java.io.ObjectOutputStream Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.io;
import java.io.ObjectStreamClass.WeakClassKey;
import java.lang.ref.ReferenceQueue;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.StringJoiner;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import static java.io.ObjectStreamClass.processQueue;
import sun.reflect.misc.ReflectUtil;
/**
* An ObjectOutputStream writes primitive data types and graphs of Java objects
* to an OutputStream. The objects can be read (reconstituted) using an
* ObjectInputStream. Persistent storage of objects can be accomplished by
* using a file for the stream. If the stream is a network socket stream, the
* objects can be reconstituted on another host or in another process.
*
* Only objects that support the java.io.Serializable interface can be
* written to streams. The class of each serializable object is encoded
* including the class name and signature of the class, the values of the
* object's fields and arrays, and the closure of any other objects referenced
* from the initial objects.
*
*
The method writeObject is used to write an object to the stream. Any
* object, including Strings and arrays, is written with writeObject. Multiple
* objects or primitives can be written to the stream. The objects must be
* read back from the corresponding ObjectInputstream with the same types and
* in the same order as they were written.
*
*
Primitive data types can also be written to the stream using the
* appropriate methods from DataOutput. Strings can also be written using the
* writeUTF method.
*
*
The default serialization mechanism for an object writes the class of the
* object, the class signature, and the values of all non-transient and
* non-static fields. References to other objects (except in transient or
* static fields) cause those objects to be written also. Multiple references
* to a single object are encoded using a reference sharing mechanism so that
* graphs of objects can be restored to the same shape as when the original was
* written.
*
*
For example to write an object that can be read by the example in
* ObjectInputStream:
*
*
* FileOutputStream fos = new FileOutputStream("t.tmp");
* ObjectOutputStream oos = new ObjectOutputStream(fos);
*
* oos.writeInt(12345);
* oos.writeObject("Today");
* oos.writeObject(new Date());
*
* oos.close();
*
*
* Classes that require special handling during the serialization and
* deserialization process must implement special methods with these exact
* signatures:
*
*
* private void readObject(java.io.ObjectInputStream stream)
* throws IOException, ClassNotFoundException;
* private void writeObject(java.io.ObjectOutputStream stream)
* throws IOException
* private void readObjectNoData()
* throws ObjectStreamException;
*
*
* The writeObject method is responsible for writing the state of the object
* for its particular class so that the corresponding readObject method can
* restore it. The method does not need to concern itself with the state
* belonging to the object's superclasses or subclasses. State is saved by
* writing the individual fields to the ObjectOutputStream using the
* writeObject method or by using the methods for primitive data types
* supported by DataOutput.
*
*
Serialization does not write out the fields of any object that does not
* implement the java.io.Serializable interface. Subclasses of Objects that
* are not serializable can be serializable. In this case the non-serializable
* class must have a no-arg constructor to allow its fields to be initialized.
* In this case it is the responsibility of the subclass to save and restore
* the state of the non-serializable class. It is frequently the case that the
* fields of that class are accessible (public, package, or protected) or that
* there are get and set methods that can be used to restore the state.
*
*
Serialization of an object can be prevented by implementing writeObject
* and readObject methods that throw the NotSerializableException. The
* exception will be caught by the ObjectOutputStream and abort the
* serialization process.
*
*
Implementing the Externalizable interface allows the object to assume
* complete control over the contents and format of the object's serialized
* form. The methods of the Externalizable interface, writeExternal and
* readExternal, are called to save and restore the objects state. When
* implemented by a class they can write and read their own state using all of
* the methods of ObjectOutput and ObjectInput. It is the responsibility of
* the objects to handle any versioning that occurs.
*
*
Enum constants are serialized differently than ordinary serializable or
* externalizable objects. The serialized form of an enum constant consists
* solely of its name; field values of the constant are not transmitted. To
* serialize an enum constant, ObjectOutputStream writes the string returned by
* the constant's name method. Like other serializable or externalizable
* objects, enum constants can function as the targets of back references
* appearing subsequently in the serialization stream. The process by which
* enum constants are serialized cannot be customized; any class-specific
* writeObject and writeReplace methods defined by enum types are ignored
* during serialization. Similarly, any serialPersistentFields or
* serialVersionUID field declarations are also ignored--all enum types have a
* fixed serialVersionUID of 0L.
*
*
Primitive data, excluding serializable fields and externalizable data, is
* written to the ObjectOutputStream in block-data records. A block data record
* is composed of a header and data. The block data header consists of a marker
* and the number of bytes to follow the header. Consecutive primitive data
* writes are merged into one block-data record. The blocking factor used for
* a block-data record will be 1024 bytes. Each block-data record will be
* filled up to 1024 bytes, or be written whenever there is a termination of
* block-data mode. Calls to the ObjectOutputStream methods writeObject,
* defaultWriteObject and writeFields initially terminate any existing
* block-data record.
*
*
Records are serialized differently than ordinary serializable or externalizable
* objects, see record serialization.
*
* @author Mike Warres
* @author Roger Riggs
* @see java.io.DataOutput
* @see java.io.ObjectInputStream
* @see java.io.Serializable
* @see java.io.Externalizable
* @see
* Java Object Serialization Specification, Section 2, "Object Output Classes"
* @since 1.1
*/
public class ObjectOutputStream
extends OutputStream implements ObjectOutput, ObjectStreamConstants
{
private static class Caches {
/** cache of subclass security audit results */
static final ConcurrentMap subclassAudits =
new ConcurrentHashMap<>();
/** queue for WeakReferences to audited subclasses */
static final ReferenceQueue> subclassAuditsQueue =
new ReferenceQueue<>();
}
/** filter stream for handling block data conversion */
private final BlockDataOutputStream bout;
/** obj -> wire handle map */
private final HandleTable handles;
/** obj -> replacement obj map */
private final ReplaceTable subs;
/** stream protocol version */
private int protocol = PROTOCOL_VERSION_2;
/** recursion depth */
private int depth;
/** buffer for writing primitive field values */
private byte[] primVals;
/** if true, invoke writeObjectOverride() instead of writeObject() */
private final boolean enableOverride;
/** if true, invoke replaceObject() */
private boolean enableReplace;
// values below valid only during upcalls to writeObject()/writeExternal()
/**
* Context during upcalls to class-defined writeObject methods; holds
* object currently being serialized and descriptor for current class.
* Null when not during writeObject upcall.
*/
private SerialCallbackContext curContext;
/** current PutField object */
private PutFieldImpl curPut;
/** custom storage for debug trace info */
private final DebugTraceInfoStack debugInfoStack;
/**
* value of "sun.io.serialization.extendedDebugInfo" property,
* as true or false for extended information about exception's place
*/
@SuppressWarnings("removal")
private static final boolean extendedDebugInfo =
java.security.AccessController.doPrivileged(
new sun.security.action.GetBooleanAction(
"sun.io.serialization.extendedDebugInfo")).booleanValue();
/**
* Creates an ObjectOutputStream that writes to the specified OutputStream.
* This constructor writes the serialization stream header to the
* underlying stream; callers may wish to flush the stream immediately to
* ensure that constructors for receiving ObjectInputStreams will not block
* when reading the header.
*
* If a security manager is installed, this constructor will check for
* the "enableSubclassImplementation" SerializablePermission when invoked
* directly or indirectly by the constructor of a subclass which overrides
* the ObjectOutputStream.putFields or ObjectOutputStream.writeUnshared
* methods.
*
* @param out output stream to write to
* @throws IOException if an I/O error occurs while writing stream header
* @throws SecurityException if untrusted subclass illegally overrides
* security-sensitive methods
* @throws NullPointerException if {@code out} is {@code null}
* @since 1.4
* @see ObjectOutputStream#ObjectOutputStream()
* @see ObjectOutputStream#putFields()
* @see ObjectInputStream#ObjectInputStream(InputStream)
*/
public ObjectOutputStream(OutputStream out) throws IOException {
verifySubclass();
bout = new BlockDataOutputStream(out);
handles = new HandleTable(10, (float) 3.00);
subs = new ReplaceTable(10, (float) 3.00);
enableOverride = false;
writeStreamHeader();
bout.setBlockDataMode(true);
if (extendedDebugInfo) {
debugInfoStack = new DebugTraceInfoStack();
} else {
debugInfoStack = null;
}
}
/**
* Provide a way for subclasses that are completely reimplementing
* ObjectOutputStream to not have to allocate private data just used by
* this implementation of ObjectOutputStream.
*
*
If there is a security manager installed, this method first calls the
* security manager's {@code checkPermission} method with a
* {@code SerializablePermission("enableSubclassImplementation")}
* permission to ensure it's ok to enable subclassing.
*
* @throws SecurityException if a security manager exists and its
* {@code checkPermission} method denies enabling
* subclassing.
* @throws IOException if an I/O error occurs while creating this stream
* @see SecurityManager#checkPermission
* @see java.io.SerializablePermission
*/
protected ObjectOutputStream() throws IOException, SecurityException {
@SuppressWarnings("removal")
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION);
}
bout = null;
handles = null;
subs = null;
enableOverride = true;
debugInfoStack = null;
}
/**
* Specify stream protocol version to use when writing the stream.
*
*
This routine provides a hook to enable the current version of
* Serialization to write in a format that is backwards compatible to a
* previous version of the stream format.
*
*
Every effort will be made to avoid introducing additional
* backwards incompatibilities; however, sometimes there is no
* other alternative.
*
* @param version use ProtocolVersion from java.io.ObjectStreamConstants.
* @throws IllegalStateException if called after any objects
* have been serialized.
* @throws IllegalArgumentException if invalid version is passed in.
* @throws IOException if I/O errors occur
* @see java.io.ObjectStreamConstants#PROTOCOL_VERSION_1
* @see java.io.ObjectStreamConstants#PROTOCOL_VERSION_2
* @since 1.2
*/
public void useProtocolVersion(int version) throws IOException {
if (handles.size() != 0) {
// REMIND: implement better check for pristine stream?
throw new IllegalStateException("stream non-empty");
}
switch (version) {
case PROTOCOL_VERSION_1:
case PROTOCOL_VERSION_2:
protocol = version;
break;
default:
throw new IllegalArgumentException(
"unknown version: " + version);
}
}
/**
* Write the specified object to the ObjectOutputStream. The class of the
* object, the signature of the class, and the values of the non-transient
* and non-static fields of the class and all of its supertypes are
* written. Default serialization for a class can be overridden using the
* writeObject and the readObject methods. Objects referenced by this
* object are written transitively so that a complete equivalent graph of
* objects can be reconstructed by an ObjectInputStream.
*
*
Exceptions are thrown for problems with the OutputStream and for
* classes that should not be serialized. All exceptions are fatal to the
* OutputStream, which is left in an indeterminate state, and it is up to
* the caller to ignore or recover the stream state.
*
* @throws InvalidClassException Something is wrong with a class used by
* serialization.
* @throws NotSerializableException Some object to be serialized does not
* implement the java.io.Serializable interface.
* @throws IOException Any exception thrown by the underlying
* OutputStream.
*/
public final void writeObject(Object obj) throws IOException {
if (enableOverride) {
writeObjectOverride(obj);
return;
}
try {
writeObject0(obj, false);
} catch (IOException ex) {
if (depth == 0) {
writeFatalException(ex);
}
throw ex;
}
}
/**
* Method used by subclasses to override the default writeObject method.
* This method is called by trusted subclasses of ObjectOutputStream that
* constructed ObjectOutputStream using the protected no-arg constructor.
* The subclass is expected to provide an override method with the modifier
* "final".
*
* @param obj object to be written to the underlying stream
* @throws IOException if there are I/O errors while writing to the
* underlying stream
* @see #ObjectOutputStream()
* @see #writeObject(Object)
* @since 1.2
*/
protected void writeObjectOverride(Object obj) throws IOException {
}
/**
* Writes an "unshared" object to the ObjectOutputStream. This method is
* identical to writeObject, except that it always writes the given object
* as a new, unique object in the stream (as opposed to a back-reference
* pointing to a previously serialized instance). Specifically:
*
* - An object written via writeUnshared is always serialized in the
* same manner as a newly appearing object (an object that has not
* been written to the stream yet), regardless of whether or not the
* object has been written previously.
*
*
- If writeObject is used to write an object that has been previously
* written with writeUnshared, the previous writeUnshared operation
* is treated as if it were a write of a separate object. In other
* words, ObjectOutputStream will never generate back-references to
* object data written by calls to writeUnshared.
*
* While writing an object via writeUnshared does not in itself guarantee a
* unique reference to the object when it is deserialized, it allows a
* single object to be defined multiple times in a stream, so that multiple
* calls to readUnshared by the receiver will not conflict. Note that the
* rules described above only apply to the base-level object written with
* writeUnshared, and not to any transitively referenced sub-objects in the
* object graph to be serialized.
*
* ObjectOutputStream subclasses which override this method can only be
* constructed in security contexts possessing the
* "enableSubclassImplementation" SerializablePermission; any attempt to
* instantiate such a subclass without this permission will cause a
* SecurityException to be thrown.
*
* @param obj object to write to stream
* @throws NotSerializableException if an object in the graph to be
* serialized does not implement the Serializable interface
* @throws InvalidClassException if a problem exists with the class of an
* object to be serialized
* @throws IOException if an I/O error occurs during serialization
* @since 1.4
*/
public void writeUnshared(Object obj) throws IOException {
try {
writeObject0(obj, true);
} catch (IOException ex) {
if (depth == 0) {
writeFatalException(ex);
}
throw ex;
}
}
/**
* Write the non-static and non-transient fields of the current class to
* this stream. This may only be called from the writeObject method of the
* class being serialized. It will throw the NotActiveException if it is
* called otherwise.
*
* @throws IOException if I/O errors occur while writing to the underlying
* {@code OutputStream}
*/
public void defaultWriteObject() throws IOException {
SerialCallbackContext ctx = curContext;
if (ctx == null) {
throw new NotActiveException("not in call to writeObject");
}
Object curObj = ctx.getObj();
ObjectStreamClass curDesc = ctx.getDesc();
bout.setBlockDataMode(false);
defaultWriteFields(curObj, curDesc);
bout.setBlockDataMode(true);
}
/**
* Retrieve the object used to buffer persistent fields to be written to
* the stream. The fields will be written to the stream when writeFields
* method is called.
*
* @return an instance of the class Putfield that holds the serializable
* fields
* @throws IOException if I/O errors occur
* @since 1.2
*/
public ObjectOutputStream.PutField putFields() throws IOException {
if (curPut == null) {
SerialCallbackContext ctx = curContext;
if (ctx == null) {
throw new NotActiveException("not in call to writeObject");
}
ctx.checkAndSetUsed();
ObjectStreamClass curDesc = ctx.getDesc();
curPut = new PutFieldImpl(curDesc);
}
return curPut;
}
/**
* Write the buffered fields to the stream.
*
* @throws IOException if I/O errors occur while writing to the underlying
* stream
* @throws NotActiveException Called when a classes writeObject method was
* not called to write the state of the object.
* @since 1.2
*/
public void writeFields() throws IOException {
if (curPut == null) {
throw new NotActiveException("no current PutField object");
}
bout.setBlockDataMode(false);
curPut.writeFields();
bout.setBlockDataMode(true);
}
/**
* Reset will disregard the state of any objects already written to the
* stream. The state is reset to be the same as a new ObjectOutputStream.
* The current point in the stream is marked as reset so the corresponding
* ObjectInputStream will be reset at the same point. Objects previously
* written to the stream will not be referred to as already being in the
* stream. They will be written to the stream again.
*
* @throws IOException if reset() is invoked while serializing an object.
*/
public void reset() throws IOException {
if (depth != 0) {
throw new IOException("stream active");
}
bout.setBlockDataMode(false);
bout.writeByte(TC_RESET);
clear();
bout.setBlockDataMode(true);
}
/**
* Subclasses may implement this method to allow class data to be stored in
* the stream. By default this method does nothing. The corresponding
* method in ObjectInputStream is resolveClass. This method is called
* exactly once for each unique class in the stream. The class name and
* signature will have already been written to the stream. This method may
* make free use of the ObjectOutputStream to save any representation of
* the class it deems suitable (for example, the bytes of the class file).
* The resolveClass method in the corresponding subclass of
* ObjectInputStream must read and use any data or objects written by
* annotateClass.
*
* @param cl the class to annotate custom data for
* @throws IOException Any exception thrown by the underlying
* OutputStream.
*/
protected void annotateClass(Class> cl) throws IOException {
}
/**
* Subclasses may implement this method to store custom data in the stream
* along with descriptors for dynamic proxy classes.
*
*
This method is called exactly once for each unique proxy class
* descriptor in the stream. The default implementation of this method in
* {@code ObjectOutputStream} does nothing.
*
*
The corresponding method in {@code ObjectInputStream} is
* {@code resolveProxyClass}. For a given subclass of
* {@code ObjectOutputStream} that overrides this method, the
* {@code resolveProxyClass} method in the corresponding subclass of
* {@code ObjectInputStream} must read any data or objects written by
* {@code annotateProxyClass}.
*
* @param cl the proxy class to annotate custom data for
* @throws IOException any exception thrown by the underlying
* {@code OutputStream}
* @see ObjectInputStream#resolveProxyClass(String[])
* @since 1.3
*/
protected void annotateProxyClass(Class> cl) throws IOException {
}
/**
* This method will allow trusted subclasses of ObjectOutputStream to
* substitute one object for another during serialization. Replacing
* objects is disabled until enableReplaceObject is called. The
* enableReplaceObject method checks that the stream requesting to do
* replacement can be trusted. The first occurrence of each object written
* into the serialization stream is passed to replaceObject. Subsequent
* references to the object are replaced by the object returned by the
* original call to replaceObject. To ensure that the private state of
* objects is not unintentionally exposed, only trusted streams may use
* replaceObject.
*
*
The ObjectOutputStream.writeObject method takes a parameter of type
* Object (as opposed to type Serializable) to allow for cases where
* non-serializable objects are replaced by serializable ones.
*
*
When a subclass is replacing objects it must insure that either a
* complementary substitution must be made during deserialization or that
* the substituted object is compatible with every field where the
* reference will be stored. Objects whose type is not a subclass of the
* type of the field or array element abort the serialization by raising an
* exception and the object is not be stored.
*
*
This method is called only once when each object is first
* encountered. All subsequent references to the object will be redirected
* to the new object. This method should return the object to be
* substituted or the original object.
*
*
Null can be returned as the object to be substituted, but may cause
* NullReferenceException in classes that contain references to the
* original object since they may be expecting an object instead of
* null.
*
* @param obj the object to be replaced
* @return the alternate object that replaced the specified one
* @throws IOException Any exception thrown by the underlying
* OutputStream.
*/
protected Object replaceObject(Object obj) throws IOException {
return obj;
}
/**
* Enables the stream to do replacement of objects written to the stream. When
* enabled, the {@link #replaceObject} method is called for every object being
* serialized.
*
*
If object replacement is currently not enabled, and
* {@code enable} is true, and there is a security manager installed,
* this method first calls the security manager's
* {@code checkPermission} method with the
* {@code SerializablePermission("enableSubstitution")} permission to
* ensure that the caller is permitted to enable the stream to do replacement
* of objects written to the stream.
*
* @param enable true for enabling use of {@code replaceObject} for
* every object being serialized
* @return the previous setting before this method was invoked
* @throws SecurityException if a security manager exists and its
* {@code checkPermission} method denies enabling the stream
* to do replacement of objects written to the stream.
* @see SecurityManager#checkPermission
* @see java.io.SerializablePermission
*/
protected boolean enableReplaceObject(boolean enable)
throws SecurityException
{
if (enable == enableReplace) {
return enable;
}
if (enable) {
@SuppressWarnings("removal")
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(SUBSTITUTION_PERMISSION);
}
}
enableReplace = enable;
return !enableReplace;
}
/**
* The writeStreamHeader method is provided so subclasses can append or
* prepend their own header to the stream. It writes the magic number and
* version to the stream.
*
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
protected void writeStreamHeader() throws IOException {
bout.writeShort(STREAM_MAGIC);
bout.writeShort(STREAM_VERSION);
}
/**
* Write the specified class descriptor to the ObjectOutputStream. Class
* descriptors are used to identify the classes of objects written to the
* stream. Subclasses of ObjectOutputStream may override this method to
* customize the way in which class descriptors are written to the
* serialization stream. The corresponding method in ObjectInputStream,
* {@code readClassDescriptor}, should then be overridden to
* reconstitute the class descriptor from its custom stream representation.
* By default, this method writes class descriptors according to the format
* defined in the Object Serialization specification.
*
*
Note that this method will only be called if the ObjectOutputStream
* is not using the old serialization stream format (set by calling
* ObjectOutputStream's {@code useProtocolVersion} method). If this
* serialization stream is using the old format
* ({@code PROTOCOL_VERSION_1}), the class descriptor will be written
* internally in a manner that cannot be overridden or customized.
*
* @param desc class descriptor to write to the stream
* @throws IOException If an I/O error has occurred.
* @see java.io.ObjectInputStream#readClassDescriptor()
* @see #useProtocolVersion(int)
* @see java.io.ObjectStreamConstants#PROTOCOL_VERSION_1
* @since 1.3
*/
protected void writeClassDescriptor(ObjectStreamClass desc)
throws IOException
{
desc.writeNonProxy(this);
}
/**
* Writes a byte. This method will block until the byte is actually
* written.
*
* @param val the byte to be written to the stream
* @throws IOException If an I/O error has occurred.
*/
public void write(int val) throws IOException {
bout.write(val);
}
/**
* Writes an array of bytes. This method will block until the bytes are
* actually written.
*
* @param buf the data to be written
* @throws IOException If an I/O error has occurred.
*/
public void write(byte[] buf) throws IOException {
bout.write(buf, 0, buf.length, false);
}
/**
* Writes a sub array of bytes.
*
* @param buf the data to be written
* @param off the start offset in the data
* @param len the number of bytes that are written
* @throws IOException If an I/O error has occurred.
*/
public void write(byte[] buf, int off, int len) throws IOException {
if (buf == null) {
throw new NullPointerException();
}
int endoff = off + len;
if (off < 0 || len < 0 || endoff > buf.length || endoff < 0) {
throw new IndexOutOfBoundsException();
}
bout.write(buf, off, len, false);
}
/**
* Flushes the stream. This will write any buffered output bytes and flush
* through to the underlying stream.
*
* @throws IOException If an I/O error has occurred.
*/
public void flush() throws IOException {
bout.flush();
}
/**
* Drain any buffered data in ObjectOutputStream. Similar to flush but
* does not propagate the flush to the underlying stream.
*
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
protected void drain() throws IOException {
bout.drain();
}
/**
* Closes the stream. This method must be called to release any resources
* associated with the stream.
*
* @throws IOException If an I/O error has occurred.
*/
public void close() throws IOException {
flush();
clear();
bout.close();
}
/**
* Writes a boolean.
*
* @param val the boolean to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeBoolean(boolean val) throws IOException {
bout.writeBoolean(val);
}
/**
* Writes an 8 bit byte.
*
* @param val the byte value to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeByte(int val) throws IOException {
bout.writeByte(val);
}
/**
* Writes a 16 bit short.
*
* @param val the short value to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeShort(int val) throws IOException {
bout.writeShort(val);
}
/**
* Writes a 16 bit char.
*
* @param val the char value to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeChar(int val) throws IOException {
bout.writeChar(val);
}
/**
* Writes a 32 bit int.
*
* @param val the integer value to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeInt(int val) throws IOException {
bout.writeInt(val);
}
/**
* Writes a 64 bit long.
*
* @param val the long value to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeLong(long val) throws IOException {
bout.writeLong(val);
}
/**
* Writes a 32 bit float.
*
* @param val the float value to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeFloat(float val) throws IOException {
bout.writeFloat(val);
}
/**
* Writes a 64 bit double.
*
* @param val the double value to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeDouble(double val) throws IOException {
bout.writeDouble(val);
}
/**
* Writes a String as a sequence of bytes.
*
* @param str the String of bytes to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeBytes(String str) throws IOException {
bout.writeBytes(str);
}
/**
* Writes a String as a sequence of chars.
*
* @param str the String of chars to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeChars(String str) throws IOException {
bout.writeChars(str);
}
/**
* Primitive data write of this String in
* modified UTF-8
* format. Note that there is a
* significant difference between writing a String into the stream as
* primitive data or as an Object. A String instance written by writeObject
* is written into the stream as a String initially. Future writeObject()
* calls write references to the string into the stream.
*
* @param str the String to be written
* @throws IOException if I/O errors occur while writing to the underlying
* stream
*/
public void writeUTF(String str) throws IOException {
bout.writeUTF(str);
}
/**
* Provide programmatic access to the persistent fields to be written
* to ObjectOutput.
*
* @since 1.2
*/
public abstract static class PutField {
/**
* Constructor for subclasses to call.
*/
public PutField() {}
/**
* Put the value of the named boolean field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not
* {@code boolean}
*/
public abstract void put(String name, boolean val);
/**
* Put the value of the named byte field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not
* {@code byte}
*/
public abstract void put(String name, byte val);
/**
* Put the value of the named char field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not
* {@code char}
*/
public abstract void put(String name, char val);
/**
* Put the value of the named short field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not
* {@code short}
*/
public abstract void put(String name, short val);
/**
* Put the value of the named int field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not
* {@code int}
*/
public abstract void put(String name, int val);
/**
* Put the value of the named long field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not
* {@code long}
*/
public abstract void put(String name, long val);
/**
* Put the value of the named float field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not
* {@code float}
*/
public abstract void put(String name, float val);
/**
* Put the value of the named double field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not
* {@code double}
*/
public abstract void put(String name, double val);
/**
* Put the value of the named Object field into the persistent field.
*
* @param name the name of the serializable field
* @param val the value to assign to the field
* (which may be {@code null})
* @throws IllegalArgumentException if {@code name} does not
* match the name of a serializable field for the class whose fields
* are being written, or if the type of the named field is not a
* reference type
*/
public abstract void put(String name, Object val);
/**
* Write the data and fields to the specified ObjectOutput stream,
* which must be the same stream that produced this
* {@code PutField} object.
*
* @param out the stream to write the data and fields to
* @throws IOException if I/O errors occur while writing to the
* underlying stream
* @throws IllegalArgumentException if the specified stream is not
* the same stream that produced this {@code PutField}
* object
* @deprecated This method does not write the values contained by this
* {@code PutField} object in a proper format, and may
* result in corruption of the serialization stream. The
* correct way to write {@code PutField} data is by
* calling the {@link java.io.ObjectOutputStream#writeFields()}
* method.
*/
@Deprecated
public abstract void write(ObjectOutput out) throws IOException;
}
/**
* Returns protocol version in use.
*/
int getProtocolVersion() {
return protocol;
}
/**
* Writes string without allowing it to be replaced in stream. Used by
* ObjectStreamClass to write class descriptor type strings.
*/
void writeTypeString(String str) throws IOException {
int handle;
if (str == null) {
writeNull();
} else if ((handle = handles.lookup(str)) != -1) {
writeHandle(handle);
} else {
writeString(str, false);
}
}
/**
* Verifies that this (possibly subclass) instance can be constructed
* without violating security constraints: the subclass must not override
* security-sensitive non-final methods, or else the
* "enableSubclassImplementation" SerializablePermission is checked.
*/
private void verifySubclass() {
Class> cl = getClass();
if (cl == ObjectOutputStream.class) {
return;
}
@SuppressWarnings("removal")
SecurityManager sm = System.getSecurityManager();
if (sm == null) {
return;
}
processQueue(Caches.subclassAuditsQueue, Caches.subclassAudits);
WeakClassKey key = new WeakClassKey(cl, Caches.subclassAuditsQueue);
Boolean result = Caches.subclassAudits.get(key);
if (result == null) {
result = auditSubclass(cl);
Caches.subclassAudits.putIfAbsent(key, result);
}
if (!result) {
sm.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION);
}
}
/**
* Performs reflective checks on given subclass to verify that it doesn't
* override security-sensitive non-final methods. Returns TRUE if subclass
* is "safe", FALSE otherwise.
*/
@SuppressWarnings("removal")
private static Boolean auditSubclass(Class> subcl) {
return AccessController.doPrivileged(
new PrivilegedAction<>() {
public Boolean run() {
for (Class> cl = subcl;
cl != ObjectOutputStream.class;
cl = cl.getSuperclass())
{
try {
cl.getDeclaredMethod(
"writeUnshared", new Class>[] { Object.class });
return Boolean.FALSE;
} catch (NoSuchMethodException ex) {
}
try {
cl.getDeclaredMethod("putFields", (Class>[]) null);
return Boolean.FALSE;
} catch (NoSuchMethodException ex) {
}
}
return Boolean.TRUE;
}
}
);
}
/**
* Clears internal data structures.
*/
private void clear() {
subs.clear();
handles.clear();
}
/**
* Underlying writeObject/writeUnshared implementation.
*/
private void writeObject0(Object obj, boolean unshared)
throws IOException
{
boolean oldMode = bout.setBlockDataMode(false);
depth++;
try {
// handle previously written and non-replaceable objects
int h;
if ((obj = subs.lookup(obj)) == null) {
writeNull();
return;
} else if (!unshared && (h = handles.lookup(obj)) != -1) {
writeHandle(h);
return;
} else if (obj instanceof Class) {
writeClass((Class) obj, unshared);
return;
} else if (obj instanceof ObjectStreamClass) {
writeClassDesc((ObjectStreamClass) obj, unshared);
return;
}
// check for replacement object
Object orig = obj;
Class> cl = obj.getClass();
ObjectStreamClass desc;
for (;;) {
// REMIND: skip this check for strings/arrays?
Class> repCl;
desc = ObjectStreamClass.lookup(cl, true);
if (!desc.hasWriteReplaceMethod() ||
(obj = desc.invokeWriteReplace(obj)) == null ||
(repCl = obj.getClass()) == cl)
{
break;
}
cl = repCl;
}
if (enableReplace) {
Object rep = replaceObject(obj);
if (rep != obj && rep != null) {
cl = rep.getClass();
desc = ObjectStreamClass.lookup(cl, true);
}
obj = rep;
}
// if object replaced, run through original checks a second time
if (obj != orig) {
subs.assign(orig, obj);
if (obj == null) {
writeNull();
return;
} else if (!unshared && (h = handles.lookup(obj)) != -1) {
writeHandle(h);
return;
} else if (obj instanceof Class) {
writeClass((Class) obj, unshared);
return;
} else if (obj instanceof ObjectStreamClass) {
writeClassDesc((ObjectStreamClass) obj, unshared);
return;
}
}
// remaining cases
if (obj instanceof String) {
writeString((String) obj, unshared);
} else if (cl.isArray()) {
writeArray(obj, desc, unshared);
} else if (obj instanceof Enum) {
writeEnum((Enum>) obj, desc, unshared);
} else if (obj instanceof Serializable) {
writeOrdinaryObject(obj, desc, unshared);
} else {
if (extendedDebugInfo) {
throw new NotSerializableException(
cl.getName() + "\n" + debugInfoStack.toString());
} else {
throw new NotSerializableException(cl.getName());
}
}
} finally {
depth--;
bout.setBlockDataMode(oldMode);
}
}
/**
* Writes null code to stream.
*/
private void writeNull() throws IOException {
bout.writeByte(TC_NULL);
}
/**
* Writes given object handle to stream.
*/
private void writeHandle(int handle) throws IOException {
bout.writeByte(TC_REFERENCE);
bout.writeInt(baseWireHandle + handle);
}
/**
* Writes representation of given class to stream.
*/
private void writeClass(Class> cl, boolean unshared) throws IOException {
bout.writeByte(TC_CLASS);
writeClassDesc(ObjectStreamClass.lookup(cl, true), false);
handles.assign(unshared ? null : cl);
}
/**
* Writes representation of given class descriptor to stream.
*/
private void writeClassDesc(ObjectStreamClass desc, boolean unshared)
throws IOException
{
int handle;
if (desc == null) {
writeNull();
} else if (!unshared && (handle = handles.lookup(desc)) != -1) {
writeHandle(handle);
} else if (desc.isProxy()) {
writeProxyDesc(desc, unshared);
} else {
writeNonProxyDesc(desc, unshared);
}
}
private boolean isCustomSubclass() {
// Return true if this class is a custom subclass of ObjectOutputStream
return getClass().getClassLoader()
!= ObjectOutputStream.class.getClassLoader();
}
/**
* Writes class descriptor representing a dynamic proxy class to stream.
*/
private void writeProxyDesc(ObjectStreamClass desc, boolean unshared)
throws IOException
{
bout.writeByte(TC_PROXYCLASSDESC);
handles.assign(unshared ? null : desc);
Class> cl = desc.forClass();
Class>[] ifaces = cl.getInterfaces();
bout.writeInt(ifaces.length);
for (int i = 0; i < ifaces.length; i++) {
bout.writeUTF(ifaces[i].getName());
}
bout.setBlockDataMode(true);
if (cl != null && isCustomSubclass()) {
ReflectUtil.checkPackageAccess(cl);
}
annotateProxyClass(cl);
bout.setBlockDataMode(false);
bout.writeByte(TC_ENDBLOCKDATA);
writeClassDesc(desc.getSuperDesc(), false);
}
/**
* Writes class descriptor representing a standard (i.e., not a dynamic
* proxy) class to stream.
*/
private void writeNonProxyDesc(ObjectStreamClass desc, boolean unshared)
throws IOException
{
bout.writeByte(TC_CLASSDESC);
handles.assign(unshared ? null : desc);
if (protocol == PROTOCOL_VERSION_1) {
// do not invoke class descriptor write hook with old protocol
desc.writeNonProxy(this);
} else {
writeClassDescriptor(desc);
}
Class> cl = desc.forClass();
bout.setBlockDataMode(true);
if (cl != null && isCustomSubclass()) {
ReflectUtil.checkPackageAccess(cl);
}
annotateClass(cl);
bout.setBlockDataMode(false);
bout.writeByte(TC_ENDBLOCKDATA);
writeClassDesc(desc.getSuperDesc(), false);
}
/**
* Writes given string to stream, using standard or long UTF format
* depending on string length.
*/
private void writeString(String str, boolean unshared) throws IOException {
handles.assign(unshared ? null : str);
long utflen = bout.getUTFLength(str);
if (utflen <= 0xFFFF) {
bout.writeByte(TC_STRING);
bout.writeUTF(str, utflen);
} else {
bout.writeByte(TC_LONGSTRING);
bout.writeLongUTF(str, utflen);
}
}
/**
* Writes given array object to stream.
*/
private void writeArray(Object array,
ObjectStreamClass desc,
boolean unshared)
throws IOException
{
bout.writeByte(TC_ARRAY);
writeClassDesc(desc, false);
handles.assign(unshared ? null : array);
Class> ccl = desc.forClass().getComponentType();
if (ccl.isPrimitive()) {
if (ccl == Integer.TYPE) {
int[] ia = (int[]) array;
bout.writeInt(ia.length);
bout.writeInts(ia, 0, ia.length);
} else if (ccl == Byte.TYPE) {
byte[] ba = (byte[]) array;
bout.writeInt(ba.length);
bout.write(ba, 0, ba.length, true);
} else if (ccl == Long.TYPE) {
long[] ja = (long[]) array;
bout.writeInt(ja.length);
bout.writeLongs(ja, 0, ja.length);
} else if (ccl == Float.TYPE) {
float[] fa = (float[]) array;
bout.writeInt(fa.length);
bout.writeFloats(fa, 0, fa.length);
} else if (ccl == Double.TYPE) {
double[] da = (double[]) array;
bout.writeInt(da.length);
bout.writeDoubles(da, 0, da.length);
} else if (ccl == Short.TYPE) {
short[] sa = (short[]) array;
bout.writeInt(sa.length);
bout.writeShorts(sa, 0, sa.length);
} else if (ccl == Character.TYPE) {
char[] ca = (char[]) array;
bout.writeInt(ca.length);
bout.writeChars(ca, 0, ca.length);
} else if (ccl == Boolean.TYPE) {
boolean[] za = (boolean[]) array;
bout.writeInt(za.length);
bout.writeBooleans(za, 0, za.length);
} else {
throw new InternalError();
}
} else {
Object[] objs = (Object[]) array;
int len = objs.length;
bout.writeInt(len);
if (extendedDebugInfo) {
debugInfoStack.push(
"array (class \"" + array.getClass().getName() +
"\", size: " + len + ")");
}
try {
for (int i = 0; i < len; i++) {
if (extendedDebugInfo) {
debugInfoStack.push(
"element of array (index: " + i + ")");
}
try {
writeObject0(objs[i], false);
} finally {
if (extendedDebugInfo) {
debugInfoStack.pop();
}
}
}
} finally {
if (extendedDebugInfo) {
debugInfoStack.pop();
}
}
}
}
/**
* Writes given enum constant to stream.
*/
private void writeEnum(Enum> en,
ObjectStreamClass desc,
boolean unshared)
throws IOException
{
bout.writeByte(TC_ENUM);
ObjectStreamClass sdesc = desc.getSuperDesc();
writeClassDesc((sdesc.forClass() == Enum.class) ? desc : sdesc, false);
handles.assign(unshared ? null : en);
writeString(en.name(), false);
}
/**
* Writes representation of a "ordinary" (i.e., not a String, Class,
* ObjectStreamClass, array, or enum constant) serializable object to the
* stream.
*/
private void writeOrdinaryObject(Object obj,
ObjectStreamClass desc,
boolean unshared)
throws IOException
{
if (extendedDebugInfo) {
debugInfoStack.push(
(depth == 1 ? "root " : "") + "object (class \"" +
obj.getClass().getName() + "\", " + obj.toString() + ")");
}
try {
desc.checkSerialize();
bout.writeByte(TC_OBJECT);
writeClassDesc(desc, false);
handles.assign(unshared ? null : obj);
if (desc.isRecord()) {
writeRecordData(obj, desc);
} else if (desc.isExternalizable() && !desc.isProxy()) {
writeExternalData((Externalizable) obj);
} else {
writeSerialData(obj, desc);
}
} finally {
if (extendedDebugInfo) {
debugInfoStack.pop();
}
}
}
/**
* Writes externalizable data of given object by invoking its
* writeExternal() method.
*/
private void writeExternalData(Externalizable obj) throws IOException {
PutFieldImpl oldPut = curPut;
curPut = null;
if (extendedDebugInfo) {
debugInfoStack.push("writeExternal data");
}
SerialCallbackContext oldContext = curContext;
try {
curContext = null;
if (protocol == PROTOCOL_VERSION_1) {
obj.writeExternal(this);
} else {
bout.setBlockDataMode(true);
obj.writeExternal(this);
bout.setBlockDataMode(false);
bout.writeByte(TC_ENDBLOCKDATA);
}
} finally {
curContext = oldContext;
if (extendedDebugInfo) {
debugInfoStack.pop();
}
}
curPut = oldPut;
}
/** Writes the record component values for the given record object. */
private void writeRecordData(Object obj, ObjectStreamClass desc)
throws IOException
{
assert obj.getClass().isRecord();
ObjectStreamClass.ClassDataSlot[] slots = desc.getClassDataLayout();
if (slots.length != 1) {
throw new InvalidClassException(
"expected a single record slot length, but found: " + slots.length);
}
defaultWriteFields(obj, desc); // #### seems unnecessary to use the accessors
}
/**
* Writes instance data for each serializable class of given object, from
* superclass to subclass.
*/
private void writeSerialData(Object obj, ObjectStreamClass desc)
throws IOException
{
ObjectStreamClass.ClassDataSlot[] slots = desc.getClassDataLayout();
for (int i = 0; i < slots.length; i++) {
ObjectStreamClass slotDesc = slots[i].desc;
if (slotDesc.hasWriteObjectMethod()) {
PutFieldImpl oldPut = curPut;
curPut = null;
SerialCallbackContext oldContext = curContext;
if (extendedDebugInfo) {
debugInfoStack.push(
"custom writeObject data (class \"" +
slotDesc.getName() + "\")");
}
try {
curContext = new SerialCallbackContext(obj, slotDesc);
bout.setBlockDataMode(true);
slotDesc.invokeWriteObject(obj, this);
bout.setBlockDataMode(false);
bout.writeByte(TC_ENDBLOCKDATA);
} finally {
curContext.setUsed();
curContext = oldContext;
if (extendedDebugInfo) {
debugInfoStack.pop();
}
}
curPut = oldPut;
} else {
defaultWriteFields(obj, slotDesc);
}
}
}
/**
* Fetches and writes values of serializable fields of given object to
* stream. The given class descriptor specifies which field values to
* write, and in which order they should be written.
*/
private void defaultWriteFields(Object obj, ObjectStreamClass desc)
throws IOException
{
Class> cl = desc.forClass();
if (cl != null && obj != null && !cl.isInstance(obj)) {
throw new ClassCastException();
}
desc.checkDefaultSerialize();
int primDataSize = desc.getPrimDataSize();
if (primDataSize > 0) {
if (primVals == null || primVals.length < primDataSize) {
primVals = new byte[primDataSize];
}
desc.getPrimFieldValues(obj, primVals);
bout.write(primVals, 0, primDataSize, false);
}
int numObjFields = desc.getNumObjFields();
if (numObjFields > 0) {
ObjectStreamField[] fields = desc.getFields(false);
Object[] objVals = new Object[numObjFields];
int numPrimFields = fields.length - objVals.length;
desc.getObjFieldValues(obj, objVals);
for (int i = 0; i < objVals.length; i++) {
if (extendedDebugInfo) {
debugInfoStack.push(
"field (class \"" + desc.getName() + "\", name: \"" +
fields[numPrimFields + i].getName() + "\", type: \"" +
fields[numPrimFields + i].getType() + "\")");
}
try {
writeObject0(objVals[i],
fields[numPrimFields + i].isUnshared());
} finally {
if (extendedDebugInfo) {
debugInfoStack.pop();
}
}
}
}
}
/**
* Attempts to write to stream fatal IOException that has caused
* serialization to abort.
*/
private void writeFatalException(IOException ex) throws IOException {
/*
* Note: the serialization specification states that if a second
* IOException occurs while attempting to serialize the original fatal
* exception to the stream, then a StreamCorruptedException should be
* thrown (section 2.1). However, due to a bug in previous
* implementations of serialization, StreamCorruptedExceptions were
* rarely (if ever) actually thrown--the "root" exceptions from
* underlying streams were thrown instead. This historical behavior is
* followed here for consistency.
*/
clear();
boolean oldMode = bout.setBlockDataMode(false);
try {
bout.writeByte(TC_EXCEPTION);
writeObject0(ex, false);
clear();
} finally {
bout.setBlockDataMode(oldMode);
}
}
/**
* Default PutField implementation.
*/
private class PutFieldImpl extends PutField {
/** class descriptor describing serializable fields */
private final ObjectStreamClass desc;
/** primitive field values */
private final byte[] primVals;
/** object field values */
private final Object[] objVals;
/**
* Creates PutFieldImpl object for writing fields defined in given
* class descriptor.
*/
PutFieldImpl(ObjectStreamClass desc) {
this.desc = desc;
primVals = new byte[desc.getPrimDataSize()];
objVals = new Object[desc.getNumObjFields()];
}
public void put(String name, boolean val) {
Bits.putBoolean(primVals, getFieldOffset(name, Boolean.TYPE), val);
}
public void put(String name, byte val) {
primVals[getFieldOffset(name, Byte.TYPE)] = val;
}
public void put(String name, char val) {
Bits.putChar(primVals, getFieldOffset(name, Character.TYPE), val);
}
public void put(String name, short val) {
Bits.putShort(primVals, getFieldOffset(name, Short.TYPE), val);
}
public void put(String name, int val) {
Bits.putInt(primVals, getFieldOffset(name, Integer.TYPE), val);
}
public void put(String name, float val) {
Bits.putFloat(primVals, getFieldOffset(name, Float.TYPE), val);
}
public void put(String name, long val) {
Bits.putLong(primVals, getFieldOffset(name, Long.TYPE), val);
}
public void put(String name, double val) {
Bits.putDouble(primVals, getFieldOffset(name, Double.TYPE), val);
}
public void put(String name, Object val) {
objVals[getFieldOffset(name, Object.class)] = val;
}
// deprecated in ObjectOutputStream.PutField
public void write(ObjectOutput out) throws IOException {
/*
* Applications should *not* use this method to write PutField
* data, as it will lead to stream corruption if the PutField
* object writes any primitive data (since block data mode is not
* unset/set properly, as is done in OOS.writeFields()). This
* broken implementation is being retained solely for behavioral
* compatibility, in order to support applications which use
* OOS.PutField.write() for writing only non-primitive data.
*
* Serialization of unshared objects is not implemented here since
* it is not necessary for backwards compatibility; also, unshared
* semantics may not be supported by the given ObjectOutput
* instance. Applications which write unshared objects using the
* PutField API must use OOS.writeFields().
*/
if (ObjectOutputStream.this != out) {
throw new IllegalArgumentException("wrong stream");
}
out.write(primVals, 0, primVals.length);
ObjectStreamField[] fields = desc.getFields(false);
int numPrimFields = fields.length - objVals.length;
// REMIND: warn if numPrimFields > 0?
for (int i = 0; i < objVals.length; i++) {
if (fields[numPrimFields + i].isUnshared()) {
throw new IOException("cannot write unshared object");
}
out.writeObject(objVals[i]);
}
}
/**
* Writes buffered primitive data and object fields to stream.
*/
void writeFields() throws IOException {
bout.write(primVals, 0, primVals.length, false);
ObjectStreamField[] fields = desc.getFields(false);
int numPrimFields = fields.length - objVals.length;
for (int i = 0; i < objVals.length; i++) {
if (extendedDebugInfo) {
debugInfoStack.push(
"field (class \"" + desc.getName() + "\", name: \"" +
fields[numPrimFields + i].getName() + "\", type: \"" +
fields[numPrimFields + i].getType() + "\")");
}
try {
writeObject0(objVals[i],
fields[numPrimFields + i].isUnshared());
} finally {
if (extendedDebugInfo) {
debugInfoStack.pop();
}
}
}
}
/**
* Returns offset of field with given name and type. A specified type
* of null matches all types, Object.class matches all non-primitive
* types, and any other non-null type matches assignable types only.
* Throws IllegalArgumentException if no matching field found.
*/
private int getFieldOffset(String name, Class> type) {
ObjectStreamField field = desc.getField(name, type);
if (field == null) {
throw new IllegalArgumentException("no such field " + name +
" with type " + type);
}
return field.getOffset();
}
}
/**
* Buffered output stream with two modes: in default mode, outputs data in
* same format as DataOutputStream; in "block data" mode, outputs data
* bracketed by block data markers (see object serialization specification
* for details).
*/
private static class BlockDataOutputStream
extends OutputStream implements DataOutput
{
/** maximum data block length */
private static final int MAX_BLOCK_SIZE = 1024;
/** maximum data block header length */
private static final int MAX_HEADER_SIZE = 5;
/** (tunable) length of char buffer (for writing strings) */
private static final int CHAR_BUF_SIZE = 256;
/** buffer for writing general/block data */
private final byte[] buf = new byte[MAX_BLOCK_SIZE];
/** buffer for writing block data headers */
private final byte[] hbuf = new byte[MAX_HEADER_SIZE];
/** char buffer for fast string writes */
private final char[] cbuf = new char[CHAR_BUF_SIZE];
/** block data mode */
private boolean blkmode = false;
/** current offset into buf */
private int pos = 0;
/** underlying output stream */
private final OutputStream out;
/** loopback stream (for data writes that span data blocks) */
private final DataOutputStream dout;
/**
* Creates new BlockDataOutputStream on top of given underlying stream.
* Block data mode is turned off by default.
*/
BlockDataOutputStream(OutputStream out) {
this.out = out;
dout = new DataOutputStream(this);
}
/**
* Sets block data mode to the given mode (true == on, false == off)
* and returns the previous mode value. If the new mode is the same as
* the old mode, no action is taken. If the new mode differs from the
* old mode, any buffered data is flushed before switching to the new
* mode.
*/
boolean setBlockDataMode(boolean mode) throws IOException {
if (blkmode == mode) {
return blkmode;
}
drain();
blkmode = mode;
return !blkmode;
}
/**
* Returns true if the stream is currently in block data mode, false
* otherwise.
*/
boolean getBlockDataMode() {
return blkmode;
}
/* ----------------- generic output stream methods ----------------- */
/*
* The following methods are equivalent to their counterparts in
* OutputStream, except that they partition written data into data
* blocks when in block data mode.
*/
public void write(int b) throws IOException {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
buf[pos++] = (byte) b;
}
public void write(byte[] b) throws IOException {
write(b, 0, b.length, false);
}
public void write(byte[] b, int off, int len) throws IOException {
write(b, off, len, false);
}
public void flush() throws IOException {
drain();
out.flush();
}
public void close() throws IOException {
flush();
out.close();
}
/**
* Writes specified span of byte values from given array. If copy is
* true, copies the values to an intermediate buffer before writing
* them to underlying stream (to avoid exposing a reference to the
* original byte array).
*/
void write(byte[] b, int off, int len, boolean copy)
throws IOException
{
if (!(copy || blkmode)) { // write directly
drain();
out.write(b, off, len);
return;
}
while (len > 0) {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
if (len >= MAX_BLOCK_SIZE && !copy && pos == 0) {
// avoid unnecessary copy
writeBlockHeader(MAX_BLOCK_SIZE);
out.write(b, off, MAX_BLOCK_SIZE);
off += MAX_BLOCK_SIZE;
len -= MAX_BLOCK_SIZE;
} else {
int wlen = Math.min(len, MAX_BLOCK_SIZE - pos);
System.arraycopy(b, off, buf, pos, wlen);
pos += wlen;
off += wlen;
len -= wlen;
}
}
}
/**
* Writes all buffered data from this stream to the underlying stream,
* but does not flush underlying stream.
*/
void drain() throws IOException {
if (pos == 0) {
return;
}
if (blkmode) {
writeBlockHeader(pos);
}
out.write(buf, 0, pos);
pos = 0;
}
/**
* Writes block data header. Data blocks shorter than 256 bytes are
* prefixed with a 2-byte header; all others start with a 5-byte
* header.
*/
private void writeBlockHeader(int len) throws IOException {
if (len <= 0xFF) {
hbuf[0] = TC_BLOCKDATA;
hbuf[1] = (byte) len;
out.write(hbuf, 0, 2);
} else {
hbuf[0] = TC_BLOCKDATALONG;
Bits.putInt(hbuf, 1, len);
out.write(hbuf, 0, 5);
}
}
/* ----------------- primitive data output methods ----------------- */
/*
* The following methods are equivalent to their counterparts in
* DataOutputStream, except that they partition written data into data
* blocks when in block data mode.
*/
public void writeBoolean(boolean v) throws IOException {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
Bits.putBoolean(buf, pos++, v);
}
public void writeByte(int v) throws IOException {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
buf[pos++] = (byte) v;
}
public void writeChar(int v) throws IOException {
if (pos + 2 <= MAX_BLOCK_SIZE) {
Bits.putChar(buf, pos, (char) v);
pos += 2;
} else {
dout.writeChar(v);
}
}
public void writeShort(int v) throws IOException {
if (pos + 2 <= MAX_BLOCK_SIZE) {
Bits.putShort(buf, pos, (short) v);
pos += 2;
} else {
dout.writeShort(v);
}
}
public void writeInt(int v) throws IOException {
if (pos + 4 <= MAX_BLOCK_SIZE) {
Bits.putInt(buf, pos, v);
pos += 4;
} else {
dout.writeInt(v);
}
}
public void writeFloat(float v) throws IOException {
if (pos + 4 <= MAX_BLOCK_SIZE) {
Bits.putFloat(buf, pos, v);
pos += 4;
} else {
dout.writeFloat(v);
}
}
public void writeLong(long v) throws IOException {
if (pos + 8 <= MAX_BLOCK_SIZE) {
Bits.putLong(buf, pos, v);
pos += 8;
} else {
dout.writeLong(v);
}
}
public void writeDouble(double v) throws IOException {
if (pos + 8 <= MAX_BLOCK_SIZE) {
Bits.putDouble(buf, pos, v);
pos += 8;
} else {
dout.writeDouble(v);
}
}
public void writeBytes(String s) throws IOException {
int endoff = s.length();
int cpos = 0;
int csize = 0;
for (int off = 0; off < endoff; ) {
if (cpos >= csize) {
cpos = 0;
csize = Math.min(endoff - off, CHAR_BUF_SIZE);
s.getChars(off, off + csize, cbuf, 0);
}
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
int n = Math.min(csize - cpos, MAX_BLOCK_SIZE - pos);
int stop = pos + n;
while (pos < stop) {
buf[pos++] = (byte) cbuf[cpos++];
}
off += n;
}
}
public void writeChars(String s) throws IOException {
int endoff = s.length();
for (int off = 0; off < endoff; ) {
int csize = Math.min(endoff - off, CHAR_BUF_SIZE);
s.getChars(off, off + csize, cbuf, 0);
writeChars(cbuf, 0, csize);
off += csize;
}
}
public void writeUTF(String s) throws IOException {
writeUTF(s, getUTFLength(s));
}
/* -------------- primitive data array output methods -------------- */
/*
* The following methods write out spans of primitive data values.
* Though equivalent to calling the corresponding primitive write
* methods repeatedly, these methods are optimized for writing groups
* of primitive data values more efficiently.
*/
void writeBooleans(boolean[] v, int off, int len) throws IOException {
int endoff = off + len;
while (off < endoff) {
if (pos >= MAX_BLOCK_SIZE) {
drain();
}
int stop = Math.min(endoff, off + (MAX_BLOCK_SIZE - pos));
while (off < stop) {
Bits.putBoolean(buf, pos++, v[off++]);
}
}
}
void writeChars(char[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 2;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 1;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putChar(buf, pos, v[off++]);
pos += 2;
}
} else {
dout.writeChar(v[off++]);
}
}
}
void writeShorts(short[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 2;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 1;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putShort(buf, pos, v[off++]);
pos += 2;
}
} else {
dout.writeShort(v[off++]);
}
}
}
void writeInts(int[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 4;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 2;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putInt(buf, pos, v[off++]);
pos += 4;
}
} else {
dout.writeInt(v[off++]);
}
}
}
void writeFloats(float[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 4;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 2;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putFloat(buf, pos, v[off++]);
pos += 4;
}
} else {
dout.writeFloat(v[off++]);
}
}
}
void writeLongs(long[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 8;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 3;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putLong(buf, pos, v[off++]);
pos += 8;
}
} else {
dout.writeLong(v[off++]);
}
}
}
void writeDoubles(double[] v, int off, int len) throws IOException {
int limit = MAX_BLOCK_SIZE - 8;
int endoff = off + len;
while (off < endoff) {
if (pos <= limit) {
int avail = (MAX_BLOCK_SIZE - pos) >> 3;
int stop = Math.min(endoff, off + avail);
while (off < stop) {
Bits.putDouble(buf, pos, v[off++]);
pos += 8;
}
} else {
dout.writeDouble(v[off++]);
}
}
}
/**
* Returns the length in bytes of the UTF encoding of the given string.
*/
long getUTFLength(String s) {
int len = s.length();
long utflen = 0;
for (int off = 0; off < len; ) {
int csize = Math.min(len - off, CHAR_BUF_SIZE);
s.getChars(off, off + csize, cbuf, 0);
for (int cpos = 0; cpos < csize; cpos++) {
char c = cbuf[cpos];
if (c >= 0x0001 && c <= 0x007F) {
utflen++;
} else if (c > 0x07FF) {
utflen += 3;
} else {
utflen += 2;
}
}
off += csize;
}
return utflen;
}
/**
* Writes the given string in UTF format. This method is used in
* situations where the UTF encoding length of the string is already
* known; specifying it explicitly avoids a prescan of the string to
* determine its UTF length.
*/
void writeUTF(String s, long utflen) throws IOException {
if (utflen > 0xFFFFL) {
throw new UTFDataFormatException();
}
writeShort((int) utflen);
if (utflen == (long) s.length()) {
writeBytes(s);
} else {
writeUTFBody(s);
}
}
/**
* Writes given string in "long" UTF format. "Long" UTF format is
* identical to standard UTF, except that it uses an 8 byte header
* (instead of the standard 2 bytes) to convey the UTF encoding length.
*/
void writeLongUTF(String s) throws IOException {
writeLongUTF(s, getUTFLength(s));
}
/**
* Writes given string in "long" UTF format, where the UTF encoding
* length of the string is already known.
*/
void writeLongUTF(String s, long utflen) throws IOException {
writeLong(utflen);
if (utflen == (long) s.length()) {
writeBytes(s);
} else {
writeUTFBody(s);
}
}
/**
* Writes the "body" (i.e., the UTF representation minus the 2-byte or
* 8-byte length header) of the UTF encoding for the given string.
*/
private void writeUTFBody(String s) throws IOException {
int limit = MAX_BLOCK_SIZE - 3;
int len = s.length();
for (int off = 0; off < len; ) {
int csize = Math.min(len - off, CHAR_BUF_SIZE);
s.getChars(off, off + csize, cbuf, 0);
for (int cpos = 0; cpos < csize; cpos++) {
char c = cbuf[cpos];
if (pos <= limit) {
if (c <= 0x007F && c != 0) {
buf[pos++] = (byte) c;
} else if (c > 0x07FF) {
buf[pos + 2] = (byte) (0x80 | ((c >> 0) & 0x3F));
buf[pos + 1] = (byte) (0x80 | ((c >> 6) & 0x3F));
buf[pos + 0] = (byte) (0xE0 | ((c >> 12) & 0x0F));
pos += 3;
} else {
buf[pos + 1] = (byte) (0x80 | ((c >> 0) & 0x3F));
buf[pos + 0] = (byte) (0xC0 | ((c >> 6) & 0x1F));
pos += 2;
}
} else { // write one byte at a time to normalize block
if (c <= 0x007F && c != 0) {
write(c);
} else if (c > 0x07FF) {
write(0xE0 | ((c >> 12) & 0x0F));
write(0x80 | ((c >> 6) & 0x3F));
write(0x80 | ((c >> 0) & 0x3F));
} else {
write(0xC0 | ((c >> 6) & 0x1F));
write(0x80 | ((c >> 0) & 0x3F));
}
}
}
off += csize;
}
}
}
/**
* Lightweight identity hash table which maps objects to integer handles,
* assigned in ascending order.
*/
private static class HandleTable {
/* number of mappings in table/next available handle */
private int size;
/* size threshold determining when to expand hash spine */
private int threshold;
/* factor for computing size threshold */
private final float loadFactor;
/* maps hash value -> candidate handle value */
private int[] spine;
/* maps handle value -> next candidate handle value */
private int[] next;
/* maps handle value -> associated object */
private Object[] objs;
/**
* Creates new HandleTable with given capacity and load factor.
*/
HandleTable(int initialCapacity, float loadFactor) {
this.loadFactor = loadFactor;
spine = new int[initialCapacity];
next = new int[initialCapacity];
objs = new Object[initialCapacity];
threshold = (int) (initialCapacity * loadFactor);
clear();
}
/**
* Assigns next available handle to given object, and returns handle
* value. Handles are assigned in ascending order starting at 0.
*/
int assign(Object obj) {
if (size >= next.length) {
growEntries();
}
if (size >= threshold) {
growSpine();
}
insert(obj, size);
return size++;
}
/**
* Looks up and returns handle associated with given object, or -1 if
* no mapping found.
*/
int lookup(Object obj) {
if (size == 0) {
return -1;
}
int index = hash(obj) % spine.length;
for (int i = spine[index]; i >= 0; i = next[i]) {
if (objs[i] == obj) {
return i;
}
}
return -1;
}
/**
* Resets table to its initial (empty) state.
*/
void clear() {
Arrays.fill(spine, -1);
Arrays.fill(objs, 0, size, null);
size = 0;
}
/**
* Returns the number of mappings currently in table.
*/
int size() {
return size;
}
/**
* Inserts mapping object -> handle mapping into table. Assumes table
* is large enough to accommodate new mapping.
*/
private void insert(Object obj, int handle) {
int index = hash(obj) % spine.length;
objs[handle] = obj;
next[handle] = spine[index];
spine[index] = handle;
}
/**
* Expands the hash "spine" -- equivalent to increasing the number of
* buckets in a conventional hash table.
*/
private void growSpine() {
spine = new int[(spine.length << 1) + 1];
threshold = (int) (spine.length * loadFactor);
Arrays.fill(spine, -1);
for (int i = 0; i < size; i++) {
insert(objs[i], i);
}
}
/**
* Increases hash table capacity by lengthening entry arrays.
*/
private void growEntries() {
int newLength = (next.length << 1) + 1;
int[] newNext = new int[newLength];
System.arraycopy(next, 0, newNext, 0, size);
next = newNext;
Object[] newObjs = new Object[newLength];
System.arraycopy(objs, 0, newObjs, 0, size);
objs = newObjs;
}
/**
* Returns hash value for given object.
*/
private int hash(Object obj) {
return System.identityHashCode(obj) & 0x7FFFFFFF;
}
}
/**
* Lightweight identity hash table which maps objects to replacement
* objects.
*/
private static class ReplaceTable {
/* maps object -> index */
private final HandleTable htab;
/* maps index -> replacement object */
private Object[] reps;
/**
* Creates new ReplaceTable with given capacity and load factor.
*/
ReplaceTable(int initialCapacity, float loadFactor) {
htab = new HandleTable(initialCapacity, loadFactor);
reps = new Object[initialCapacity];
}
/**
* Enters mapping from object to replacement object.
*/
void assign(Object obj, Object rep) {
int index = htab.assign(obj);
while (index >= reps.length) {
grow();
}
reps[index] = rep;
}
/**
* Looks up and returns replacement for given object. If no
* replacement is found, returns the lookup object itself.
*/
Object lookup(Object obj) {
int index = htab.lookup(obj);
return (index >= 0) ? reps[index] : obj;
}
/**
* Resets table to its initial (empty) state.
*/
void clear() {
Arrays.fill(reps, 0, htab.size(), null);
htab.clear();
}
/**
* Returns the number of mappings currently in table.
*/
int size() {
return htab.size();
}
/**
* Increases table capacity.
*/
private void grow() {
Object[] newReps = new Object[(reps.length << 1) + 1];
System.arraycopy(reps, 0, newReps, 0, reps.length);
reps = newReps;
}
}
/**
* Stack to keep debug information about the state of the
* serialization process, for embedding in exception messages.
*/
private static class DebugTraceInfoStack {
private final List stack;
DebugTraceInfoStack() {
stack = new ArrayList<>();
}
/**
* Removes all of the elements from enclosed list.
*/
void clear() {
stack.clear();
}
/**
* Removes the object at the top of enclosed list.
*/
void pop() {
stack.remove(stack.size()-1);
}
/**
* Pushes a String onto the top of enclosed list.
*/
void push(String entry) {
stack.add("\t- " + entry);
}
/**
* Returns a string representation of this object
*/
public String toString() {
StringJoiner sj = new StringJoiner("\n");
for (int i = stack.size() - 1; i >= 0; i--) {
sj.add(stack.get(i));
}
return sj.toString();
}
}
}