com.sun.crypto.provider.GHASH Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 2013, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* (C) Copyright IBM Corp. 2013
* Copyright (c) 2015 Red Hat, Inc.
*/
package com.sun.crypto.provider;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.security.ProviderException;
import jdk.internal.vm.annotation.IntrinsicCandidate;
/**
* This class represents the GHASH function defined in NIST 800-38D
* under section 6.4. It needs to be constructed w/ a hash subkey, i.e.
* block H. Given input of 128-bit blocks, it will process and output
* a 128-bit block.
*
* This function is used in the implementation of GCM mode.
*
* @since 1.8
*/
final class GHASH implements Cloneable, GCM {
private static final int AES_BLOCK_SIZE = 16;
// Handle for converting byte[] <-> long
private static final VarHandle asLongView =
MethodHandles.byteArrayViewVarHandle(long[].class,
ByteOrder.BIG_ENDIAN);
// Maximum buffer size rotating ByteBuffer->byte[] intrinsic copy
private static final int MAX_LEN = 1024;
// Multiplies state[0], state[1] by subkeyH[0], subkeyH[1].
private static void blockMult(long[] st, long[] subH) {
long Z0 = 0;
long Z1 = 0;
long V0 = subH[0];
long V1 = subH[1];
long X;
// Separate loops for processing state[0] and state[1].
X = st[0];
for (int i = 0; i < 64; i++) {
// Zi+1 = Zi if bit i of x is 0
long mask = X >> 63;
Z0 ^= V0 & mask;
Z1 ^= V1 & mask;
// Save mask for conditional reduction below.
mask = (V1 << 63) >> 63;
// V = rightshift(V)
long carry = V0 & 1;
V0 = V0 >>> 1;
V1 = (V1 >>> 1) | (carry << 63);
// Conditional reduction modulo P128.
V0 ^= 0xe100000000000000L & mask;
X <<= 1;
}
X = st[1];
for (int i = 64; i < 127; i++) {
// Zi+1 = Zi if bit i of x is 0
long mask = X >> 63;
Z0 ^= V0 & mask;
Z1 ^= V1 & mask;
// Save mask for conditional reduction below.
mask = (V1 << 63) >> 63;
// V = rightshift(V)
long carry = V0 & 1;
V0 = V0 >>> 1;
V1 = (V1 >>> 1) | (carry << 63);
// Conditional reduction.
V0 ^= 0xe100000000000000L & mask;
X <<= 1;
}
// calculate Z128
long mask = X >> 63;
Z0 ^= V0 & mask;
Z1 ^= V1 & mask;
// Save result.
st[0] = Z0;
st[1] = Z1;
}
/* subkeyHtbl and state are stored in long[] for GHASH intrinsic use */
// hashtable subkeyHtbl holds 2*9 powers of subkeyH computed using
// carry-less multiplication
private long[] subkeyHtbl;
// buffer for storing hash
private final long[] state;
/**
* Initializes the cipher in the specified mode with the given key
* and iv.
*
* @param subkeyH the hash subkey
*
* @exception ProviderException if the given key is inappropriate for
* initializing this digest
*/
GHASH(byte[] subkeyH) throws ProviderException {
if ((subkeyH == null) || subkeyH.length != AES_BLOCK_SIZE) {
throw new ProviderException("Internal error");
}
state = new long[2];
subkeyHtbl = new long[2*9];
subkeyHtbl[0] = (long)asLongView.get(subkeyH, 0);
subkeyHtbl[1] = (long)asLongView.get(subkeyH, 8);
}
// Cloning constructor
private GHASH(GHASH g) {
state = g.state.clone();
subkeyHtbl = g.subkeyHtbl.clone();
}
@Override
public GHASH clone() {
return new GHASH(this);
}
private static void processBlock(byte[] data, int ofs, long[] st,
long[] subH) {
st[0] ^= (long)asLongView.get(data, ofs);
st[1] ^= (long)asLongView.get(data, ofs + 8);
blockMult(st, subH);
}
int update(byte[] in) {
return update(in, 0, in.length);
}
int update(byte[] in, int inOfs, int inLen) {
if (inLen == 0) {
return 0;
}
int len = inLen - (inLen % AES_BLOCK_SIZE);
ghashRangeCheck(in, inOfs, len, state, subkeyHtbl);
processBlocks(in, inOfs, len / AES_BLOCK_SIZE, state, subkeyHtbl);
return len;
}
// Will process as many blocks it can and will leave the remaining.
int update(ByteBuffer ct, int inLen) {
inLen -= (inLen % AES_BLOCK_SIZE);
if (inLen == 0) {
return 0;
}
// If ct is a direct bytebuffer, send it directly to the intrinsic
if (ct.isDirect()) {
int processed = inLen;
processBlocksDirect(ct, inLen);
return processed;
} else if (!ct.isReadOnly()) {
// If a non-read only heap bytebuffer, use the array update method
int processed = update(ct.array(),
ct.arrayOffset() + ct.position(),
inLen);
ct.position(ct.position() + processed);
return processed;
}
// Read only heap bytebuffers have to be copied and operated on
int to_process = inLen;
byte[] in = new byte[Math.min(MAX_LEN, inLen)];
while (to_process > MAX_LEN ) {
ct.get(in, 0, MAX_LEN);
update(in, 0 , MAX_LEN);
to_process -= MAX_LEN;
}
ct.get(in, 0, to_process);
update(in, 0, to_process);
return inLen;
}
int doFinal(ByteBuffer src, int inLen) {
int processed = 0;
if (inLen >= AES_BLOCK_SIZE) {
processed = update(src, inLen);
}
if (inLen == processed) {
return processed;
}
byte[] block = new byte[AES_BLOCK_SIZE];
src.get(block, 0, inLen - processed);
update(block, 0, AES_BLOCK_SIZE);
return inLen;
}
int doFinal(byte[] in, int inOfs, int inLen) {
int remainder = inLen % AES_BLOCK_SIZE;
inOfs += update(in, inOfs, inLen - remainder);
if (remainder > 0) {
byte[] block = new byte[AES_BLOCK_SIZE];
System.arraycopy(in, inOfs, block, 0,
remainder);
update(block, 0, AES_BLOCK_SIZE);
}
return inLen;
}
private static void ghashRangeCheck(byte[] in, int inOfs, int inLen,
long[] st, long[] subH) {
if (inLen < 0) {
throw new RuntimeException("invalid input length: " + inLen);
}
if (inOfs < 0) {
throw new RuntimeException("invalid offset: " + inOfs);
}
if (inLen > in.length - inOfs) {
throw new RuntimeException("input length out of bound: " +
inLen + " > " + (in.length - inOfs));
}
if (inLen % AES_BLOCK_SIZE != 0) {
throw new RuntimeException("input length/block size mismatch: " +
inLen);
}
// These two checks are for C2 checking
if (st.length != 2) {
throw new RuntimeException("internal state has invalid length: " +
st.length);
}
if (subH.length != 18) {
throw new RuntimeException("internal subkeyHtbl has invalid length: " +
subH.length);
}
}
/*
* This is an intrinsified method. The method's argument list must match
* the hotspot signature. This method and methods called by it, cannot
* throw exceptions or allocate arrays as it will breaking intrinsics
*/
@IntrinsicCandidate
private static void processBlocks(byte[] data, int inOfs, int blocks,
long[] st, long[] subH) {
int offset = inOfs;
while (blocks > 0) {
processBlock(data, offset, st, subH);
blocks--;
offset += AES_BLOCK_SIZE;
}
}
// ProcessBlock for Direct ByteBuffers
private void processBlocksDirect(ByteBuffer ct, int inLen) {
byte[] data = new byte[Math.min(MAX_LEN, inLen)];
while (inLen > MAX_LEN) {
ct.get(data, 0, MAX_LEN);
processBlocks(data, 0, MAX_LEN / AES_BLOCK_SIZE, state,
subkeyHtbl);
inLen -= MAX_LEN;
}
if (inLen >= AES_BLOCK_SIZE) {
int len = inLen - (inLen % AES_BLOCK_SIZE);
ct.get(data, 0, len);
processBlocks(data, 0, len / AES_BLOCK_SIZE, state,
subkeyHtbl);
}
}
byte[] digest() {
byte[] result = new byte[AES_BLOCK_SIZE];
asLongView.set(result, 0, state[0]);
asLongView.set(result, 8, state[1]);
// Reset state
state[0] = 0;
state[1] = 0;
return result;
}
/**
* None of the out or dst values are necessary, they are to satisfy the
* GCM interface requirement
*/
@Override
public int update(byte[] in, int inOfs, int inLen, byte[] out, int outOfs) {
return update(in, inOfs, inLen);
}
@Override
public int update(byte[] in, int inOfs, int inLen, ByteBuffer dst) {
return update(in, inOfs, inLen);
}
@Override
public int update(ByteBuffer src, ByteBuffer dst) {
return update(src, src.remaining());
}
@Override
public int doFinal(byte[] in, int inOfs, int inLen, byte[] out,
int outOfs) {
return doFinal(in, inOfs, inLen);
}
@Override
public int doFinal(ByteBuffer src, ByteBuffer dst) {
return doFinal(src, src.remaining());
}
}