com.sun.crypto.provider.TlsPrfGenerator Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.crypto.provider;
import java.util.Arrays;
import java.security.*;
import java.security.spec.AlgorithmParameterSpec;
import static java.nio.charset.StandardCharsets.UTF_8;
import javax.crypto.*;
import javax.crypto.spec.SecretKeySpec;
import sun.security.internal.spec.TlsPrfParameterSpec;
/**
* KeyGenerator implementation for the TLS PRF function.
*
* This class duplicates the HMAC functionality (RFC 2104) with
* performance optimizations (e.g. XOR'ing keys with padding doesn't
* need to be redone for each HMAC operation).
*
* @author Andreas Sterbenz
* @since 1.6
*/
abstract class TlsPrfGenerator extends KeyGeneratorSpi {
// magic constants and utility functions, also used by other files
// in this package
private static final byte[] B0 = new byte[0];
static final byte[] LABEL_MASTER_SECRET = // "master secret"
{ 109, 97, 115, 116, 101, 114, 32, 115, 101, 99, 114, 101, 116 };
static final byte[] LABEL_EXTENDED_MASTER_SECRET =
// "extended master secret"
{ 101, 120, 116, 101, 110, 100, 101, 100, 32, 109, 97, 115, 116,
101, 114, 32, 115, 101, 99, 114, 101, 116 };
static final byte[] LABEL_KEY_EXPANSION = // "key expansion"
{ 107, 101, 121, 32, 101, 120, 112, 97, 110, 115, 105, 111, 110 };
static final byte[] LABEL_CLIENT_WRITE_KEY = // "client write key"
{ 99, 108, 105, 101, 110, 116, 32, 119, 114, 105, 116, 101, 32,
107, 101, 121 };
static final byte[] LABEL_SERVER_WRITE_KEY = // "server write key"
{ 115, 101, 114, 118, 101, 114, 32, 119, 114, 105, 116, 101, 32,
107, 101, 121 };
static final byte[] LABEL_IV_BLOCK = // "IV block"
{ 73, 86, 32, 98, 108, 111, 99, 107 };
/*
* TLS HMAC "inner" and "outer" padding. This isn't a function
* of the digest algorithm.
*/
private static final byte[] HMAC_ipad64 = genPad((byte)0x36, 64);
private static final byte[] HMAC_ipad128 = genPad((byte)0x36, 128);
private static final byte[] HMAC_opad64 = genPad((byte)0x5c, 64);
private static final byte[] HMAC_opad128 = genPad((byte)0x5c, 128);
// SSL3 magic mix constants ("A", "BB", "CCC", ...)
static final byte[][] SSL3_CONST = genConst();
static byte[] genPad(byte b, int count) {
byte[] padding = new byte[count];
Arrays.fill(padding, b);
return padding;
}
static byte[] concat(byte[] b1, byte[] b2) {
int n1 = b1.length;
int n2 = b2.length;
byte[] b = new byte[n1 + n2];
System.arraycopy(b1, 0, b, 0, n1);
System.arraycopy(b2, 0, b, n1, n2);
return b;
}
private static byte[][] genConst() {
int n = 10;
byte[][] arr = new byte[n][];
for (int i = 0; i < n; i++) {
byte[] b = new byte[i + 1];
Arrays.fill(b, (byte)('A' + i));
arr[i] = b;
}
return arr;
}
// PRF implementation
private static final String MSG = "TlsPrfGenerator must be "
+ "initialized using a TlsPrfParameterSpec";
@SuppressWarnings("deprecation")
private TlsPrfParameterSpec spec;
public TlsPrfGenerator() {
}
protected void engineInit(SecureRandom random) {
throw new InvalidParameterException(MSG);
}
@SuppressWarnings("deprecation")
protected void engineInit(AlgorithmParameterSpec params,
SecureRandom random) throws InvalidAlgorithmParameterException {
if (params instanceof TlsPrfParameterSpec == false) {
throw new InvalidAlgorithmParameterException(MSG);
}
this.spec = (TlsPrfParameterSpec)params;
SecretKey key = spec.getSecret();
if ((key != null) && ("RAW".equals(key.getFormat()) == false)) {
throw new InvalidAlgorithmParameterException(
"Key encoding format must be RAW");
}
}
protected void engineInit(int keysize, SecureRandom random) {
throw new InvalidParameterException(MSG);
}
SecretKey engineGenerateKey0(boolean tls12) {
if (spec == null) {
throw new IllegalStateException(
"TlsPrfGenerator must be initialized");
}
SecretKey key = spec.getSecret();
byte[] secret = (key == null) ? null : key.getEncoded();
try {
byte[] labelBytes = spec.getLabel().getBytes(UTF_8);
int n = spec.getOutputLength();
byte[] prfBytes = (tls12 ?
doTLS12PRF(secret, labelBytes, spec.getSeed(), n,
spec.getPRFHashAlg(), spec.getPRFHashLength(),
spec.getPRFBlockSize()) :
doTLS10PRF(secret, labelBytes, spec.getSeed(), n));
try {
return new SecretKeySpec(prfBytes, "TlsPrf");
} finally {
Arrays.fill(prfBytes, (byte)0);
}
} catch (GeneralSecurityException e) {
throw new ProviderException("Could not generate PRF", e);
} finally {
if (secret != null) {
Arrays.fill(secret, (byte) 0);
}
}
}
static byte[] doTLS12PRF(byte[] secret, byte[] labelBytes,
byte[] seed, int outputLength,
String prfHash, int prfHashLength, int prfBlockSize)
throws NoSuchAlgorithmException, DigestException {
if (prfHash == null) {
throw new NoSuchAlgorithmException("Unspecified PRF algorithm");
}
MessageDigest prfMD = MessageDigest.getInstance(prfHash);
return doTLS12PRF(secret, labelBytes, seed, outputLength,
prfMD, prfHashLength, prfBlockSize);
}
static byte[] doTLS12PRF(byte[] secret, byte[] labelBytes,
byte[] seed, int outputLength,
MessageDigest mdPRF, int mdPRFLen, int mdPRFBlockSize)
throws DigestException {
if (secret == null) {
secret = B0;
}
// If we have a long secret, digest it first.
if (secret.length > mdPRFBlockSize) {
secret = mdPRF.digest(secret);
}
byte[] output = new byte[outputLength];
byte [] ipad;
byte [] opad;
switch (mdPRFBlockSize) {
case 64:
ipad = HMAC_ipad64.clone();
opad = HMAC_opad64.clone();
break;
case 128:
ipad = HMAC_ipad128.clone();
opad = HMAC_opad128.clone();
break;
default:
throw new DigestException("Unexpected block size.");
}
// P_HASH(Secret, label + seed)
expand(mdPRF, mdPRFLen, secret, 0, secret.length, labelBytes,
seed, output, ipad, opad);
return output;
}
static byte[] doTLS10PRF(byte[] secret, byte[] labelBytes,
byte[] seed, int outputLength) throws NoSuchAlgorithmException,
DigestException {
MessageDigest md5 = MessageDigest.getInstance("MD5");
MessageDigest sha = MessageDigest.getInstance("SHA1");
return doTLS10PRF(secret, labelBytes, seed, outputLength, md5, sha);
}
static byte[] doTLS10PRF(byte[] secret, byte[] labelBytes,
byte[] seed, int outputLength, MessageDigest md5,
MessageDigest sha) throws DigestException {
/*
* Split the secret into two halves S1 and S2 of same length.
* S1 is taken from the first half of the secret, S2 from the
* second half.
* Their length is created by rounding up the length of the
* overall secret divided by two; thus, if the original secret
* is an odd number of bytes long, the last byte of S1 will be
* the same as the first byte of S2.
*
* Note: Instead of creating S1 and S2, we determine the offset into
* the overall secret where S2 starts.
*/
if (secret == null) {
secret = B0;
}
int off = secret.length >> 1;
int seclen = off + (secret.length & 1);
byte[] secKey = secret;
int keyLen = seclen;
byte[] output = new byte[outputLength];
// P_MD5(S1, label + seed)
// If we have a long secret, digest it first.
if (seclen > 64) { // 64: block size of HMAC-MD5
md5.update(secret, 0, seclen);
secKey = md5.digest();
md5.reset();
keyLen = secKey.length;
}
expand(md5, 16, secKey, 0, keyLen, labelBytes, seed, output,
HMAC_ipad64.clone(), HMAC_opad64.clone());
// P_SHA-1(S2, label + seed)
// If we have a long secret, digest it first.
if (seclen > 64) { // 64: block size of HMAC-SHA1
sha.update(secret, off, seclen);
secKey = sha.digest();
sha.reset();
keyLen = secKey.length;
off = 0;
}
expand(sha, 20, secKey, off, keyLen, labelBytes, seed, output,
HMAC_ipad64.clone(), HMAC_opad64.clone());
return output;
}
/*
* @param digest the MessageDigest to produce the HMAC
* @param hmacSize the HMAC size
* @param secret the secret
* @param secOff the offset into the secret
* @param secLen the secret length
* @param label the label
* @param seed the seed
* @param output the output array
*/
private static void expand(MessageDigest digest, int hmacSize,
byte[] secret, int secOff, int secLen, byte[] label, byte[] seed,
byte[] output, byte[] pad1, byte[] pad2) throws DigestException {
/*
* modify the padding used, by XORing the key into our copy of that
* padding. That's to avoid doing that for each HMAC computation.
*/
for (int i = 0; i < secLen; i++) {
pad1[i] ^= secret[i + secOff];
pad2[i] ^= secret[i + secOff];
}
byte[] tmp = new byte[hmacSize];
byte[] aBytes = null;
/*
* compute:
*
* P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
* HMAC_hash(secret, A(2) + seed) +
* HMAC_hash(secret, A(3) + seed) + ...
* A() is defined as:
*
* A(0) = seed
* A(i) = HMAC_hash(secret, A(i-1))
*/
int remaining = output.length;
int ofs = 0;
while (remaining > 0) {
/*
* compute A() ...
*/
// inner digest
digest.update(pad1);
if (aBytes == null) {
digest.update(label);
digest.update(seed);
} else {
digest.update(aBytes);
}
digest.digest(tmp, 0, hmacSize);
// outer digest
digest.update(pad2);
digest.update(tmp);
if (aBytes == null) {
aBytes = new byte[hmacSize];
}
digest.digest(aBytes, 0, hmacSize);
/*
* compute HMAC_hash() ...
*/
// inner digest
digest.update(pad1);
digest.update(aBytes);
digest.update(label);
digest.update(seed);
digest.digest(tmp, 0, hmacSize);
// outer digest
digest.update(pad2);
digest.update(tmp);
digest.digest(tmp, 0, hmacSize);
digest.reset();
int k = Math.min(hmacSize, remaining);
for (int i = 0; i < k; i++) {
output[ofs++] ^= tmp[i];
}
remaining -= k;
}
Arrays.fill(tmp, (byte)0);
}
/**
* A KeyGenerator implementation that supports TLS 1.2.
*
* TLS 1.2 uses a different hash algorithm than 1.0/1.1 for the PRF
* calculations. As of 2010, there is no PKCS11-level support for TLS
* 1.2 PRF calculations, and no known OS's have an internal variant
* we could use. Therefore for TLS 1.2, we are updating JSSE to request
* a different provider algorithm: "SunTls12Prf". If we reused the
* name "SunTlsPrf", the PKCS11 provider would need be updated to
* fail correctly when presented with the wrong version number
* (via Provider.Service.supportsParameters()), and add the
* appropriate supportsParamters() checks into KeyGenerators (not
* currently there).
*/
public static class V12 extends TlsPrfGenerator {
protected SecretKey engineGenerateKey() {
return engineGenerateKey0(true);
}
}
/**
* A KeyGenerator implementation that supports TLS 1.0/1.1.
*/
public static class V10 extends TlsPrfGenerator {
protected SecretKey engineGenerateKey() {
return engineGenerateKey0(false);
}
}
}