0) - x);
else
y = one - ((lo - (x*c)/(2.0 - c)) - hi);
if(k >= -1021) {
y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */
return y;
} else {
y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */
return y * twom1000;
}
}
}
}