com.sun.crypto.provider.AESCrypt Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* $Id: Rijndael.java,v 1.6 2000/02/10 01:31:41 gelderen Exp $
*
* Copyright (C) 1995-2000 The Cryptix Foundation Limited.
* All rights reserved.
*
* Use, modification, copying and distribution of this softwareas is subject
* the terms and conditions of the Cryptix General Licence. You should have
* received a copy of the Cryptix General Licence along with this library;
* if not, you can download a copy from http://www.cryptix.org/ .
*/
package com.sun.crypto.provider;
import java.security.InvalidKeyException;
import java.security.MessageDigest;
import java.util.Arrays;
import jdk.internal.vm.annotation.IntrinsicCandidate;
/**
* Rijndael --pronounced Reindaal-- is a symmetric cipher with a 128-bit
* block size and variable key-size (128-, 192- and 256-bit).
*
* Rijndael was designed by Vincent
* Rijmen and Joan Daemen.
*/
final class AESCrypt extends SymmetricCipher implements AESConstants
{
private boolean ROUNDS_12 = false;
private boolean ROUNDS_14 = false;
/** Session and Sub keys */
private int[][] sessionK = null;
private int[] K = null;
/** Cipher encryption/decryption key */
// skip re-generating Session and Sub keys if the cipher key is
// the same
private byte[] lastKey = null;
/** ROUNDS * 4 */
private int limit = 0;
AESCrypt() {
// empty
}
/**
* Returns this cipher's block size.
*
* @return this cipher's block size
*/
int getBlockSize() {
return AES_BLOCK_SIZE;
}
void init(boolean decrypting, String algorithm, byte[] key)
throws InvalidKeyException {
if (!algorithm.equalsIgnoreCase("AES")
&& !algorithm.equalsIgnoreCase("Rijndael")) {
throw new InvalidKeyException
("Wrong algorithm: AES or Rijndael required");
}
if (!isKeySizeValid(key.length)) {
throw new InvalidKeyException("Invalid AES key length: " +
key.length + " bytes");
}
if (!MessageDigest.isEqual(key, lastKey)) {
// re-generate session key 'sessionK' when cipher key changes
makeSessionKey(key);
if (lastKey != null) {
Arrays.fill(lastKey, (byte)0);
}
lastKey = key.clone(); // save cipher key
}
// set sub key to the corresponding session Key
this.K = sessionK[(decrypting? 1:0)];
}
/**
* Expand an int[(ROUNDS+1)][4] into int[(ROUNDS+1)*4].
* For decryption round keys, need to rotate right by 4 ints.
* @param kr The round keys for encryption or decryption.
* @param decrypting True if 'kr' is for decryption and false otherwise.
*/
private static final int[] expandToSubKey(int[][] kr, boolean decrypting) {
int total = kr.length;
int[] expK = new int[total*4];
if (decrypting) {
// decrypting, rotate right by 4 ints
// i.e. i==0
for(int j=0; j<4; j++) {
expK[j] = kr[total-1][j];
}
for(int i=1; i>> (7 - t)) & 0x01);
}
}
//
// affine transform: box[i] <- B + A*box[i]
//
byte[][] cox = new byte[256][8];
for (i = 0; i < 256; i++) {
for (t = 0; t < 8; t++) {
cox[i][t] = B[t];
for (j = 0; j < 8; j++) {
cox[i][t] ^= A[t][j] * box[i][j];
}
}
}
//
// S-boxes and inverse S-boxes
//
for (i = 0; i < 256; i++) {
S[i] = (byte)(cox[i][0] << 7);
for (t = 1; t < 8; t++) {
S[i] ^= cox[i][t] << (7-t);
}
Si[S[i] & 0xFF] = (byte) i;
}
//
// T-boxes
//
byte[][] G = new byte[][] {
{2, 1, 1, 3},
{3, 2, 1, 1},
{1, 3, 2, 1},
{1, 1, 3, 2}
};
byte[][] AA = new byte[4][8];
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) AA[i][j] = G[i][j];
AA[i][i+4] = 1;
}
byte pivot, tmp;
byte[][] iG = new byte[4][4];
for (i = 0; i < 4; i++) {
pivot = AA[i][i];
if (pivot == 0) {
t = i + 1;
while ((AA[t][i] == 0) && (t < 4)) {
t++;
}
if (t == 4) {
throw new RuntimeException("G matrix is not invertible");
}
else {
for (j = 0; j < 8; j++) {
tmp = AA[i][j];
AA[i][j] = AA[t][j];
AA[t][j] = tmp;
}
pivot = AA[i][i];
}
}
for (j = 0; j < 8; j++) {
if (AA[i][j] != 0) {
AA[i][j] = (byte)
alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF])
% 255];
}
}
for (t = 0; t < 4; t++) {
if (i != t) {
for (j = i+1; j < 8; j++) {
AA[t][j] ^= mul(AA[i][j], AA[t][i]);
}
AA[t][i] = 0;
}
}
}
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
iG[i][j] = AA[i][j + 4];
}
}
int s;
for (t = 0; t < 256; t++) {
s = S[t];
T1[t] = mul4(s, G[0]);
T2[t] = mul4(s, G[1]);
T3[t] = mul4(s, G[2]);
T4[t] = mul4(s, G[3]);
s = Si[t];
T5[t] = mul4(s, iG[0]);
T6[t] = mul4(s, iG[1]);
T7[t] = mul4(s, iG[2]);
T8[t] = mul4(s, iG[3]);
U1[t] = mul4(t, iG[0]);
U2[t] = mul4(t, iG[1]);
U3[t] = mul4(t, iG[2]);
U4[t] = mul4(t, iG[3]);
}
//
// round constants
//
rcon[0] = 1;
int r = 1;
for (t = 1; t < 30; t++) {
r = mul(2, r);
rcon[t] = (byte) r;
}
log = null;
alog = null;
}
// multiply two elements of GF(2^m)
private static final int mul (int a, int b) {
return (a != 0 && b != 0) ?
alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] :
0;
}
// convenience method used in generating Transposition boxes
private static final int mul4 (int a, byte[] b) {
if (a == 0) return 0;
a = log[a & 0xFF];
int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF : 0;
int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF : 0;
int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF : 0;
int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF : 0;
return a0 << 24 | a1 << 16 | a2 << 8 | a3;
}
// check if the specified length (in bytes) is a valid keysize for AES
static final boolean isKeySizeValid(int len) {
for (int i = 0; i < AES_KEYSIZES.length; i++) {
if (len == AES_KEYSIZES[i]) {
return true;
}
}
return false;
}
/**
* Encrypt exactly one block of plaintext.
*/
void encryptBlock(byte[] in, int inOffset,
byte[] out, int outOffset) {
// Array bound checks are done in caller code, i.e.
// FeedbackCipher.encrypt/decrypt(...) to improve performance.
implEncryptBlock(in, inOffset, out, outOffset);
}
// Encryption operation. Possibly replaced with a compiler intrinsic.
@IntrinsicCandidate
private void implEncryptBlock(byte[] in, int inOffset,
byte[] out, int outOffset)
{
int keyOffset = 0;
int t0 = ((in[inOffset++] ) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
int t1 = ((in[inOffset++] ) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
int t2 = ((in[inOffset++] ) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
int t3 = ((in[inOffset++] ) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
// apply round transforms
while( keyOffset < limit )
{
int a0, a1, a2;
a0 = T1[(t0 >>> 24) ] ^
T2[(t1 >>> 16) & 0xFF] ^
T3[(t2 >>> 8) & 0xFF] ^
T4[(t3 ) & 0xFF] ^ K[keyOffset++];
a1 = T1[(t1 >>> 24) ] ^
T2[(t2 >>> 16) & 0xFF] ^
T3[(t3 >>> 8) & 0xFF] ^
T4[(t0 ) & 0xFF] ^ K[keyOffset++];
a2 = T1[(t2 >>> 24) ] ^
T2[(t3 >>> 16) & 0xFF] ^
T3[(t0 >>> 8) & 0xFF] ^
T4[(t1 ) & 0xFF] ^ K[keyOffset++];
t3 = T1[(t3 >>> 24) ] ^
T2[(t0 >>> 16) & 0xFF] ^
T3[(t1 >>> 8) & 0xFF] ^
T4[(t2 ) & 0xFF] ^ K[keyOffset++];
t0 = a0; t1 = a1; t2 = a2;
}
// last round is special
int tt = K[keyOffset++];
out[outOffset++] = (byte)(S[(t0 >>> 24) ] ^ (tt >>> 24));
out[outOffset++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
out[outOffset++] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
out[outOffset++] = (byte)(S[(t3 ) & 0xFF] ^ (tt ));
tt = K[keyOffset++];
out[outOffset++] = (byte)(S[(t1 >>> 24) ] ^ (tt >>> 24));
out[outOffset++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
out[outOffset++] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
out[outOffset++] = (byte)(S[(t0 ) & 0xFF] ^ (tt ));
tt = K[keyOffset++];
out[outOffset++] = (byte)(S[(t2 >>> 24) ] ^ (tt >>> 24));
out[outOffset++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
out[outOffset++] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
out[outOffset++] = (byte)(S[(t1 ) & 0xFF] ^ (tt ));
tt = K[keyOffset++];
out[outOffset++] = (byte)(S[(t3 >>> 24) ] ^ (tt >>> 24));
out[outOffset++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
out[outOffset++] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
out[outOffset ] = (byte)(S[(t2 ) & 0xFF] ^ (tt ));
}
/**
* Decrypt exactly one block of plaintext.
*/
void decryptBlock(byte[] in, int inOffset,
byte[] out, int outOffset) {
// Array bound checks are done in caller code, i.e.
// FeedbackCipher.encrypt/decrypt(...) to improve performance.
implDecryptBlock(in, inOffset, out, outOffset);
}
// Decrypt operation. Possibly replaced with a compiler intrinsic.
@IntrinsicCandidate
private void implDecryptBlock(byte[] in, int inOffset,
byte[] out, int outOffset)
{
int keyOffset = 4;
int t0 = ((in[inOffset++] ) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
int t1 = ((in[inOffset++] ) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
int t2 = ((in[inOffset++] ) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
int t3 = ((in[inOffset++] ) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset ] & 0xFF) ) ^ K[keyOffset++];
int a0, a1, a2;
if(ROUNDS_12)
{
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
if(ROUNDS_14)
{
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
}
}
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
t1 = K[0];
out[outOffset++] = (byte)(Si[(a0 >>> 24) ] ^ (t1 >>> 24));
out[outOffset++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (t1 >>> 16));
out[outOffset++] = (byte)(Si[(a2 >>> 8) & 0xFF] ^ (t1 >>> 8));
out[outOffset++] = (byte)(Si[(a1 ) & 0xFF] ^ (t1 ));
t1 = K[1];
out[outOffset++] = (byte)(Si[(a1 >>> 24) ] ^ (t1 >>> 24));
out[outOffset++] = (byte)(Si[(a0 >>> 16) & 0xFF] ^ (t1 >>> 16));
out[outOffset++] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (t1 >>> 8));
out[outOffset++] = (byte)(Si[(a2 ) & 0xFF] ^ (t1 ));
t1 = K[2];
out[outOffset++] = (byte)(Si[(a2 >>> 24) ] ^ (t1 >>> 24));
out[outOffset++] = (byte)(Si[(a1 >>> 16) & 0xFF] ^ (t1 >>> 16));
out[outOffset++] = (byte)(Si[(a0 >>> 8) & 0xFF] ^ (t1 >>> 8));
out[outOffset++] = (byte)(Si[(t3 ) & 0xFF] ^ (t1 ));
t1 = K[3];
out[outOffset++] = (byte)(Si[(t3 >>> 24) ] ^ (t1 >>> 24));
out[outOffset++] = (byte)(Si[(a2 >>> 16) & 0xFF] ^ (t1 >>> 16));
out[outOffset++] = (byte)(Si[(a1 >>> 8) & 0xFF] ^ (t1 >>> 8));
out[outOffset ] = (byte)(Si[(a0 ) & 0xFF] ^ (t1 ));
}
/**
* Expand a user-supplied key material into a session key.
*
* @param k The 128/192/256-bit cipher key to use.
* @exception InvalidKeyException If the key is invalid.
*/
private void makeSessionKey(byte[] k) throws InvalidKeyException {
if (k == null) {
throw new InvalidKeyException("Empty key");
}
if (!isKeySizeValid(k.length)) {
throw new InvalidKeyException("Invalid AES key length: " +
k.length + " bytes");
}
int ROUNDS = getRounds(k.length);
int ROUND_KEY_COUNT = (ROUNDS + 1) * 4;
int BC = 4;
int[][] Ke = new int[ROUNDS + 1][4]; // encryption round keys
int[][] Kd = new int[ROUNDS + 1][4]; // decryption round keys
int KC = k.length/4; // keylen in 32-bit elements
int[] tk = new int[KC];
int i, j;
// copy user material bytes into temporary ints
for (i = 0, j = 0; i < KC; i++, j+=4) {
tk[i] = (k[j] ) << 24 |
(k[j+1] & 0xFF) << 16 |
(k[j+2] & 0xFF) << 8 |
(k[j+3] & 0xFF);
}
// copy values into round key arrays
int t = 0;
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / 4][t % 4] = tk[j];
Kd[ROUNDS - (t / 4)][t % 4] = tk[j];
}
int tt, rconpointer = 0;
while (t < ROUND_KEY_COUNT) {
// extrapolate using phi (the round key evolution function)
tt = tk[KC - 1];
tk[0] ^= (S[(tt >>> 16) & 0xFF] ) << 24 ^
(S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^
(S[(tt ) & 0xFF] & 0xFF) << 8 ^
(S[(tt >>> 24) ] & 0xFF) ^
(rcon[rconpointer++] ) << 24;
if (KC != 8)
for (i = 1, j = 0; i < KC; i++, j++) tk[i] ^= tk[j];
else {
for (i = 1, j = 0; i < KC / 2; i++, j++) tk[i] ^= tk[j];
tt = tk[KC / 2 - 1];
tk[KC / 2] ^= (S[(tt ) & 0xFF] & 0xFF) ^
(S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^
(S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^
(S[(tt >>> 24) ] ) << 24;
for (j = KC / 2, i = j + 1; i < KC; i++, j++) tk[i] ^= tk[j];
}
// copy values into round key arrays
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / 4][t % 4] = tk[j];
Kd[ROUNDS - (t / 4)][t % 4] = tk[j];
}
}
for (int r = 1; r < ROUNDS; r++) {
// inverse MixColumn where needed
for (j = 0; j < BC; j++) {
tt = Kd[r][j];
Kd[r][j] = U1[(tt >>> 24) & 0xFF] ^
U2[(tt >>> 16) & 0xFF] ^
U3[(tt >>> 8) & 0xFF] ^
U4[ tt & 0xFF];
}
}
// assemble the encryption (Ke) and decryption (Kd) round keys
// and expand them into arrays of ints.
int[] expandedKe = expandToSubKey(Ke, false); // decrypting==false
int[] expandedKd = expandToSubKey(Kd, true); // decrypting==true
Arrays.fill(tk, 0);
for (int[] ia: Ke) {
Arrays.fill(ia, 0);
}
for (int[] ia: Kd) {
Arrays.fill(ia, 0);
}
ROUNDS_12 = (ROUNDS>=12);
ROUNDS_14 = (ROUNDS==14);
limit = ROUNDS*4;
// store the expanded sub keys into 'sessionK'
if (sessionK != null) {
// erase the previous values in sessionK
Arrays.fill(sessionK[0], 0);
Arrays.fill(sessionK[1], 0);
}
sessionK = new int[][] { expandedKe, expandedKd };
}
/**
* Return The number of rounds for a given Rijndael keysize.
*
* @param keySize The size of the user key material in bytes.
* MUST be one of (16, 24, 32).
* @return The number of rounds.
*/
private static int getRounds(int keySize) {
return (keySize >> 2) + 6;
}
}