java.lang.Throwable Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 1994, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
import java.io.*;
import java.util.*;
/**
* The {@code Throwable} class is the superclass of all errors and
* exceptions in the Java language. Only objects that are instances of this
* class (or one of its subclasses) are thrown by the Java Virtual Machine or
* can be thrown by the Java {@code throw} statement. Similarly, only
* this class or one of its subclasses can be the argument type in a
* {@code catch} clause.
*
* For the purposes of compile-time checking of exceptions, {@code
* Throwable} and any subclass of {@code Throwable} that is not also a
* subclass of either {@link RuntimeException} or {@link Error} are
* regarded as checked exceptions.
*
* Instances of two subclasses, {@link java.lang.Error} and
* {@link java.lang.Exception}, are conventionally used to indicate
* that exceptional situations have occurred. Typically, these instances
* are freshly created in the context of the exceptional situation so
* as to include relevant information (such as stack trace data).
*
*
A throwable contains a snapshot of the execution stack of its
* thread at the time it was created. It can also contain a message
* string that gives more information about the error. Over time, a
* throwable can {@linkplain Throwable#addSuppressed suppress} other
* throwables from being propagated. Finally, the throwable can also
* contain a cause: another throwable that caused this
* throwable to be constructed. The recording of this causal information
* is referred to as the chained exception facility, as the
* cause can, itself, have a cause, and so on, leading to a "chain" of
* exceptions, each caused by another.
*
*
One reason that a throwable may have a cause is that the class that
* throws it is built atop a lower layered abstraction, and an operation on
* the upper layer fails due to a failure in the lower layer. It would be bad
* design to let the throwable thrown by the lower layer propagate outward, as
* it is generally unrelated to the abstraction provided by the upper layer.
* Further, doing so would tie the API of the upper layer to the details of
* its implementation, assuming the lower layer's exception was a checked
* exception. Throwing a "wrapped exception" (i.e., an exception containing a
* cause) allows the upper layer to communicate the details of the failure to
* its caller without incurring either of these shortcomings. It preserves
* the flexibility to change the implementation of the upper layer without
* changing its API (in particular, the set of exceptions thrown by its
* methods).
*
*
A second reason that a throwable may have a cause is that the method
* that throws it must conform to a general-purpose interface that does not
* permit the method to throw the cause directly. For example, suppose
* a persistent collection conforms to the {@link java.util.Collection
* Collection} interface, and that its persistence is implemented atop
* {@code java.io}. Suppose the internals of the {@code add} method
* can throw an {@link java.io.IOException IOException}. The implementation
* can communicate the details of the {@code IOException} to its caller
* while conforming to the {@code Collection} interface by wrapping the
* {@code IOException} in an appropriate unchecked exception. (The
* specification for the persistent collection should indicate that it is
* capable of throwing such exceptions.)
*
*
A cause can be associated with a throwable in two ways: via a
* constructor that takes the cause as an argument, or via the
* {@link #initCause(Throwable)} method. New throwable classes that
* wish to allow causes to be associated with them should provide constructors
* that take a cause and delegate (perhaps indirectly) to one of the
* {@code Throwable} constructors that takes a cause.
*
* Because the {@code initCause} method is public, it allows a cause to be
* associated with any throwable, even a "legacy throwable" whose
* implementation predates the addition of the exception chaining mechanism to
* {@code Throwable}.
*
*
By convention, class {@code Throwable} and its subclasses have two
* constructors, one that takes no arguments and one that takes a
* {@code String} argument that can be used to produce a detail message.
* Further, those subclasses that might likely have a cause associated with
* them should have two more constructors, one that takes a
* {@code Throwable} (the cause), and one that takes a
* {@code String} (the detail message) and a {@code Throwable} (the
* cause).
*
* @author Josh Bloch (Added exception chaining and programmatic access to
* stack trace in 1.4.)
* @jls 11.2 Compile-Time Checking of Exceptions
* @since 1.0
*/
public class Throwable implements Serializable {
/** use serialVersionUID from JDK 1.0.2 for interoperability */
@java.io.Serial
private static final long serialVersionUID = -3042686055658047285L;
/**
* The JVM saves some indication of the stack backtrace in this slot.
*/
private transient Object backtrace;
/**
* Specific details about the Throwable. For example, for
* {@code FileNotFoundException}, this contains the name of
* the file that could not be found.
*
* @serial
*/
private String detailMessage;
/**
* Holder class to defer initializing sentinel objects only used
* for serialization.
*/
private static class SentinelHolder {
/**
* {@linkplain #setStackTrace(StackTraceElement[]) Setting the
* stack trace} to a one-element array containing this sentinel
* value indicates future attempts to set the stack trace will be
* ignored. The sentinel is equal to the result of calling:
* {@code new StackTraceElement("", "", null, Integer.MIN_VALUE)}
*/
public static final StackTraceElement STACK_TRACE_ELEMENT_SENTINEL =
new StackTraceElement("", "", null, Integer.MIN_VALUE);
/**
* Sentinel value used in the serial form to indicate an immutable
* stack trace.
*/
public static final StackTraceElement[] STACK_TRACE_SENTINEL =
new StackTraceElement[] {STACK_TRACE_ELEMENT_SENTINEL};
}
/**
* A shared value for an empty stack.
*/
private static final StackTraceElement[] UNASSIGNED_STACK = new StackTraceElement[0];
/*
* To allow Throwable objects to be made immutable and safely
* reused by the JVM, such as OutOfMemoryErrors, fields of
* Throwable that are writable in response to user actions, cause,
* stackTrace, and suppressedExceptions obey the following
* protocol:
*
* 1) The fields are initialized to a non-null sentinel value
* which indicates the value has logically not been set.
*
* 2) Writing a null to the field indicates further writes
* are forbidden
*
* 3) The sentinel value may be replaced with another non-null
* value.
*
* For example, implementations of the HotSpot JVM have
* preallocated OutOfMemoryError objects to provide for better
* diagnosability of that situation. These objects are created
* without calling the constructor for that class and the fields
* in question are initialized to null. To support this
* capability, any new fields added to Throwable that require
* being initialized to a non-null value require a coordinated JVM
* change.
*/
/**
* The throwable that caused this throwable to get thrown, or null if this
* throwable was not caused by another throwable, or if the causative
* throwable is unknown. If this field is equal to this throwable itself,
* it indicates that the cause of this throwable has not yet been
* initialized.
*
* @serial
* @since 1.4
*/
private Throwable cause = this;
/**
* The stack trace, as returned by {@link #getStackTrace()}.
*
* The field is initialized to a zero-length array. A {@code
* null} value of this field indicates subsequent calls to {@link
* #setStackTrace(StackTraceElement[])} and {@link
* #fillInStackTrace()} will be no-ops.
*
* @serial
* @since 1.4
*/
private StackTraceElement[] stackTrace = UNASSIGNED_STACK;
/**
* The JVM code sets the depth of the backtrace for later retrieval
*/
private transient int depth;
// Setting this static field introduces an acceptable
// initialization dependency on a few java.util classes.
private static final List SUPPRESSED_SENTINEL = Collections.emptyList();
/**
* The list of suppressed exceptions, as returned by {@link
* #getSuppressed()}. The list is initialized to a zero-element
* unmodifiable sentinel list. When a serialized Throwable is
* read in, if the {@code suppressedExceptions} field points to a
* zero-element list, the field is reset to the sentinel value.
*
* @serial
* @since 1.7
*/
@SuppressWarnings("serial") // Not statically typed as Serializable
private List suppressedExceptions = SUPPRESSED_SENTINEL;
/** Message for trying to suppress a null exception. */
private static final String NULL_CAUSE_MESSAGE = "Cannot suppress a null exception.";
/** Message for trying to suppress oneself. */
private static final String SELF_SUPPRESSION_MESSAGE = "Self-suppression not permitted";
/** Caption for labeling causative exception stack traces */
private static final String CAUSE_CAPTION = "Caused by: ";
/** Caption for labeling suppressed exception stack traces */
private static final String SUPPRESSED_CAPTION = "Suppressed: ";
/**
* Constructs a new throwable with {@code null} as its detail message.
* The cause is not initialized, and may subsequently be initialized by a
* call to {@link #initCause}.
*
* The {@link #fillInStackTrace()} method is called to initialize
* the stack trace data in the newly created throwable.
*/
public Throwable() {
fillInStackTrace();
}
/**
* Constructs a new throwable with the specified detail message. The
* cause is not initialized, and may subsequently be initialized by
* a call to {@link #initCause}.
*
*
The {@link #fillInStackTrace()} method is called to initialize
* the stack trace data in the newly created throwable.
*
* @param message the detail message. The detail message is saved for
* later retrieval by the {@link #getMessage()} method.
*/
public Throwable(String message) {
fillInStackTrace();
detailMessage = message;
}
/**
* Constructs a new throwable with the specified detail message and
* cause.
Note that the detail message associated with
* {@code cause} is not automatically incorporated in
* this throwable's detail message.
*
*
The {@link #fillInStackTrace()} method is called to initialize
* the stack trace data in the newly created throwable.
*
* @param message the detail message (which is saved for later retrieval
* by the {@link #getMessage()} method).
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A {@code null} value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @since 1.4
*/
public Throwable(String message, Throwable cause) {
fillInStackTrace();
detailMessage = message;
this.cause = cause;
}
/**
* Constructs a new throwable with the specified cause and a detail
* message of {@code (cause==null ? null : cause.toString())} (which
* typically contains the class and detail message of {@code cause}).
* This constructor is useful for throwables that are little more than
* wrappers for other throwables (for example, {@link
* java.security.PrivilegedActionException}).
*
*
The {@link #fillInStackTrace()} method is called to initialize
* the stack trace data in the newly created throwable.
*
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A {@code null} value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @since 1.4
*/
public Throwable(Throwable cause) {
fillInStackTrace();
detailMessage = (cause==null ? null : cause.toString());
this.cause = cause;
}
/**
* Constructs a new throwable with the specified detail message,
* cause, {@linkplain #addSuppressed suppression} enabled or
* disabled, and writable stack trace enabled or disabled. If
* suppression is disabled, {@link #getSuppressed} for this object
* will return a zero-length array and calls to {@link
* #addSuppressed} that would otherwise append an exception to the
* suppressed list will have no effect. If the writable stack
* trace is false, this constructor will not call {@link
* #fillInStackTrace()}, a {@code null} will be written to the
* {@code stackTrace} field, and subsequent calls to {@code
* fillInStackTrace} and {@link
* #setStackTrace(StackTraceElement[])} will not set the stack
* trace. If the writable stack trace is false, {@link
* #getStackTrace} will return a zero length array.
*
*
Note that the other constructors of {@code Throwable} treat
* suppression as being enabled and the stack trace as being
* writable. Subclasses of {@code Throwable} should document any
* conditions under which suppression is disabled and document
* conditions under which the stack trace is not writable.
* Disabling of suppression should only occur in exceptional
* circumstances where special requirements exist, such as a
* virtual machine reusing exception objects under low-memory
* situations. Circumstances where a given exception object is
* repeatedly caught and rethrown, such as to implement control
* flow between two sub-systems, is another situation where
* immutable throwable objects would be appropriate.
*
* @param message the detail message.
* @param cause the cause. (A {@code null} value is permitted,
* and indicates that the cause is nonexistent or unknown.)
* @param enableSuppression whether or not suppression is enabled or disabled
* @param writableStackTrace whether or not the stack trace should be
* writable
*
* @see OutOfMemoryError
* @see NullPointerException
* @see ArithmeticException
* @since 1.7
*/
protected Throwable(String message, Throwable cause,
boolean enableSuppression,
boolean writableStackTrace) {
if (writableStackTrace) {
fillInStackTrace();
} else {
stackTrace = null;
}
detailMessage = message;
this.cause = cause;
if (!enableSuppression)
suppressedExceptions = null;
}
/**
* Returns the detail message string of this throwable.
*
* @return the detail message string of this {@code Throwable} instance
* (which may be {@code null}).
*/
public String getMessage() {
return detailMessage;
}
/**
* Creates a localized description of this throwable.
* Subclasses may override this method in order to produce a
* locale-specific message. For subclasses that do not override this
* method, the default implementation returns the same result as
* {@code getMessage()}.
*
* @return The localized description of this throwable.
* @since 1.1
*/
public String getLocalizedMessage() {
return getMessage();
}
/**
* Returns the cause of this throwable or {@code null} if the
* cause is nonexistent or unknown. (The cause is the throwable that
* caused this throwable to get thrown.)
*
*
This implementation returns the cause that was supplied via one of
* the constructors requiring a {@code Throwable}, or that was set after
* creation with the {@link #initCause(Throwable)} method. While it is
* typically unnecessary to override this method, a subclass can override
* it to return a cause set by some other means. This is appropriate for
* a "legacy chained throwable" that predates the addition of chained
* exceptions to {@code Throwable}. Note that it is not
* necessary to override any of the {@code PrintStackTrace} methods,
* all of which invoke the {@code getCause} method to determine the
* cause of a throwable.
*
* @return the cause of this throwable or {@code null} if the
* cause is nonexistent or unknown.
* @since 1.4
*/
public synchronized Throwable getCause() {
return (cause==this ? null : cause);
}
/**
* Initializes the cause of this throwable to the specified value.
* (The cause is the throwable that caused this throwable to get thrown.)
*
*
This method can be called at most once. It is generally called from
* within the constructor, or immediately after creating the
* throwable. If this throwable was created
* with {@link #Throwable(Throwable)} or
* {@link #Throwable(String,Throwable)}, this method cannot be called
* even once.
*
*
An example of using this method on a legacy throwable type
* without other support for setting the cause is:
*
*
* try {
* lowLevelOp();
* } catch (LowLevelException le) {
* throw (HighLevelException)
* new HighLevelException().initCause(le); // Legacy constructor
* }
*
*
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A {@code null} value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @return a reference to this {@code Throwable} instance.
* @throws IllegalArgumentException if {@code cause} is this
* throwable. (A throwable cannot be its own cause.)
* @throws IllegalStateException if this throwable was
* created with {@link #Throwable(Throwable)} or
* {@link #Throwable(String,Throwable)}, or this method has already
* been called on this throwable.
* @since 1.4
*/
public synchronized Throwable initCause(Throwable cause) {
if (this.cause != this)
throw new IllegalStateException("Can't overwrite cause with " +
Objects.toString(cause, "a null"), this);
if (cause == this)
throw new IllegalArgumentException("Self-causation not permitted", this);
this.cause = cause;
return this;
}
/*
* This is called by readObject of a few exceptions such as
* ClassNotFoundException and ExceptionInInitializerError to deserialize
* a stream output from an older runtime version where the cause may
* have set to null.
*/
final void setCause(Throwable t) {
this.cause = t;
}
/**
* Returns a short description of this throwable.
* The result is the concatenation of:
*
* - the {@linkplain Class#getName() name} of the class of this object
*
- ": " (a colon and a space)
*
- the result of invoking this object's {@link #getLocalizedMessage}
* method
*
* If {@code getLocalizedMessage} returns {@code null}, then just
* the class name is returned.
*
* @return a string representation of this throwable.
*/
public String toString() {
String s = getClass().getName();
String message = getLocalizedMessage();
return (message != null) ? (s + ": " + message) : s;
}
/**
* Prints this throwable and its backtrace to the
* standard error stream. This method prints a stack trace for this
* {@code Throwable} object on the error output stream that is
* the value of the field {@code System.err}. The first line of
* output contains the result of the {@link #toString()} method for
* this object. Remaining lines represent data previously recorded by
* the method {@link #fillInStackTrace()}. The format of this
* information depends on the implementation, but the following
* example may be regarded as typical:
*
* java.lang.NullPointerException
* at MyClass.mash(MyClass.java:9)
* at MyClass.crunch(MyClass.java:6)
* at MyClass.main(MyClass.java:3)
*
* This example was produced by running the program:
*
* class MyClass {
* public static void main(String[] args) {
* crunch(null);
* }
* static void crunch(int[] a) {
* mash(a);
* }
* static void mash(int[] b) {
* System.out.println(b[0]);
* }
* }
*
* The backtrace for a throwable with an initialized, non-null cause
* should generally include the backtrace for the cause. The format
* of this information depends on the implementation, but the following
* example may be regarded as typical:
*
* HighLevelException: MidLevelException: LowLevelException
* at Junk.a(Junk.java:13)
* at Junk.main(Junk.java:4)
* Caused by: MidLevelException: LowLevelException
* at Junk.c(Junk.java:23)
* at Junk.b(Junk.java:17)
* at Junk.a(Junk.java:11)
* ... 1 more
* Caused by: LowLevelException
* at Junk.e(Junk.java:30)
* at Junk.d(Junk.java:27)
* at Junk.c(Junk.java:21)
* ... 3 more
*
* Note the presence of lines containing the characters {@code "..."}.
* These lines indicate that the remainder of the stack trace for this
* exception matches the indicated number of frames from the bottom of the
* stack trace of the exception that was caused by this exception (the
* "enclosing" exception). This shorthand can greatly reduce the length
* of the output in the common case where a wrapped exception is thrown
* from same method as the "causative exception" is caught. The above
* example was produced by running the program:
*
* public class Junk {
* public static void main(String args[]) {
* try {
* a();
* } catch(HighLevelException e) {
* e.printStackTrace();
* }
* }
* static void a() throws HighLevelException {
* try {
* b();
* } catch(MidLevelException e) {
* throw new HighLevelException(e);
* }
* }
* static void b() throws MidLevelException {
* c();
* }
* static void c() throws MidLevelException {
* try {
* d();
* } catch(LowLevelException e) {
* throw new MidLevelException(e);
* }
* }
* static void d() throws LowLevelException {
* e();
* }
* static void e() throws LowLevelException {
* throw new LowLevelException();
* }
* }
*
* class HighLevelException extends Exception {
* HighLevelException(Throwable cause) { super(cause); }
* }
*
* class MidLevelException extends Exception {
* MidLevelException(Throwable cause) { super(cause); }
* }
*
* class LowLevelException extends Exception {
* }
*
* As of release 7, the platform supports the notion of
* suppressed exceptions (in conjunction with the {@code
* try}-with-resources statement). Any exceptions that were
* suppressed in order to deliver an exception are printed out
* beneath the stack trace. The format of this information
* depends on the implementation, but the following example may be
* regarded as typical:
*
*
* Exception in thread "main" java.lang.Exception: Something happened
* at Foo.bar(Foo.java:10)
* at Foo.main(Foo.java:5)
* Suppressed: Resource$CloseFailException: Resource ID = 0
* at Resource.close(Resource.java:26)
* at Foo.bar(Foo.java:9)
* ... 1 more
*
* Note that the "... n more" notation is used on suppressed exceptions
* just as it is used on causes. Unlike causes, suppressed exceptions are
* indented beyond their "containing exceptions."
*
* An exception can have both a cause and one or more suppressed
* exceptions:
*
* Exception in thread "main" java.lang.Exception: Main block
* at Foo3.main(Foo3.java:7)
* Suppressed: Resource$CloseFailException: Resource ID = 2
* at Resource.close(Resource.java:26)
* at Foo3.main(Foo3.java:5)
* Suppressed: Resource$CloseFailException: Resource ID = 1
* at Resource.close(Resource.java:26)
* at Foo3.main(Foo3.java:5)
* Caused by: java.lang.Exception: I did it
* at Foo3.main(Foo3.java:8)
*
* Likewise, a suppressed exception can have a cause:
*
* Exception in thread "main" java.lang.Exception: Main block
* at Foo4.main(Foo4.java:6)
* Suppressed: Resource2$CloseFailException: Resource ID = 1
* at Resource2.close(Resource2.java:20)
* at Foo4.main(Foo4.java:5)
* Caused by: java.lang.Exception: Rats, you caught me
* at Resource2$CloseFailException.<init>(Resource2.java:45)
* ... 2 more
*
*/
public void printStackTrace() {
printStackTrace(System.err);
}
/**
* Prints this throwable and its backtrace to the specified print stream.
*
* @param s {@code PrintStream} to use for output
*/
public void printStackTrace(PrintStream s) {
printStackTrace(new WrappedPrintStream(s));
}
private void printStackTrace(PrintStreamOrWriter s) {
// Guard against malicious overrides of Throwable.equals by
// using a Set with identity equality semantics.
Set dejaVu = Collections.newSetFromMap(new IdentityHashMap<>());
dejaVu.add(this);
synchronized (s.lock()) {
// Print our stack trace
s.println(this);
StackTraceElement[] trace = getOurStackTrace();
for (StackTraceElement traceElement : trace)
s.println("\tat " + traceElement);
// Print suppressed exceptions, if any
for (Throwable se : getSuppressed())
se.printEnclosedStackTrace(s, trace, SUPPRESSED_CAPTION, "\t", dejaVu);
// Print cause, if any
Throwable ourCause = getCause();
if (ourCause != null)
ourCause.printEnclosedStackTrace(s, trace, CAUSE_CAPTION, "", dejaVu);
}
}
/**
* Print our stack trace as an enclosed exception for the specified
* stack trace.
*/
private void printEnclosedStackTrace(PrintStreamOrWriter s,
StackTraceElement[] enclosingTrace,
String caption,
String prefix,
Set dejaVu) {
assert Thread.holdsLock(s.lock());
if (dejaVu.contains(this)) {
s.println(prefix + caption + "[CIRCULAR REFERENCE: " + this + "]");
} else {
dejaVu.add(this);
// Compute number of frames in common between this and enclosing trace
StackTraceElement[] trace = getOurStackTrace();
int m = trace.length - 1;
int n = enclosingTrace.length - 1;
while (m >= 0 && n >=0 && trace[m].equals(enclosingTrace[n])) {
m--; n--;
}
int framesInCommon = trace.length - 1 - m;
// Print our stack trace
s.println(prefix + caption + this);
for (int i = 0; i <= m; i++)
s.println(prefix + "\tat " + trace[i]);
if (framesInCommon != 0)
s.println(prefix + "\t... " + framesInCommon + " more");
// Print suppressed exceptions, if any
for (Throwable se : getSuppressed())
se.printEnclosedStackTrace(s, trace, SUPPRESSED_CAPTION,
prefix +"\t", dejaVu);
// Print cause, if any
Throwable ourCause = getCause();
if (ourCause != null)
ourCause.printEnclosedStackTrace(s, trace, CAUSE_CAPTION, prefix, dejaVu);
}
}
/**
* Prints this throwable and its backtrace to the specified
* print writer.
*
* @param s {@code PrintWriter} to use for output
* @since 1.1
*/
public void printStackTrace(PrintWriter s) {
printStackTrace(new WrappedPrintWriter(s));
}
/**
* Wrapper class for PrintStream and PrintWriter to enable a single
* implementation of printStackTrace.
*/
private abstract static class PrintStreamOrWriter {
/** Returns the object to be locked when using this StreamOrWriter */
abstract Object lock();
/** Prints the specified string as a line on this StreamOrWriter */
abstract void println(Object o);
}
private static class WrappedPrintStream extends PrintStreamOrWriter {
private final PrintStream printStream;
WrappedPrintStream(PrintStream printStream) {
this.printStream = printStream;
}
Object lock() {
return printStream;
}
void println(Object o) {
printStream.println(o);
}
}
private static class WrappedPrintWriter extends PrintStreamOrWriter {
private final PrintWriter printWriter;
WrappedPrintWriter(PrintWriter printWriter) {
this.printWriter = printWriter;
}
Object lock() {
return printWriter;
}
void println(Object o) {
printWriter.println(o);
}
}
/**
* Fills in the execution stack trace. This method records within this
* {@code Throwable} object information about the current state of
* the stack frames for the current thread.
*
* If the stack trace of this {@code Throwable} {@linkplain
* Throwable#Throwable(String, Throwable, boolean, boolean) is not
* writable}, calling this method has no effect.
*
* @return a reference to this {@code Throwable} instance.
* @see java.lang.Throwable#printStackTrace()
*/
public synchronized Throwable fillInStackTrace() {
if (stackTrace != null ||
backtrace != null /* Out of protocol state */ ) {
fillInStackTrace(0);
stackTrace = UNASSIGNED_STACK;
}
return this;
}
private native Throwable fillInStackTrace(int dummy);
/**
* Provides programmatic access to the stack trace information printed by
* {@link #printStackTrace()}. Returns an array of stack trace elements,
* each representing one stack frame. The zeroth element of the array
* (assuming the array's length is non-zero) represents the top of the
* stack, which is the last method invocation in the sequence. Typically,
* this is the point at which this throwable was created and thrown.
* The last element of the array (assuming the array's length is non-zero)
* represents the bottom of the stack, which is the first method invocation
* in the sequence.
*
*
Some virtual machines may, under some circumstances, omit one
* or more stack frames from the stack trace. In the extreme case,
* a virtual machine that has no stack trace information concerning
* this throwable is permitted to return a zero-length array from this
* method. Generally speaking, the array returned by this method will
* contain one element for every frame that would be printed by
* {@code printStackTrace}. Writes to the returned array do not
* affect future calls to this method.
*
* @return an array of stack trace elements representing the stack trace
* pertaining to this throwable.
* @since 1.4
*/
public StackTraceElement[] getStackTrace() {
return getOurStackTrace().clone();
}
private synchronized StackTraceElement[] getOurStackTrace() {
// Initialize stack trace field with information from
// backtrace if this is the first call to this method
if (stackTrace == UNASSIGNED_STACK ||
(stackTrace == null && backtrace != null) /* Out of protocol state */) {
stackTrace = StackTraceElement.of(this, depth);
} else if (stackTrace == null) {
return UNASSIGNED_STACK;
}
return stackTrace;
}
/**
* Sets the stack trace elements that will be returned by
* {@link #getStackTrace()} and printed by {@link #printStackTrace()}
* and related methods.
*
* This method, which is designed for use by RPC frameworks and other
* advanced systems, allows the client to override the default
* stack trace that is either generated by {@link #fillInStackTrace()}
* when a throwable is constructed or deserialized when a throwable is
* read from a serialization stream.
*
*
If the stack trace of this {@code Throwable} {@linkplain
* Throwable#Throwable(String, Throwable, boolean, boolean) is not
* writable}, calling this method has no effect other than
* validating its argument.
*
* @param stackTrace the stack trace elements to be associated with
* this {@code Throwable}. The specified array is copied by this
* call; changes in the specified array after the method invocation
* returns will have no affect on this {@code Throwable}'s stack
* trace.
*
* @throws NullPointerException if {@code stackTrace} is
* {@code null} or if any of the elements of
* {@code stackTrace} are {@code null}
*
* @since 1.4
*/
public void setStackTrace(StackTraceElement[] stackTrace) {
// Validate argument
StackTraceElement[] defensiveCopy = stackTrace.clone();
for (int i = 0; i < defensiveCopy.length; i++) {
if (defensiveCopy[i] == null)
throw new NullPointerException("stackTrace[" + i + "]");
}
synchronized (this) {
if (this.stackTrace == null && // Immutable stack
backtrace == null) // Test for out of protocol state
return;
this.stackTrace = defensiveCopy;
}
}
/**
* Reads a {@code Throwable} from a stream, enforcing
* well-formedness constraints on fields. Null entries and
* self-pointers are not allowed in the list of {@code
* suppressedExceptions}. Null entries are not allowed for stack
* trace elements. A null stack trace in the serial form results
* in a zero-length stack element array. A single-element stack
* trace whose entry is equal to {@code new StackTraceElement("",
* "", null, Integer.MIN_VALUE)} results in a {@code null} {@code
* stackTrace} field.
*
* Note that there are no constraints on the value the {@code
* cause} field can hold; both {@code null} and {@code this} are
* valid values for the field.
*
* @param s the {@code ObjectInputStream} from which data is read
* @throws IOException if an I/O error occurs
* @throws ClassNotFoundException if a serialized class cannot be loaded
*/
@java.io.Serial
private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {
s.defaultReadObject(); // read in all fields
// Set suppressed exceptions and stack trace elements fields
// to marker values until the contents from the serial stream
// are validated.
List candidateSuppressedExceptions = suppressedExceptions;
suppressedExceptions = SUPPRESSED_SENTINEL;
StackTraceElement[] candidateStackTrace = stackTrace;
stackTrace = UNASSIGNED_STACK.clone();
if (candidateSuppressedExceptions != null) {
int suppressedSize = validateSuppressedExceptionsList(candidateSuppressedExceptions);
if (suppressedSize > 0) { // Copy valid Throwables to new list
var suppList = new ArrayList(Math.min(100, suppressedSize));
for (Throwable t : candidateSuppressedExceptions) {
// Enforce constraints on suppressed exceptions in
// case of corrupt or malicious stream.
Objects.requireNonNull(t, NULL_CAUSE_MESSAGE);
if (t == this)
throw new IllegalArgumentException(SELF_SUPPRESSION_MESSAGE);
suppList.add(t);
}
// If there are any invalid suppressed exceptions,
// implicitly use the sentinel value assigned earlier.
suppressedExceptions = suppList;
}
} else {
suppressedExceptions = null;
}
/*
* For zero-length stack traces, use a clone of
* UNASSIGNED_STACK rather than UNASSIGNED_STACK itself to
* allow identity comparison against UNASSIGNED_STACK in
* getOurStackTrace. The identity of UNASSIGNED_STACK in
* stackTrace indicates to the getOurStackTrace method that
* the stackTrace needs to be constructed from the information
* in backtrace.
*/
if (candidateStackTrace != null) {
// Work from a clone of the candidateStackTrace to ensure
// consistency of checks.
candidateStackTrace = candidateStackTrace.clone();
if (candidateStackTrace.length >= 1) {
if (candidateStackTrace.length == 1 &&
// Check for the marker of an immutable stack trace
SentinelHolder.STACK_TRACE_ELEMENT_SENTINEL.equals(candidateStackTrace[0])) {
stackTrace = null;
} else { // Verify stack trace elements are non-null.
for (StackTraceElement ste : candidateStackTrace) {
Objects.requireNonNull(ste, "null StackTraceElement in serial stream.");
}
stackTrace = candidateStackTrace;
}
}
}
// A null stackTrace field in the serial form can result from
// an exception serialized without that field in older JDK
// releases; treat such exceptions as having empty stack
// traces by leaving stackTrace assigned to a clone of
// UNASSIGNED_STACK.
}
private int validateSuppressedExceptionsList(List deserSuppressedExceptions)
throws IOException {
if (!Object.class.getModule().
equals(deserSuppressedExceptions.getClass().getModule())) {
throw new StreamCorruptedException("List implementation not in base module.");
} else {
int size = deserSuppressedExceptions.size();
if (size < 0) {
throw new StreamCorruptedException("Negative list size reported.");
}
return size;
}
}
/**
* Write a {@code Throwable} object to a stream.
*
* A {@code null} stack trace field is represented in the serial
* form as a one-element array whose element is equal to {@code
* new StackTraceElement("", "", null, Integer.MIN_VALUE)}.
*
* @param s the {@code ObjectOutputStream} to which data is written
* @throws IOException if an I/O error occurs
*/
@java.io.Serial
private synchronized void writeObject(ObjectOutputStream s)
throws IOException {
// Ensure that the stackTrace field is initialized to a
// non-null value, if appropriate. As of JDK 7, a null stack
// trace field is a valid value indicating the stack trace
// should not be set.
getOurStackTrace();
StackTraceElement[] oldStackTrace = stackTrace;
try {
if (stackTrace == null)
stackTrace = SentinelHolder.STACK_TRACE_SENTINEL;
s.defaultWriteObject();
} finally {
stackTrace = oldStackTrace;
}
}
/**
* Appends the specified exception to the exceptions that were
* suppressed in order to deliver this exception. This method is
* thread-safe and typically called (automatically and implicitly)
* by the {@code try}-with-resources statement.
*
* The suppression behavior is enabled unless disabled
* {@linkplain #Throwable(String, Throwable, boolean, boolean) via
* a constructor}. When suppression is disabled, this method does
* nothing other than to validate its argument.
*
*
Note that when one exception {@linkplain
* #initCause(Throwable) causes} another exception, the first
* exception is usually caught and then the second exception is
* thrown in response. In other words, there is a causal
* connection between the two exceptions.
*
* In contrast, there are situations where two independent
* exceptions can be thrown in sibling code blocks, in particular
* in the {@code try} block of a {@code try}-with-resources
* statement and the compiler-generated {@code finally} block
* which closes the resource.
*
* In these situations, only one of the thrown exceptions can be
* propagated. In the {@code try}-with-resources statement, when
* there are two such exceptions, the exception originating from
* the {@code try} block is propagated and the exception from the
* {@code finally} block is added to the list of exceptions
* suppressed by the exception from the {@code try} block. As an
* exception unwinds the stack, it can accumulate multiple
* suppressed exceptions.
*
*
An exception may have suppressed exceptions while also being
* caused by another exception. Whether or not an exception has a
* cause is semantically known at the time of its creation, unlike
* whether or not an exception will suppress other exceptions
* which is typically only determined after an exception is
* thrown.
*
*
Note that programmer written code is also able to take
* advantage of calling this method in situations where there are
* multiple sibling exceptions and only one can be propagated.
*
* @param exception the exception to be added to the list of
* suppressed exceptions
* @throws IllegalArgumentException if {@code exception} is this
* throwable; a throwable cannot suppress itself.
* @throws NullPointerException if {@code exception} is {@code null}
* @since 1.7
*/
public final synchronized void addSuppressed(Throwable exception) {
if (exception == this)
throw new IllegalArgumentException(SELF_SUPPRESSION_MESSAGE, exception);
Objects.requireNonNull(exception, NULL_CAUSE_MESSAGE);
if (suppressedExceptions == null) // Suppressed exceptions not recorded
return;
if (suppressedExceptions == SUPPRESSED_SENTINEL)
suppressedExceptions = new ArrayList<>(1);
suppressedExceptions.add(exception);
}
private static final Throwable[] EMPTY_THROWABLE_ARRAY = new Throwable[0];
/**
* Returns an array containing all of the exceptions that were
* suppressed, typically by the {@code try}-with-resources
* statement, in order to deliver this exception.
*
* If no exceptions were suppressed or {@linkplain
* #Throwable(String, Throwable, boolean, boolean) suppression is
* disabled}, an empty array is returned. This method is
* thread-safe. Writes to the returned array do not affect future
* calls to this method.
*
* @return an array containing all of the exceptions that were
* suppressed to deliver this exception.
* @since 1.7
*/
public final synchronized Throwable[] getSuppressed() {
if (suppressedExceptions == SUPPRESSED_SENTINEL ||
suppressedExceptions == null)
return EMPTY_THROWABLE_ARRAY;
else
return suppressedExceptions.toArray(EMPTY_THROWABLE_ARRAY);
}
}