java.lang.Integer Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 1994, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
import java.lang.annotation.Native;
import java.lang.invoke.MethodHandles;
import java.lang.constant.Constable;
import java.lang.constant.ConstantDesc;
import java.util.Objects;
import java.util.Optional;
import jdk.internal.misc.CDS;
import jdk.internal.misc.VM;
import jdk.internal.vm.annotation.IntrinsicCandidate;
import static java.lang.String.COMPACT_STRINGS;
import static java.lang.String.LATIN1;
import static java.lang.String.UTF16;
/**
* The {@code Integer} class wraps a value of the primitive type
* {@code int} in an object. An object of type {@code Integer}
* contains a single field whose type is {@code int}.
*
* In addition, this class provides several methods for converting
* an {@code int} to a {@code String} and a {@code String} to an
* {@code int}, as well as other constants and methods useful when
* dealing with an {@code int}.
*
*
This is a value-based
* class; programmers should treat instances that are
* {@linkplain #equals(Object) equal} as interchangeable and should not
* use instances for synchronization, or unpredictable behavior may
* occur. For example, in a future release, synchronization may fail.
*
*
Implementation note: The implementations of the "bit twiddling"
* methods (such as {@link #highestOneBit(int) highestOneBit} and
* {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
* based on material from Henry S. Warren, Jr.'s Hacker's
* Delight, (Addison Wesley, 2002).
*
* @author Lee Boynton
* @author Arthur van Hoff
* @author Josh Bloch
* @author Joseph D. Darcy
* @since 1.0
*/
@jdk.internal.ValueBased
public final class Integer extends Number
implements Comparable, Constable, ConstantDesc {
/**
* A constant holding the minimum value an {@code int} can
* have, -231.
*/
@Native public static final int MIN_VALUE = 0x80000000;
/**
* A constant holding the maximum value an {@code int} can
* have, 231-1.
*/
@Native public static final int MAX_VALUE = 0x7fffffff;
/**
* The {@code Class} instance representing the primitive type
* {@code int}.
*
* @since 1.1
*/
@SuppressWarnings("unchecked")
public static final Class TYPE = (Class) Class.getPrimitiveClass("int");
/**
* All possible chars for representing a number as a String
*/
static final char[] digits = {
'0' , '1' , '2' , '3' , '4' , '5' ,
'6' , '7' , '8' , '9' , 'a' , 'b' ,
'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
'o' , 'p' , 'q' , 'r' , 's' , 't' ,
'u' , 'v' , 'w' , 'x' , 'y' , 'z'
};
/**
* Returns a string representation of the first argument in the
* radix specified by the second argument.
*
* If the radix is smaller than {@code Character.MIN_RADIX}
* or larger than {@code Character.MAX_RADIX}, then the radix
* {@code 10} is used instead.
*
*
If the first argument is negative, the first element of the
* result is the ASCII minus character {@code '-'}
* ({@code '\u005Cu002D'}). If the first argument is not
* negative, no sign character appears in the result.
*
*
The remaining characters of the result represent the magnitude
* of the first argument. If the magnitude is zero, it is
* represented by a single zero character {@code '0'}
* ({@code '\u005Cu0030'}); otherwise, the first character of
* the representation of the magnitude will not be the zero
* character. The following ASCII characters are used as digits:
*
*
* {@code 0123456789abcdefghijklmnopqrstuvwxyz}
*
*
* These are {@code '\u005Cu0030'} through
* {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
* {@code '\u005Cu007A'}. If {@code radix} is
* N, then the first N of these characters
* are used as radix-N digits in the order shown. Thus,
* the digits for hexadecimal (radix 16) are
* {@code 0123456789abcdef}. If uppercase letters are
* desired, the {@link java.lang.String#toUpperCase()} method may
* be called on the result:
*
*
* {@code Integer.toString(n, 16).toUpperCase()}
*
*
* @param i an integer to be converted to a string.
* @param radix the radix to use in the string representation.
* @return a string representation of the argument in the specified radix.
* @see java.lang.Character#MAX_RADIX
* @see java.lang.Character#MIN_RADIX
*/
public static String toString(int i, int radix) {
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
radix = 10;
/* Use the faster version */
if (radix == 10) {
return toString(i);
}
if (COMPACT_STRINGS) {
byte[] buf = new byte[33];
boolean negative = (i < 0);
int charPos = 32;
if (!negative) {
i = -i;
}
while (i <= -radix) {
buf[charPos--] = (byte)digits[-(i % radix)];
i = i / radix;
}
buf[charPos] = (byte)digits[-i];
if (negative) {
buf[--charPos] = '-';
}
return StringLatin1.newString(buf, charPos, (33 - charPos));
}
return toStringUTF16(i, radix);
}
private static String toStringUTF16(int i, int radix) {
byte[] buf = new byte[33 * 2];
boolean negative = (i < 0);
int charPos = 32;
if (!negative) {
i = -i;
}
while (i <= -radix) {
StringUTF16.putChar(buf, charPos--, digits[-(i % radix)]);
i = i / radix;
}
StringUTF16.putChar(buf, charPos, digits[-i]);
if (negative) {
StringUTF16.putChar(buf, --charPos, '-');
}
return StringUTF16.newString(buf, charPos, (33 - charPos));
}
/**
* Returns a string representation of the first argument as an
* unsigned integer value in the radix specified by the second
* argument.
*
* If the radix is smaller than {@code Character.MIN_RADIX}
* or larger than {@code Character.MAX_RADIX}, then the radix
* {@code 10} is used instead.
*
*
Note that since the first argument is treated as an unsigned
* value, no leading sign character is printed.
*
*
If the magnitude is zero, it is represented by a single zero
* character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
* the first character of the representation of the magnitude will
* not be the zero character.
*
*
The behavior of radixes and the characters used as digits
* are the same as {@link #toString(int, int) toString}.
*
* @param i an integer to be converted to an unsigned string.
* @param radix the radix to use in the string representation.
* @return an unsigned string representation of the argument in the specified radix.
* @see #toString(int, int)
* @since 1.8
*/
public static String toUnsignedString(int i, int radix) {
return Long.toUnsignedString(toUnsignedLong(i), radix);
}
/**
* Returns a string representation of the integer argument as an
* unsigned integer in base 16.
*
*
The unsigned integer value is the argument plus 232
* if the argument is negative; otherwise, it is equal to the
* argument. This value is converted to a string of ASCII digits
* in hexadecimal (base 16) with no extra leading
* {@code 0}s.
*
*
The value of the argument can be recovered from the returned
* string {@code s} by calling {@link
* Integer#parseUnsignedInt(String, int)
* Integer.parseUnsignedInt(s, 16)}.
*
*
If the unsigned magnitude is zero, it is represented by a
* single zero character {@code '0'} ({@code '\u005Cu0030'});
* otherwise, the first character of the representation of the
* unsigned magnitude will not be the zero character. The
* following characters are used as hexadecimal digits:
*
*
* {@code 0123456789abcdef}
*
*
* These are the characters {@code '\u005Cu0030'} through
* {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
* {@code '\u005Cu0066'}. If uppercase letters are
* desired, the {@link java.lang.String#toUpperCase()} method may
* be called on the result:
*
*
* {@code Integer.toHexString(n).toUpperCase()}
*
*
* @apiNote
* The {@link java.util.HexFormat} class provides formatting and parsing
* of byte arrays and primitives to return a string or adding to an {@link Appendable}.
* {@code HexFormat} formats and parses uppercase or lowercase hexadecimal characters,
* with leading zeros and for byte arrays includes for each byte
* a delimiter, prefix, and suffix.
*
* @param i an integer to be converted to a string.
* @return the string representation of the unsigned integer value
* represented by the argument in hexadecimal (base 16).
* @see java.util.HexFormat
* @see #parseUnsignedInt(String, int)
* @see #toUnsignedString(int, int)
* @since 1.0.2
*/
public static String toHexString(int i) {
return toUnsignedString0(i, 4);
}
/**
* Returns a string representation of the integer argument as an
* unsigned integer in base 8.
*
* The unsigned integer value is the argument plus 232
* if the argument is negative; otherwise, it is equal to the
* argument. This value is converted to a string of ASCII digits
* in octal (base 8) with no extra leading {@code 0}s.
*
*
The value of the argument can be recovered from the returned
* string {@code s} by calling {@link
* Integer#parseUnsignedInt(String, int)
* Integer.parseUnsignedInt(s, 8)}.
*
*
If the unsigned magnitude is zero, it is represented by a
* single zero character {@code '0'} ({@code '\u005Cu0030'});
* otherwise, the first character of the representation of the
* unsigned magnitude will not be the zero character. The
* following characters are used as octal digits:
*
*
* {@code 01234567}
*
*
* These are the characters {@code '\u005Cu0030'} through
* {@code '\u005Cu0037'}.
*
* @param i an integer to be converted to a string.
* @return the string representation of the unsigned integer value
* represented by the argument in octal (base 8).
* @see #parseUnsignedInt(String, int)
* @see #toUnsignedString(int, int)
* @since 1.0.2
*/
public static String toOctalString(int i) {
return toUnsignedString0(i, 3);
}
/**
* Returns a string representation of the integer argument as an
* unsigned integer in base 2.
*
* The unsigned integer value is the argument plus 232
* if the argument is negative; otherwise it is equal to the
* argument. This value is converted to a string of ASCII digits
* in binary (base 2) with no extra leading {@code 0}s.
*
*
The value of the argument can be recovered from the returned
* string {@code s} by calling {@link
* Integer#parseUnsignedInt(String, int)
* Integer.parseUnsignedInt(s, 2)}.
*
*
If the unsigned magnitude is zero, it is represented by a
* single zero character {@code '0'} ({@code '\u005Cu0030'});
* otherwise, the first character of the representation of the
* unsigned magnitude will not be the zero character. The
* characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
* '1'} ({@code '\u005Cu0031'}) are used as binary digits.
*
* @param i an integer to be converted to a string.
* @return the string representation of the unsigned integer value
* represented by the argument in binary (base 2).
* @see #parseUnsignedInt(String, int)
* @see #toUnsignedString(int, int)
* @since 1.0.2
*/
public static String toBinaryString(int i) {
return toUnsignedString0(i, 1);
}
/**
* Convert the integer to an unsigned number.
*/
private static String toUnsignedString0(int val, int shift) {
// assert shift > 0 && shift <=5 : "Illegal shift value";
int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val);
int chars = Math.max(((mag + (shift - 1)) / shift), 1);
if (COMPACT_STRINGS) {
byte[] buf = new byte[chars];
formatUnsignedInt(val, shift, buf, chars);
return new String(buf, LATIN1);
} else {
byte[] buf = new byte[chars * 2];
formatUnsignedIntUTF16(val, shift, buf, chars);
return new String(buf, UTF16);
}
}
/**
* Format an {@code int} (treated as unsigned) into a byte buffer (LATIN1 version). If
* {@code len} exceeds the formatted ASCII representation of {@code val},
* {@code buf} will be padded with leading zeroes.
*
* @param val the unsigned int to format
* @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
* @param buf the byte buffer to write to
* @param len the number of characters to write
*/
private static void formatUnsignedInt(int val, int shift, byte[] buf, int len) {
int charPos = len;
int radix = 1 << shift;
int mask = radix - 1;
do {
buf[--charPos] = (byte)Integer.digits[val & mask];
val >>>= shift;
} while (charPos > 0);
}
/**
* Format an {@code int} (treated as unsigned) into a byte buffer (UTF16 version). If
* {@code len} exceeds the formatted ASCII representation of {@code val},
* {@code buf} will be padded with leading zeroes.
*
* @param val the unsigned int to format
* @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
* @param buf the byte buffer to write to
* @param len the number of characters to write
*/
private static void formatUnsignedIntUTF16(int val, int shift, byte[] buf, int len) {
int charPos = len;
int radix = 1 << shift;
int mask = radix - 1;
do {
StringUTF16.putChar(buf, --charPos, Integer.digits[val & mask]);
val >>>= shift;
} while (charPos > 0);
}
static final byte[] DigitTens = {
'0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
'2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
'3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
'4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
'5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
'6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
'7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
'8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
'9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
} ;
static final byte[] DigitOnes = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
} ;
/**
* Returns a {@code String} object representing the
* specified integer. The argument is converted to signed decimal
* representation and returned as a string, exactly as if the
* argument and radix 10 were given as arguments to the {@link
* #toString(int, int)} method.
*
* @param i an integer to be converted.
* @return a string representation of the argument in base 10.
*/
@IntrinsicCandidate
public static String toString(int i) {
int size = stringSize(i);
if (COMPACT_STRINGS) {
byte[] buf = new byte[size];
getChars(i, size, buf);
return new String(buf, LATIN1);
} else {
byte[] buf = new byte[size * 2];
StringUTF16.getChars(i, size, buf);
return new String(buf, UTF16);
}
}
/**
* Returns a string representation of the argument as an unsigned
* decimal value.
*
* The argument is converted to unsigned decimal representation
* and returned as a string exactly as if the argument and radix
* 10 were given as arguments to the {@link #toUnsignedString(int,
* int)} method.
*
* @param i an integer to be converted to an unsigned string.
* @return an unsigned string representation of the argument.
* @see #toUnsignedString(int, int)
* @since 1.8
*/
public static String toUnsignedString(int i) {
return Long.toString(toUnsignedLong(i));
}
/**
* Places characters representing the integer i into the
* character array buf. The characters are placed into
* the buffer backwards starting with the least significant
* digit at the specified index (exclusive), and working
* backwards from there.
*
* @implNote This method converts positive inputs into negative
* values, to cover the Integer.MIN_VALUE case. Converting otherwise
* (negative to positive) will expose -Integer.MIN_VALUE that overflows
* integer.
*
* @param i value to convert
* @param index next index, after the least significant digit
* @param buf target buffer, Latin1-encoded
* @return index of the most significant digit or minus sign, if present
*/
static int getChars(int i, int index, byte[] buf) {
int q, r;
int charPos = index;
boolean negative = i < 0;
if (!negative) {
i = -i;
}
// Generate two digits per iteration
while (i <= -100) {
q = i / 100;
r = (q * 100) - i;
i = q;
buf[--charPos] = DigitOnes[r];
buf[--charPos] = DigitTens[r];
}
// We know there are at most two digits left at this point.
q = i / 10;
r = (q * 10) - i;
buf[--charPos] = (byte)('0' + r);
// Whatever left is the remaining digit.
if (q < 0) {
buf[--charPos] = (byte)('0' - q);
}
if (negative) {
buf[--charPos] = (byte)'-';
}
return charPos;
}
// Left here for compatibility reasons, see JDK-8143900.
static final int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
99999999, 999999999, Integer.MAX_VALUE };
/**
* Returns the string representation size for a given int value.
*
* @param x int value
* @return string size
*
* @implNote There are other ways to compute this: e.g. binary search,
* but values are biased heavily towards zero, and therefore linear search
* wins. The iteration results are also routinely inlined in the generated
* code after loop unrolling.
*/
static int stringSize(int x) {
int d = 1;
if (x >= 0) {
d = 0;
x = -x;
}
int p = -10;
for (int i = 1; i < 10; i++) {
if (x > p)
return i + d;
p = 10 * p;
}
return 10 + d;
}
/**
* Parses the string argument as a signed integer in the radix
* specified by the second argument. The characters in the string
* must all be digits of the specified radix (as determined by
* whether {@link java.lang.Character#digit(char, int)} returns a
* nonnegative value), except that the first character may be an
* ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
* indicate a negative value or an ASCII plus sign {@code '+'}
* ({@code '\u005Cu002B'}) to indicate a positive value. The
* resulting integer value is returned.
*
*
An exception of type {@code NumberFormatException} is
* thrown if any of the following situations occurs:
*
* - The first argument is {@code null} or is a string of
* length zero.
*
*
- The radix is either smaller than
* {@link java.lang.Character#MIN_RADIX} or
* larger than {@link java.lang.Character#MAX_RADIX}.
*
*
- Any character of the string is not a digit of the specified
* radix, except that the first character may be a minus sign
* {@code '-'} ({@code '\u005Cu002D'}) or plus sign
* {@code '+'} ({@code '\u005Cu002B'}) provided that the
* string is longer than length 1.
*
*
- The value represented by the string is not a value of type
* {@code int}.
*
*
* Examples:
*
* parseInt("0", 10) returns 0
* parseInt("473", 10) returns 473
* parseInt("+42", 10) returns 42
* parseInt("-0", 10) returns 0
* parseInt("-FF", 16) returns -255
* parseInt("1100110", 2) returns 102
* parseInt("2147483647", 10) returns 2147483647
* parseInt("-2147483648", 10) returns -2147483648
* parseInt("2147483648", 10) throws a NumberFormatException
* parseInt("99", 8) throws a NumberFormatException
* parseInt("Kona", 10) throws a NumberFormatException
* parseInt("Kona", 27) returns 411787
*
*
* @param s the {@code String} containing the integer
* representation to be parsed
* @param radix the radix to be used while parsing {@code s}.
* @return the integer represented by the string argument in the
* specified radix.
* @throws NumberFormatException if the {@code String}
* does not contain a parsable {@code int}.
*/
public static int parseInt(String s, int radix)
throws NumberFormatException
{
/*
* WARNING: This method may be invoked early during VM initialization
* before IntegerCache is initialized. Care must be taken to not use
* the valueOf method.
*/
if (s == null) {
throw new NumberFormatException("Cannot parse null string");
}
if (radix < Character.MIN_RADIX) {
throw new NumberFormatException("radix " + radix +
" less than Character.MIN_RADIX");
}
if (radix > Character.MAX_RADIX) {
throw new NumberFormatException("radix " + radix +
" greater than Character.MAX_RADIX");
}
boolean negative = false;
int i = 0, len = s.length();
int limit = -Integer.MAX_VALUE;
if (len > 0) {
char firstChar = s.charAt(0);
if (firstChar < '0') { // Possible leading "+" or "-"
if (firstChar == '-') {
negative = true;
limit = Integer.MIN_VALUE;
} else if (firstChar != '+') {
throw NumberFormatException.forInputString(s, radix);
}
if (len == 1) { // Cannot have lone "+" or "-"
throw NumberFormatException.forInputString(s, radix);
}
i++;
}
int multmin = limit / radix;
int result = 0;
while (i < len) {
// Accumulating negatively avoids surprises near MAX_VALUE
int digit = Character.digit(s.charAt(i++), radix);
if (digit < 0 || result < multmin) {
throw NumberFormatException.forInputString(s, radix);
}
result *= radix;
if (result < limit + digit) {
throw NumberFormatException.forInputString(s, radix);
}
result -= digit;
}
return negative ? result : -result;
} else {
throw NumberFormatException.forInputString(s, radix);
}
}
/**
* Parses the {@link CharSequence} argument as a signed {@code int} in the
* specified {@code radix}, beginning at the specified {@code beginIndex}
* and extending to {@code endIndex - 1}.
*
* The method does not take steps to guard against the
* {@code CharSequence} being mutated while parsing.
*
* @param s the {@code CharSequence} containing the {@code int}
* representation to be parsed
* @param beginIndex the beginning index, inclusive.
* @param endIndex the ending index, exclusive.
* @param radix the radix to be used while parsing {@code s}.
* @return the signed {@code int} represented by the subsequence in
* the specified radix.
* @throws NullPointerException if {@code s} is null.
* @throws IndexOutOfBoundsException if {@code beginIndex} is
* negative, or if {@code beginIndex} is greater than
* {@code endIndex} or if {@code endIndex} is greater than
* {@code s.length()}.
* @throws NumberFormatException if the {@code CharSequence} does not
* contain a parsable {@code int} in the specified
* {@code radix}, or if {@code radix} is either smaller than
* {@link java.lang.Character#MIN_RADIX} or larger than
* {@link java.lang.Character#MAX_RADIX}.
* @since 9
*/
public static int parseInt(CharSequence s, int beginIndex, int endIndex, int radix)
throws NumberFormatException {
Objects.requireNonNull(s);
if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
throw new IndexOutOfBoundsException();
}
if (radix < Character.MIN_RADIX) {
throw new NumberFormatException("radix " + radix +
" less than Character.MIN_RADIX");
}
if (radix > Character.MAX_RADIX) {
throw new NumberFormatException("radix " + radix +
" greater than Character.MAX_RADIX");
}
boolean negative = false;
int i = beginIndex;
int limit = -Integer.MAX_VALUE;
if (i < endIndex) {
char firstChar = s.charAt(i);
if (firstChar < '0') { // Possible leading "+" or "-"
if (firstChar == '-') {
negative = true;
limit = Integer.MIN_VALUE;
} else if (firstChar != '+') {
throw NumberFormatException.forCharSequence(s, beginIndex,
endIndex, i);
}
i++;
if (i == endIndex) { // Cannot have lone "+" or "-"
throw NumberFormatException.forCharSequence(s, beginIndex,
endIndex, i);
}
}
int multmin = limit / radix;
int result = 0;
while (i < endIndex) {
// Accumulating negatively avoids surprises near MAX_VALUE
int digit = Character.digit(s.charAt(i), radix);
if (digit < 0 || result < multmin) {
throw NumberFormatException.forCharSequence(s, beginIndex,
endIndex, i);
}
result *= radix;
if (result < limit + digit) {
throw NumberFormatException.forCharSequence(s, beginIndex,
endIndex, i);
}
i++;
result -= digit;
}
return negative ? result : -result;
} else {
throw NumberFormatException.forInputString("", radix);
}
}
/**
* Parses the string argument as a signed decimal integer. The
* characters in the string must all be decimal digits, except
* that the first character may be an ASCII minus sign {@code '-'}
* ({@code '\u005Cu002D'}) to indicate a negative value or an
* ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
* indicate a positive value. The resulting integer value is
* returned, exactly as if the argument and the radix 10 were
* given as arguments to the {@link #parseInt(java.lang.String,
* int)} method.
*
* @param s a {@code String} containing the {@code int}
* representation to be parsed
* @return the integer value represented by the argument in decimal.
* @throws NumberFormatException if the string does not contain a
* parsable integer.
*/
public static int parseInt(String s) throws NumberFormatException {
return parseInt(s,10);
}
/**
* Parses the string argument as an unsigned integer in the radix
* specified by the second argument. An unsigned integer maps the
* values usually associated with negative numbers to positive
* numbers larger than {@code MAX_VALUE}.
*
* The characters in the string must all be digits of the
* specified radix (as determined by whether {@link
* java.lang.Character#digit(char, int)} returns a nonnegative
* value), except that the first character may be an ASCII plus
* sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
* integer value is returned.
*
*
An exception of type {@code NumberFormatException} is
* thrown if any of the following situations occurs:
*
* - The first argument is {@code null} or is a string of
* length zero.
*
*
- The radix is either smaller than
* {@link java.lang.Character#MIN_RADIX} or
* larger than {@link java.lang.Character#MAX_RADIX}.
*
*
- Any character of the string is not a digit of the specified
* radix, except that the first character may be a plus sign
* {@code '+'} ({@code '\u005Cu002B'}) provided that the
* string is longer than length 1.
*
*
- The value represented by the string is larger than the
* largest unsigned {@code int}, 232-1.
*
*
*
*
* @param s the {@code String} containing the unsigned integer
* representation to be parsed
* @param radix the radix to be used while parsing {@code s}.
* @return the integer represented by the string argument in the
* specified radix.
* @throws NumberFormatException if the {@code String}
* does not contain a parsable {@code int}.
* @since 1.8
*/
public static int parseUnsignedInt(String s, int radix)
throws NumberFormatException {
if (s == null) {
throw new NumberFormatException("Cannot parse null string");
}
int len = s.length();
if (len > 0) {
char firstChar = s.charAt(0);
if (firstChar == '-') {
throw new
NumberFormatException(String.format("Illegal leading minus sign " +
"on unsigned string %s.", s));
} else {
if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
(radix == 10 && len <= 9) ) { // Integer.MAX_VALUE in base 10 is 10 digits
return parseInt(s, radix);
} else {
long ell = Long.parseLong(s, radix);
if ((ell & 0xffff_ffff_0000_0000L) == 0) {
return (int) ell;
} else {
throw new
NumberFormatException(String.format("String value %s exceeds " +
"range of unsigned int.", s));
}
}
}
} else {
throw NumberFormatException.forInputString(s, radix);
}
}
/**
* Parses the {@link CharSequence} argument as an unsigned {@code int} in
* the specified {@code radix}, beginning at the specified
* {@code beginIndex} and extending to {@code endIndex - 1}.
*
* The method does not take steps to guard against the
* {@code CharSequence} being mutated while parsing.
*
* @param s the {@code CharSequence} containing the unsigned
* {@code int} representation to be parsed
* @param beginIndex the beginning index, inclusive.
* @param endIndex the ending index, exclusive.
* @param radix the radix to be used while parsing {@code s}.
* @return the unsigned {@code int} represented by the subsequence in
* the specified radix.
* @throws NullPointerException if {@code s} is null.
* @throws IndexOutOfBoundsException if {@code beginIndex} is
* negative, or if {@code beginIndex} is greater than
* {@code endIndex} or if {@code endIndex} is greater than
* {@code s.length()}.
* @throws NumberFormatException if the {@code CharSequence} does not
* contain a parsable unsigned {@code int} in the specified
* {@code radix}, or if {@code radix} is either smaller than
* {@link java.lang.Character#MIN_RADIX} or larger than
* {@link java.lang.Character#MAX_RADIX}.
* @since 9
*/
public static int parseUnsignedInt(CharSequence s, int beginIndex, int endIndex, int radix)
throws NumberFormatException {
Objects.requireNonNull(s);
if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
throw new IndexOutOfBoundsException();
}
int start = beginIndex, len = endIndex - beginIndex;
if (len > 0) {
char firstChar = s.charAt(start);
if (firstChar == '-') {
throw new
NumberFormatException(String.format("Illegal leading minus sign " +
"on unsigned string %s.", s));
} else {
if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
(radix == 10 && len <= 9)) { // Integer.MAX_VALUE in base 10 is 10 digits
return parseInt(s, start, start + len, radix);
} else {
long ell = Long.parseLong(s, start, start + len, radix);
if ((ell & 0xffff_ffff_0000_0000L) == 0) {
return (int) ell;
} else {
throw new
NumberFormatException(String.format("String value %s exceeds " +
"range of unsigned int.", s));
}
}
}
} else {
throw new NumberFormatException("");
}
}
/**
* Parses the string argument as an unsigned decimal integer. The
* characters in the string must all be decimal digits, except
* that the first character may be an ASCII plus sign {@code
* '+'} ({@code '\u005Cu002B'}). The resulting integer value
* is returned, exactly as if the argument and the radix 10 were
* given as arguments to the {@link
* #parseUnsignedInt(java.lang.String, int)} method.
*
* @param s a {@code String} containing the unsigned {@code int}
* representation to be parsed
* @return the unsigned integer value represented by the argument in decimal.
* @throws NumberFormatException if the string does not contain a
* parsable unsigned integer.
* @since 1.8
*/
public static int parseUnsignedInt(String s) throws NumberFormatException {
return parseUnsignedInt(s, 10);
}
/**
* Returns an {@code Integer} object holding the value
* extracted from the specified {@code String} when parsed
* with the radix given by the second argument. The first argument
* is interpreted as representing a signed integer in the radix
* specified by the second argument, exactly as if the arguments
* were given to the {@link #parseInt(java.lang.String, int)}
* method. The result is an {@code Integer} object that
* represents the integer value specified by the string.
*
*
In other words, this method returns an {@code Integer}
* object equal to the value of:
*
*
* {@code new Integer(Integer.parseInt(s, radix))}
*
*
* @param s the string to be parsed.
* @param radix the radix to be used in interpreting {@code s}
* @return an {@code Integer} object holding the value
* represented by the string argument in the specified
* radix.
* @throws NumberFormatException if the {@code String}
* does not contain a parsable {@code int}.
*/
public static Integer valueOf(String s, int radix) throws NumberFormatException {
return Integer.valueOf(parseInt(s,radix));
}
/**
* Returns an {@code Integer} object holding the
* value of the specified {@code String}. The argument is
* interpreted as representing a signed decimal integer, exactly
* as if the argument were given to the {@link
* #parseInt(java.lang.String)} method. The result is an
* {@code Integer} object that represents the integer value
* specified by the string.
*
* In other words, this method returns an {@code Integer}
* object equal to the value of:
*
*
* {@code new Integer(Integer.parseInt(s))}
*
*
* @param s the string to be parsed.
* @return an {@code Integer} object holding the value
* represented by the string argument.
* @throws NumberFormatException if the string cannot be parsed
* as an integer.
*/
public static Integer valueOf(String s) throws NumberFormatException {
return Integer.valueOf(parseInt(s, 10));
}
/**
* Cache to support the object identity semantics of autoboxing for values between
* -128 and 127 (inclusive) as required by JLS.
*
* The cache is initialized on first usage. The size of the cache
* may be controlled by the {@code -XX:AutoBoxCacheMax=} option.
* During VM initialization, java.lang.Integer.IntegerCache.high property
* may be set and saved in the private system properties in the
* jdk.internal.misc.VM class.
*
* WARNING: The cache is archived with CDS and reloaded from the shared
* archive at runtime. The archived cache (Integer[]) and Integer objects
* reside in the closed archive heap regions. Care should be taken when
* changing the implementation and the cache array should not be assigned
* with new Integer object(s) after initialization.
*/
private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer[] cache;
static Integer[] archivedCache;
static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
try {
h = Math.max(parseInt(integerCacheHighPropValue), 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(h, Integer.MAX_VALUE - (-low) -1);
} catch( NumberFormatException nfe) {
// If the property cannot be parsed into an int, ignore it.
}
}
high = h;
// Load IntegerCache.archivedCache from archive, if possible
CDS.initializeFromArchive(IntegerCache.class);
int size = (high - low) + 1;
// Use the archived cache if it exists and is large enough
if (archivedCache == null || size > archivedCache.length) {
Integer[] c = new Integer[size];
int j = low;
for(int i = 0; i < c.length; i++) {
c[i] = new Integer(j++);
}
archivedCache = c;
}
cache = archivedCache;
// range [-128, 127] must be interned (JLS7 5.1.7)
assert IntegerCache.high >= 127;
}
private IntegerCache() {}
}
/**
* Returns an {@code Integer} instance representing the specified
* {@code int} value. If a new {@code Integer} instance is not
* required, this method should generally be used in preference to
* the constructor {@link #Integer(int)}, as this method is likely
* to yield significantly better space and time performance by
* caching frequently requested values.
*
* This method will always cache values in the range -128 to 127,
* inclusive, and may cache other values outside of this range.
*
* @param i an {@code int} value.
* @return an {@code Integer} instance representing {@code i}.
* @since 1.5
*/
@IntrinsicCandidate
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
/**
* The value of the {@code Integer}.
*
* @serial
*/
private final int value;
/**
* Constructs a newly allocated {@code Integer} object that
* represents the specified {@code int} value.
*
* @param value the value to be represented by the
* {@code Integer} object.
*
* @deprecated
* It is rarely appropriate to use this constructor. The static factory
* {@link #valueOf(int)} is generally a better choice, as it is
* likely to yield significantly better space and time performance.
*/
@Deprecated(since="9", forRemoval = true)
public Integer(int value) {
this.value = value;
}
/**
* Constructs a newly allocated {@code Integer} object that
* represents the {@code int} value indicated by the
* {@code String} parameter. The string is converted to an
* {@code int} value in exactly the manner used by the
* {@code parseInt} method for radix 10.
*
* @param s the {@code String} to be converted to an {@code Integer}.
* @throws NumberFormatException if the {@code String} does not
* contain a parsable integer.
*
* @deprecated
* It is rarely appropriate to use this constructor.
* Use {@link #parseInt(String)} to convert a string to a
* {@code int} primitive, or use {@link #valueOf(String)}
* to convert a string to an {@code Integer} object.
*/
@Deprecated(since="9", forRemoval = true)
public Integer(String s) throws NumberFormatException {
this.value = parseInt(s, 10);
}
/**
* Returns the value of this {@code Integer} as a {@code byte}
* after a narrowing primitive conversion.
* @jls 5.1.3 Narrowing Primitive Conversion
*/
public byte byteValue() {
return (byte)value;
}
/**
* Returns the value of this {@code Integer} as a {@code short}
* after a narrowing primitive conversion.
* @jls 5.1.3 Narrowing Primitive Conversion
*/
public short shortValue() {
return (short)value;
}
/**
* Returns the value of this {@code Integer} as an
* {@code int}.
*/
@IntrinsicCandidate
public int intValue() {
return value;
}
/**
* Returns the value of this {@code Integer} as a {@code long}
* after a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversion
* @see Integer#toUnsignedLong(int)
*/
public long longValue() {
return (long)value;
}
/**
* Returns the value of this {@code Integer} as a {@code float}
* after a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversion
*/
public float floatValue() {
return (float)value;
}
/**
* Returns the value of this {@code Integer} as a {@code double}
* after a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversion
*/
public double doubleValue() {
return (double)value;
}
/**
* Returns a {@code String} object representing this
* {@code Integer}'s value. The value is converted to signed
* decimal representation and returned as a string, exactly as if
* the integer value were given as an argument to the {@link
* java.lang.Integer#toString(int)} method.
*
* @return a string representation of the value of this object in
* base 10.
*/
public String toString() {
return toString(value);
}
/**
* Returns a hash code for this {@code Integer}.
*
* @return a hash code value for this object, equal to the
* primitive {@code int} value represented by this
* {@code Integer} object.
*/
@Override
public int hashCode() {
return Integer.hashCode(value);
}
/**
* Returns a hash code for an {@code int} value; compatible with
* {@code Integer.hashCode()}.
*
* @param value the value to hash
* @since 1.8
*
* @return a hash code value for an {@code int} value.
*/
public static int hashCode(int value) {
return value;
}
/**
* Compares this object to the specified object. The result is
* {@code true} if and only if the argument is not
* {@code null} and is an {@code Integer} object that
* contains the same {@code int} value as this object.
*
* @param obj the object to compare with.
* @return {@code true} if the objects are the same;
* {@code false} otherwise.
*/
public boolean equals(Object obj) {
if (obj instanceof Integer) {
return value == ((Integer)obj).intValue();
}
return false;
}
/**
* Determines the integer value of the system property with the
* specified name.
*
* The first argument is treated as the name of a system
* property. System properties are accessible through the {@link
* java.lang.System#getProperty(java.lang.String)} method. The
* string value of this property is then interpreted as an integer
* value using the grammar supported by {@link Integer#decode decode} and
* an {@code Integer} object representing this value is returned.
*
*
If there is no property with the specified name, if the
* specified name is empty or {@code null}, or if the property
* does not have the correct numeric format, then {@code null} is
* returned.
*
*
In other words, this method returns an {@code Integer}
* object equal to the value of:
*
*
* {@code getInteger(nm, null)}
*
*
* @param nm property name.
* @return the {@code Integer} value of the property.
* @throws SecurityException for the same reasons as
* {@link System#getProperty(String) System.getProperty}
* @see java.lang.System#getProperty(java.lang.String)
* @see java.lang.System#getProperty(java.lang.String, java.lang.String)
*/
public static Integer getInteger(String nm) {
return getInteger(nm, null);
}
/**
* Determines the integer value of the system property with the
* specified name.
*
* The first argument is treated as the name of a system
* property. System properties are accessible through the {@link
* java.lang.System#getProperty(java.lang.String)} method. The
* string value of this property is then interpreted as an integer
* value using the grammar supported by {@link Integer#decode decode} and
* an {@code Integer} object representing this value is returned.
*
*
The second argument is the default value. An {@code Integer} object
* that represents the value of the second argument is returned if there
* is no property of the specified name, if the property does not have
* the correct numeric format, or if the specified name is empty or
* {@code null}.
*
*
In other words, this method returns an {@code Integer} object
* equal to the value of:
*
*
* {@code getInteger(nm, new Integer(val))}
*
*
* but in practice it may be implemented in a manner such as:
*
*
* Integer result = getInteger(nm, null);
* return (result == null) ? new Integer(val) : result;
*
*
* to avoid the unnecessary allocation of an {@code Integer}
* object when the default value is not needed.
*
* @param nm property name.
* @param val default value.
* @return the {@code Integer} value of the property.
* @throws SecurityException for the same reasons as
* {@link System#getProperty(String) System.getProperty}
* @see java.lang.System#getProperty(java.lang.String)
* @see java.lang.System#getProperty(java.lang.String, java.lang.String)
*/
public static Integer getInteger(String nm, int val) {
Integer result = getInteger(nm, null);
return (result == null) ? Integer.valueOf(val) : result;
}
/**
* Returns the integer value of the system property with the
* specified name. The first argument is treated as the name of a
* system property. System properties are accessible through the
* {@link java.lang.System#getProperty(java.lang.String)} method.
* The string value of this property is then interpreted as an
* integer value, as per the {@link Integer#decode decode} method,
* and an {@code Integer} object representing this value is
* returned; in summary:
*
* - If the property value begins with the two ASCII characters
* {@code 0x} or the ASCII character {@code #}, not
* followed by a minus sign, then the rest of it is parsed as a
* hexadecimal integer exactly as by the method
* {@link #valueOf(java.lang.String, int)} with radix 16.
*
- If the property value begins with the ASCII character
* {@code 0} followed by another character, it is parsed as an
* octal integer exactly as by the method
* {@link #valueOf(java.lang.String, int)} with radix 8.
*
- Otherwise, the property value is parsed as a decimal integer
* exactly as by the method {@link #valueOf(java.lang.String, int)}
* with radix 10.
*
*
* The second argument is the default value. The default value is
* returned if there is no property of the specified name, if the
* property does not have the correct numeric format, or if the
* specified name is empty or {@code null}.
*
* @param nm property name.
* @param val default value.
* @return the {@code Integer} value of the property.
* @throws SecurityException for the same reasons as
* {@link System#getProperty(String) System.getProperty}
* @see System#getProperty(java.lang.String)
* @see System#getProperty(java.lang.String, java.lang.String)
*/
public static Integer getInteger(String nm, Integer val) {
String v = null;
try {
v = System.getProperty(nm);
} catch (IllegalArgumentException | NullPointerException e) {
}
if (v != null) {
try {
return Integer.decode(v);
} catch (NumberFormatException e) {
}
}
return val;
}
/**
* Decodes a {@code String} into an {@code Integer}.
* Accepts decimal, hexadecimal, and octal numbers given
* by the following grammar:
*
*
*
* - DecodableString:
*
- Signopt DecimalNumeral
*
- Signopt {@code 0x} HexDigits
*
- Signopt {@code 0X} HexDigits
*
- Signopt {@code #} HexDigits
*
- Signopt {@code 0} OctalDigits
*
*
- Sign:
*
- {@code -}
*
- {@code +}
*
*
*
* DecimalNumeral, HexDigits, and OctalDigits
* are as defined in section {@jls 3.10.1} of
* The Java Language Specification,
* except that underscores are not accepted between digits.
*
* The sequence of characters following an optional
* sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
* "{@code #}", or leading zero) is parsed as by the {@code
* Integer.parseInt} method with the indicated radix (10, 16, or
* 8). This sequence of characters must represent a positive
* value or a {@link NumberFormatException} will be thrown. The
* result is negated if first character of the specified {@code
* String} is the minus sign. No whitespace characters are
* permitted in the {@code String}.
*
* @param nm the {@code String} to decode.
* @return an {@code Integer} object holding the {@code int}
* value represented by {@code nm}
* @throws NumberFormatException if the {@code String} does not
* contain a parsable integer.
* @see java.lang.Integer#parseInt(java.lang.String, int)
*/
public static Integer decode(String nm) throws NumberFormatException {
int radix = 10;
int index = 0;
boolean negative = false;
Integer result;
if (nm.isEmpty())
throw new NumberFormatException("Zero length string");
char firstChar = nm.charAt(0);
// Handle sign, if present
if (firstChar == '-') {
negative = true;
index++;
} else if (firstChar == '+')
index++;
// Handle radix specifier, if present
if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
index += 2;
radix = 16;
}
else if (nm.startsWith("#", index)) {
index ++;
radix = 16;
}
else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
index ++;
radix = 8;
}
if (nm.startsWith("-", index) || nm.startsWith("+", index))
throw new NumberFormatException("Sign character in wrong position");
try {
result = Integer.valueOf(nm.substring(index), radix);
result = negative ? Integer.valueOf(-result.intValue()) : result;
} catch (NumberFormatException e) {
// If number is Integer.MIN_VALUE, we'll end up here. The next line
// handles this case, and causes any genuine format error to be
// rethrown.
String constant = negative ? ("-" + nm.substring(index))
: nm.substring(index);
result = Integer.valueOf(constant, radix);
}
return result;
}
/**
* Compares two {@code Integer} objects numerically.
*
* @param anotherInteger the {@code Integer} to be compared.
* @return the value {@code 0} if this {@code Integer} is
* equal to the argument {@code Integer}; a value less than
* {@code 0} if this {@code Integer} is numerically less
* than the argument {@code Integer}; and a value greater
* than {@code 0} if this {@code Integer} is numerically
* greater than the argument {@code Integer} (signed
* comparison).
* @since 1.2
*/
public int compareTo(Integer anotherInteger) {
return compare(this.value, anotherInteger.value);
}
/**
* Compares two {@code int} values numerically.
* The value returned is identical to what would be returned by:
*
* Integer.valueOf(x).compareTo(Integer.valueOf(y))
*
*
* @param x the first {@code int} to compare
* @param y the second {@code int} to compare
* @return the value {@code 0} if {@code x == y};
* a value less than {@code 0} if {@code x < y}; and
* a value greater than {@code 0} if {@code x > y}
* @since 1.7
*/
public static int compare(int x, int y) {
return (x < y) ? -1 : ((x == y) ? 0 : 1);
}
/**
* Compares two {@code int} values numerically treating the values
* as unsigned.
*
* @param x the first {@code int} to compare
* @param y the second {@code int} to compare
* @return the value {@code 0} if {@code x == y}; a value less
* than {@code 0} if {@code x < y} as unsigned values; and
* a value greater than {@code 0} if {@code x > y} as
* unsigned values
* @since 1.8
*/
public static int compareUnsigned(int x, int y) {
return compare(x + MIN_VALUE, y + MIN_VALUE);
}
/**
* Converts the argument to a {@code long} by an unsigned
* conversion. In an unsigned conversion to a {@code long}, the
* high-order 32 bits of the {@code long} are zero and the
* low-order 32 bits are equal to the bits of the integer
* argument.
*
* Consequently, zero and positive {@code int} values are mapped
* to a numerically equal {@code long} value and negative {@code
* int} values are mapped to a {@code long} value equal to the
* input plus 232.
*
* @param x the value to convert to an unsigned {@code long}
* @return the argument converted to {@code long} by an unsigned
* conversion
* @since 1.8
*/
public static long toUnsignedLong(int x) {
return ((long) x) & 0xffffffffL;
}
/**
* Returns the unsigned quotient of dividing the first argument by
* the second where each argument and the result is interpreted as
* an unsigned value.
*
* Note that in two's complement arithmetic, the three other
* basic arithmetic operations of add, subtract, and multiply are
* bit-wise identical if the two operands are regarded as both
* being signed or both being unsigned. Therefore separate {@code
* addUnsigned}, etc. methods are not provided.
*
* @param dividend the value to be divided
* @param divisor the value doing the dividing
* @return the unsigned quotient of the first argument divided by
* the second argument
* @see #remainderUnsigned
* @since 1.8
*/
public static int divideUnsigned(int dividend, int divisor) {
// In lieu of tricky code, for now just use long arithmetic.
return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor));
}
/**
* Returns the unsigned remainder from dividing the first argument
* by the second where each argument and the result is interpreted
* as an unsigned value.
*
* @param dividend the value to be divided
* @param divisor the value doing the dividing
* @return the unsigned remainder of the first argument divided by
* the second argument
* @see #divideUnsigned
* @since 1.8
*/
public static int remainderUnsigned(int dividend, int divisor) {
// In lieu of tricky code, for now just use long arithmetic.
return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor));
}
// Bit twiddling
/**
* The number of bits used to represent an {@code int} value in two's
* complement binary form.
*
* @since 1.5
*/
@Native public static final int SIZE = 32;
/**
* The number of bytes used to represent an {@code int} value in two's
* complement binary form.
*
* @since 1.8
*/
public static final int BYTES = SIZE / Byte.SIZE;
/**
* Returns an {@code int} value with at most a single one-bit, in the
* position of the highest-order ("leftmost") one-bit in the specified
* {@code int} value. Returns zero if the specified value has no
* one-bits in its two's complement binary representation, that is, if it
* is equal to zero.
*
* @param i the value whose highest one bit is to be computed
* @return an {@code int} value with a single one-bit, in the position
* of the highest-order one-bit in the specified value, or zero if
* the specified value is itself equal to zero.
* @since 1.5
*/
public static int highestOneBit(int i) {
return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
}
/**
* Returns an {@code int} value with at most a single one-bit, in the
* position of the lowest-order ("rightmost") one-bit in the specified
* {@code int} value. Returns zero if the specified value has no
* one-bits in its two's complement binary representation, that is, if it
* is equal to zero.
*
* @param i the value whose lowest one bit is to be computed
* @return an {@code int} value with a single one-bit, in the position
* of the lowest-order one-bit in the specified value, or zero if
* the specified value is itself equal to zero.
* @since 1.5
*/
public static int lowestOneBit(int i) {
// HD, Section 2-1
return i & -i;
}
/**
* Returns the number of zero bits preceding the highest-order
* ("leftmost") one-bit in the two's complement binary representation
* of the specified {@code int} value. Returns 32 if the
* specified value has no one-bits in its two's complement representation,
* in other words if it is equal to zero.
*
*
Note that this method is closely related to the logarithm base 2.
* For all positive {@code int} values x:
*
* - floor(log2(x)) = {@code 31 - numberOfLeadingZeros(x)}
*
- ceil(log2(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
*
*
* @param i the value whose number of leading zeros is to be computed
* @return the number of zero bits preceding the highest-order
* ("leftmost") one-bit in the two's complement binary representation
* of the specified {@code int} value, or 32 if the value
* is equal to zero.
* @since 1.5
*/
@IntrinsicCandidate
public static int numberOfLeadingZeros(int i) {
// HD, Count leading 0's
if (i <= 0)
return i == 0 ? 32 : 0;
int n = 31;
if (i >= 1 << 16) { n -= 16; i >>>= 16; }
if (i >= 1 << 8) { n -= 8; i >>>= 8; }
if (i >= 1 << 4) { n -= 4; i >>>= 4; }
if (i >= 1 << 2) { n -= 2; i >>>= 2; }
return n - (i >>> 1);
}
/**
* Returns the number of zero bits following the lowest-order ("rightmost")
* one-bit in the two's complement binary representation of the specified
* {@code int} value. Returns 32 if the specified value has no
* one-bits in its two's complement representation, in other words if it is
* equal to zero.
*
* @param i the value whose number of trailing zeros is to be computed
* @return the number of zero bits following the lowest-order ("rightmost")
* one-bit in the two's complement binary representation of the
* specified {@code int} value, or 32 if the value is equal
* to zero.
* @since 1.5
*/
@IntrinsicCandidate
public static int numberOfTrailingZeros(int i) {
// HD, Count trailing 0's
i = ~i & (i - 1);
if (i <= 0) return i & 32;
int n = 1;
if (i > 1 << 16) { n += 16; i >>>= 16; }
if (i > 1 << 8) { n += 8; i >>>= 8; }
if (i > 1 << 4) { n += 4; i >>>= 4; }
if (i > 1 << 2) { n += 2; i >>>= 2; }
return n + (i >>> 1);
}
/**
* Returns the number of one-bits in the two's complement binary
* representation of the specified {@code int} value. This function is
* sometimes referred to as the population count.
*
* @param i the value whose bits are to be counted
* @return the number of one-bits in the two's complement binary
* representation of the specified {@code int} value.
* @since 1.5
*/
@IntrinsicCandidate
public static int bitCount(int i) {
// HD, Figure 5-2
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}
/**
* Returns the value obtained by rotating the two's complement binary
* representation of the specified {@code int} value left by the
* specified number of bits. (Bits shifted out of the left hand, or
* high-order, side reenter on the right, or low-order.)
*
* Note that left rotation with a negative distance is equivalent to
* right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
* distance)}. Note also that rotation by any multiple of 32 is a
* no-op, so all but the last five bits of the rotation distance can be
* ignored, even if the distance is negative: {@code rotateLeft(val,
* distance) == rotateLeft(val, distance & 0x1F)}.
*
* @param i the value whose bits are to be rotated left
* @param distance the number of bit positions to rotate left
* @return the value obtained by rotating the two's complement binary
* representation of the specified {@code int} value left by the
* specified number of bits.
* @since 1.5
*/
public static int rotateLeft(int i, int distance) {
return (i << distance) | (i >>> -distance);
}
/**
* Returns the value obtained by rotating the two's complement binary
* representation of the specified {@code int} value right by the
* specified number of bits. (Bits shifted out of the right hand, or
* low-order, side reenter on the left, or high-order.)
*
*
Note that right rotation with a negative distance is equivalent to
* left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
* distance)}. Note also that rotation by any multiple of 32 is a
* no-op, so all but the last five bits of the rotation distance can be
* ignored, even if the distance is negative: {@code rotateRight(val,
* distance) == rotateRight(val, distance & 0x1F)}.
*
* @param i the value whose bits are to be rotated right
* @param distance the number of bit positions to rotate right
* @return the value obtained by rotating the two's complement binary
* representation of the specified {@code int} value right by the
* specified number of bits.
* @since 1.5
*/
public static int rotateRight(int i, int distance) {
return (i >>> distance) | (i << -distance);
}
/**
* Returns the value obtained by reversing the order of the bits in the
* two's complement binary representation of the specified {@code int}
* value.
*
* @param i the value to be reversed
* @return the value obtained by reversing order of the bits in the
* specified {@code int} value.
* @since 1.5
*/
public static int reverse(int i) {
// HD, Figure 7-1
i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
return reverseBytes(i);
}
/**
* Returns the signum function of the specified {@code int} value. (The
* return value is -1 if the specified value is negative; 0 if the
* specified value is zero; and 1 if the specified value is positive.)
*
* @param i the value whose signum is to be computed
* @return the signum function of the specified {@code int} value.
* @since 1.5
*/
public static int signum(int i) {
// HD, Section 2-7
return (i >> 31) | (-i >>> 31);
}
/**
* Returns the value obtained by reversing the order of the bytes in the
* two's complement representation of the specified {@code int} value.
*
* @param i the value whose bytes are to be reversed
* @return the value obtained by reversing the bytes in the specified
* {@code int} value.
* @since 1.5
*/
@IntrinsicCandidate
public static int reverseBytes(int i) {
return (i << 24) |
((i & 0xff00) << 8) |
((i >>> 8) & 0xff00) |
(i >>> 24);
}
/**
* Adds two integers together as per the + operator.
*
* @param a the first operand
* @param b the second operand
* @return the sum of {@code a} and {@code b}
* @see java.util.function.BinaryOperator
* @since 1.8
*/
public static int sum(int a, int b) {
return a + b;
}
/**
* Returns the greater of two {@code int} values
* as if by calling {@link Math#max(int, int) Math.max}.
*
* @param a the first operand
* @param b the second operand
* @return the greater of {@code a} and {@code b}
* @see java.util.function.BinaryOperator
* @since 1.8
*/
public static int max(int a, int b) {
return Math.max(a, b);
}
/**
* Returns the smaller of two {@code int} values
* as if by calling {@link Math#min(int, int) Math.min}.
*
* @param a the first operand
* @param b the second operand
* @return the smaller of {@code a} and {@code b}
* @see java.util.function.BinaryOperator
* @since 1.8
*/
public static int min(int a, int b) {
return Math.min(a, b);
}
/**
* Returns an {@link Optional} containing the nominal descriptor for this
* instance, which is the instance itself.
*
* @return an {@link Optional} describing the {@linkplain Integer} instance
* @since 12
*/
@Override
public Optional describeConstable() {
return Optional.of(this);
}
/**
* Resolves this instance as a {@link ConstantDesc}, the result of which is
* the instance itself.
*
* @param lookup ignored
* @return the {@linkplain Integer} instance
* @since 12
*/
@Override
public Integer resolveConstantDesc(MethodHandles.Lookup lookup) {
return this;
}
/** use serialVersionUID from JDK 1.0.2 for interoperability */
@java.io.Serial
@Native private static final long serialVersionUID = 1360826667806852920L;
}