java.lang.invoke.DirectMethodHandle Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of qbicc-rt-java.base Show documentation
Show all versions of qbicc-rt-java.base Show documentation
The Qbicc builder for the java.base JDK module
/*
* Copyright (c) 2008, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang.invoke;
import jdk.internal.misc.Unsafe;
import jdk.internal.vm.annotation.ForceInline;
import jdk.internal.vm.annotation.Stable;
import sun.invoke.util.ValueConversions;
import sun.invoke.util.VerifyAccess;
import sun.invoke.util.VerifyType;
import sun.invoke.util.Wrapper;
import java.lang.ref.WeakReference;
import java.util.Arrays;
import java.util.Objects;
import java.util.function.Function;
import static java.lang.invoke.LambdaForm.*;
import static java.lang.invoke.LambdaForm.Kind.*;
import static java.lang.invoke.MethodHandleNatives.Constants.*;
import static java.lang.invoke.MethodHandleStatics.UNSAFE;
import static java.lang.invoke.MethodHandleStatics.newInternalError;
import static java.lang.invoke.MethodTypeForm.*;
/**
* The flavor of method handle which implements a constant reference
* to a class member.
* @author jrose
*/
class DirectMethodHandle extends MethodHandle {
final MemberName member;
final boolean crackable;
// Constructors and factory methods in this class *must* be package scoped or private.
private DirectMethodHandle(MethodType mtype, LambdaForm form, MemberName member, boolean crackable) {
super(mtype, form);
if (!member.isResolved()) throw new InternalError();
if (member.getDeclaringClass().isInterface() &&
member.getReferenceKind() == REF_invokeInterface &&
member.isMethod() && !member.isAbstract()) {
// Check for corner case: invokeinterface of Object method
MemberName m = new MemberName(Object.class, member.getName(), member.getMethodType(), member.getReferenceKind());
m = MemberName.getFactory().resolveOrNull(m.getReferenceKind(), m, null, LM_TRUSTED);
if (m != null && m.isPublic()) {
assert(member.getReferenceKind() == m.getReferenceKind()); // else this.form is wrong
member = m;
}
}
this.member = member;
this.crackable = crackable;
}
// Factory methods:
static DirectMethodHandle make(byte refKind, Class> refc, MemberName member, Class> callerClass) {
MethodType mtype = member.getMethodOrFieldType();
if (!member.isStatic()) {
if (!member.getDeclaringClass().isAssignableFrom(refc) || member.isConstructor())
throw new InternalError(member.toString());
mtype = mtype.insertParameterTypes(0, refc);
}
if (!member.isField()) {
// refKind reflects the original type of lookup via findSpecial or
// findVirtual etc.
return switch (refKind) {
case REF_invokeSpecial -> {
member = member.asSpecial();
// if caller is an interface we need to adapt to get the
// receiver check inserted
if (callerClass == null) {
throw new InternalError("callerClass must not be null for REF_invokeSpecial");
}
LambdaForm lform = preparedLambdaForm(member, callerClass.isInterface());
yield new Special(mtype, lform, member, true, callerClass);
}
case REF_invokeInterface -> {
// for interfaces we always need the receiver typecheck,
// so we always pass 'true' to ensure we adapt if needed
// to include the REF_invokeSpecial case
LambdaForm lform = preparedLambdaForm(member, true);
yield new Interface(mtype, lform, member, true, refc);
}
default -> {
LambdaForm lform = preparedLambdaForm(member);
yield new DirectMethodHandle(mtype, lform, member, true);
}
};
} else {
LambdaForm lform = preparedFieldLambdaForm(member);
if (member.isStatic()) {
long offset = MethodHandleNatives.staticFieldOffset(member);
Object base = MethodHandleNatives.staticFieldBase(member);
return new StaticAccessor(mtype, lform, member, true, base, offset);
} else {
long offset = MethodHandleNatives.objectFieldOffset(member);
assert(offset == (int)offset);
return new Accessor(mtype, lform, member, true, (int)offset);
}
}
}
static DirectMethodHandle make(Class> refc, MemberName member) {
byte refKind = member.getReferenceKind();
if (refKind == REF_invokeSpecial)
refKind = REF_invokeVirtual;
return make(refKind, refc, member, null /* no callerClass context */);
}
static DirectMethodHandle make(MemberName member) {
if (member.isConstructor())
return makeAllocator(member);
return make(member.getDeclaringClass(), member);
}
private static DirectMethodHandle makeAllocator(MemberName ctor) {
assert(ctor.isConstructor() && ctor.getName().equals(""));
Class> instanceClass = ctor.getDeclaringClass();
ctor = ctor.asConstructor();
assert(ctor.isConstructor() && ctor.getReferenceKind() == REF_newInvokeSpecial) : ctor;
MethodType mtype = ctor.getMethodType().changeReturnType(instanceClass);
LambdaForm lform = preparedLambdaForm(ctor);
MemberName init = ctor.asSpecial();
assert(init.getMethodType().returnType() == void.class);
return new Constructor(mtype, lform, ctor, true, init, instanceClass);
}
@Override
BoundMethodHandle rebind() {
return BoundMethodHandle.makeReinvoker(this);
}
@Override
MethodHandle copyWith(MethodType mt, LambdaForm lf) {
assert(this.getClass() == DirectMethodHandle.class); // must override in subclasses
return new DirectMethodHandle(mt, lf, member, crackable);
}
@Override
MethodHandle viewAsType(MethodType newType, boolean strict) {
// No actual conversions, just a new view of the same method.
// However, we must not expose a DMH that is crackable into a
// MethodHandleInfo, so we return a cloned, uncrackable DMH
assert(viewAsTypeChecks(newType, strict));
assert(this.getClass() == DirectMethodHandle.class); // must override in subclasses
return new DirectMethodHandle(newType, form, member, false);
}
@Override
boolean isCrackable() {
return crackable;
}
@Override
String internalProperties() {
return "\n& DMH.MN="+internalMemberName();
}
//// Implementation methods.
@Override
@ForceInline
MemberName internalMemberName() {
return member;
}
private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
/**
* Create a LF which can invoke the given method.
* Cache and share this structure among all methods with
* the same basicType and refKind.
*/
private static LambdaForm preparedLambdaForm(MemberName m, boolean adaptToSpecialIfc) {
assert(m.isInvocable()) : m; // call preparedFieldLambdaForm instead
MethodType mtype = m.getInvocationType().basicType();
assert(!m.isMethodHandleInvoke()) : m;
// MemberName.getReferenceKind represents the JVM optimized form of the call
// as distinct from the "kind" passed to DMH.make which represents the original
// bytecode-equivalent request. Specifically private/final methods that use a direct
// call have getReferenceKind adapted to REF_invokeSpecial, even though the actual
// invocation mode may be invokevirtual or invokeinterface.
int which = switch (m.getReferenceKind()) {
case REF_invokeVirtual -> LF_INVVIRTUAL;
case REF_invokeStatic -> LF_INVSTATIC;
case REF_invokeSpecial -> LF_INVSPECIAL;
case REF_invokeInterface -> LF_INVINTERFACE;
case REF_newInvokeSpecial -> LF_NEWINVSPECIAL;
default -> throw new InternalError(m.toString());
};
if (which == LF_INVSTATIC && shouldBeInitialized(m)) {
// precompute the barrier-free version:
preparedLambdaForm(mtype, which);
which = LF_INVSTATIC_INIT;
}
if (which == LF_INVSPECIAL && adaptToSpecialIfc) {
which = LF_INVSPECIAL_IFC;
}
LambdaForm lform = preparedLambdaForm(mtype, which);
maybeCompile(lform, m);
assert(lform.methodType().dropParameterTypes(0, 1)
.equals(m.getInvocationType().basicType()))
: Arrays.asList(m, m.getInvocationType().basicType(), lform, lform.methodType());
return lform;
}
private static LambdaForm preparedLambdaForm(MemberName m) {
return preparedLambdaForm(m, false);
}
private static LambdaForm preparedLambdaForm(MethodType mtype, int which) {
LambdaForm lform = mtype.form().cachedLambdaForm(which);
if (lform != null) return lform;
lform = makePreparedLambdaForm(mtype, which);
return mtype.form().setCachedLambdaForm(which, lform);
}
static LambdaForm makePreparedLambdaForm(MethodType mtype, int which) {
boolean needsInit = (which == LF_INVSTATIC_INIT);
boolean doesAlloc = (which == LF_NEWINVSPECIAL);
boolean needsReceiverCheck = (which == LF_INVINTERFACE ||
which == LF_INVSPECIAL_IFC);
String linkerName;
LambdaForm.Kind kind;
switch (which) {
case LF_INVVIRTUAL: linkerName = "linkToVirtual"; kind = DIRECT_INVOKE_VIRTUAL; break;
case LF_INVSTATIC: linkerName = "linkToStatic"; kind = DIRECT_INVOKE_STATIC; break;
case LF_INVSTATIC_INIT:linkerName = "linkToStatic"; kind = DIRECT_INVOKE_STATIC_INIT; break;
case LF_INVSPECIAL_IFC:linkerName = "linkToSpecial"; kind = DIRECT_INVOKE_SPECIAL_IFC; break;
case LF_INVSPECIAL: linkerName = "linkToSpecial"; kind = DIRECT_INVOKE_SPECIAL; break;
case LF_INVINTERFACE: linkerName = "linkToInterface"; kind = DIRECT_INVOKE_INTERFACE; break;
case LF_NEWINVSPECIAL: linkerName = "linkToSpecial"; kind = DIRECT_NEW_INVOKE_SPECIAL; break;
default: throw new InternalError("which="+which);
}
MethodType mtypeWithArg = mtype.appendParameterTypes(MemberName.class);
if (doesAlloc)
mtypeWithArg = mtypeWithArg
.insertParameterTypes(0, Object.class) // insert newly allocated obj
.changeReturnType(void.class); // returns void
MemberName linker = new MemberName(MethodHandle.class, linkerName, mtypeWithArg, REF_invokeStatic);
try {
linker = IMPL_NAMES.resolveOrFail(REF_invokeStatic, linker, null, LM_TRUSTED,
NoSuchMethodException.class);
} catch (ReflectiveOperationException ex) {
throw newInternalError(ex);
}
final int DMH_THIS = 0;
final int ARG_BASE = 1;
final int ARG_LIMIT = ARG_BASE + mtype.parameterCount();
int nameCursor = ARG_LIMIT;
final int NEW_OBJ = (doesAlloc ? nameCursor++ : -1);
final int GET_MEMBER = nameCursor++;
final int CHECK_RECEIVER = (needsReceiverCheck ? nameCursor++ : -1);
final int LINKER_CALL = nameCursor++;
Name[] names = arguments(nameCursor - ARG_LIMIT, mtype.invokerType());
assert(names.length == nameCursor);
if (doesAlloc) {
// names = { argx,y,z,... new C, init method }
names[NEW_OBJ] = new Name(getFunction(NF_allocateInstance), names[DMH_THIS]);
names[GET_MEMBER] = new Name(getFunction(NF_constructorMethod), names[DMH_THIS]);
} else if (needsInit) {
names[GET_MEMBER] = new Name(getFunction(NF_internalMemberNameEnsureInit), names[DMH_THIS]);
} else {
names[GET_MEMBER] = new Name(getFunction(NF_internalMemberName), names[DMH_THIS]);
}
assert(findDirectMethodHandle(names[GET_MEMBER]) == names[DMH_THIS]);
Object[] outArgs = Arrays.copyOfRange(names, ARG_BASE, GET_MEMBER+1, Object[].class);
if (needsReceiverCheck) {
names[CHECK_RECEIVER] = new Name(getFunction(NF_checkReceiver), names[DMH_THIS], names[ARG_BASE]);
outArgs[0] = names[CHECK_RECEIVER];
}
assert(outArgs[outArgs.length-1] == names[GET_MEMBER]); // look, shifted args!
int result = LAST_RESULT;
if (doesAlloc) {
assert(outArgs[outArgs.length-2] == names[NEW_OBJ]); // got to move this one
System.arraycopy(outArgs, 0, outArgs, 1, outArgs.length-2);
outArgs[0] = names[NEW_OBJ];
result = NEW_OBJ;
}
names[LINKER_CALL] = new Name(linker, outArgs);
LambdaForm lform = new LambdaForm(ARG_LIMIT, names, result, kind);
// This is a tricky bit of code. Don't send it through the LF interpreter.
lform.compileToBytecode();
return lform;
}
/* assert */ static Object findDirectMethodHandle(Name name) {
if (name.function.equals(getFunction(NF_internalMemberName)) ||
name.function.equals(getFunction(NF_internalMemberNameEnsureInit)) ||
name.function.equals(getFunction(NF_constructorMethod))) {
assert(name.arguments.length == 1);
return name.arguments[0];
}
return null;
}
private static void maybeCompile(LambdaForm lform, MemberName m) {
if (lform.vmentry == null && VerifyAccess.isSamePackage(m.getDeclaringClass(), MethodHandle.class))
// Help along bootstrapping...
lform.compileToBytecode();
}
/** Static wrapper for DirectMethodHandle.internalMemberName. */
@ForceInline
/*non-public*/
static Object internalMemberName(Object mh) {
return ((DirectMethodHandle)mh).member;
}
/** Static wrapper for DirectMethodHandle.internalMemberName.
* This one also forces initialization.
*/
/*non-public*/
static Object internalMemberNameEnsureInit(Object mh) {
DirectMethodHandle dmh = (DirectMethodHandle)mh;
dmh.ensureInitialized();
return dmh.member;
}
/*non-public*/
static boolean shouldBeInitialized(MemberName member) {
switch (member.getReferenceKind()) {
case REF_invokeStatic:
case REF_getStatic:
case REF_putStatic:
case REF_newInvokeSpecial:
break;
default:
// No need to initialize the class on this kind of member.
return false;
}
Class> cls = member.getDeclaringClass();
if (cls == ValueConversions.class ||
cls == MethodHandleImpl.class ||
cls == Invokers.class) {
// These guys have lots of DMH creation but we know
// the MHs will not be used until the system is booted.
return false;
}
if (VerifyAccess.isSamePackage(MethodHandle.class, cls) ||
VerifyAccess.isSamePackage(ValueConversions.class, cls)) {
// It is a system class. It is probably in the process of
// being initialized, but we will help it along just to be safe.
if (UNSAFE.shouldBeInitialized(cls)) {
UNSAFE.ensureClassInitialized(cls);
}
return false;
}
return UNSAFE.shouldBeInitialized(cls);
}
private static class EnsureInitialized extends ClassValue> {
@Override
protected WeakReference computeValue(Class> type) {
UNSAFE.ensureClassInitialized(type);
if (UNSAFE.shouldBeInitialized(type))
// If the previous call didn't block, this can happen.
// We are executing inside .
return new WeakReference<>(Thread.currentThread());
return null;
}
static final EnsureInitialized INSTANCE = new EnsureInitialized();
}
private void ensureInitialized() {
if (checkInitialized(member)) {
// The coast is clear. Delete the barrier.
updateForm(new Function<>() {
public LambdaForm apply(LambdaForm oldForm) {
return (member.isField() ? preparedFieldLambdaForm(member)
: preparedLambdaForm(member));
}
});
}
}
private static boolean checkInitialized(MemberName member) {
Class> defc = member.getDeclaringClass();
WeakReference ref = EnsureInitialized.INSTANCE.get(defc);
if (ref == null) {
return true; // the final state
}
// Somebody may still be running defc..
if (ref.refersTo(Thread.currentThread())) {
// If anybody is running defc., it is this thread.
if (UNSAFE.shouldBeInitialized(defc))
// Yes, we are running it; keep the barrier for now.
return false;
} else {
// We are in a random thread. Block.
UNSAFE.ensureClassInitialized(defc);
}
assert(!UNSAFE.shouldBeInitialized(defc));
// put it into the final state
EnsureInitialized.INSTANCE.remove(defc);
return true;
}
/*non-public*/
static void ensureInitialized(Object mh) {
((DirectMethodHandle)mh).ensureInitialized();
}
/** This subclass represents invokespecial instructions. */
static class Special extends DirectMethodHandle {
private final Class> caller;
private Special(MethodType mtype, LambdaForm form, MemberName member, boolean crackable, Class> caller) {
super(mtype, form, member, crackable);
this.caller = caller;
}
@Override
boolean isInvokeSpecial() {
return true;
}
@Override
MethodHandle copyWith(MethodType mt, LambdaForm lf) {
return new Special(mt, lf, member, crackable, caller);
}
@Override
MethodHandle viewAsType(MethodType newType, boolean strict) {
assert(viewAsTypeChecks(newType, strict));
return new Special(newType, form, member, false, caller);
}
Object checkReceiver(Object recv) {
if (!caller.isInstance(recv)) {
String msg = String.format("Receiver class %s is not a subclass of caller class %s",
recv.getClass().getName(), caller.getName());
throw new IncompatibleClassChangeError(msg);
}
return recv;
}
}
/** This subclass represents invokeinterface instructions. */
static class Interface extends DirectMethodHandle {
private final Class> refc;
private Interface(MethodType mtype, LambdaForm form, MemberName member, boolean crackable, Class> refc) {
super(mtype, form, member, crackable);
assert(refc.isInterface()) : refc;
this.refc = refc;
}
@Override
MethodHandle copyWith(MethodType mt, LambdaForm lf) {
return new Interface(mt, lf, member, crackable, refc);
}
@Override
MethodHandle viewAsType(MethodType newType, boolean strict) {
assert(viewAsTypeChecks(newType, strict));
return new Interface(newType, form, member, false, refc);
}
@Override
Object checkReceiver(Object recv) {
if (!refc.isInstance(recv)) {
String msg = String.format("Receiver class %s does not implement the requested interface %s",
recv.getClass().getName(), refc.getName());
throw new IncompatibleClassChangeError(msg);
}
return recv;
}
}
/** Used for interface receiver type checks, by Interface and Special modes. */
Object checkReceiver(Object recv) {
throw new InternalError("Should only be invoked on a subclass");
}
/** This subclass handles constructor references. */
static class Constructor extends DirectMethodHandle {
final MemberName initMethod;
final Class> instanceClass;
private Constructor(MethodType mtype, LambdaForm form, MemberName constructor,
boolean crackable, MemberName initMethod, Class> instanceClass) {
super(mtype, form, constructor, crackable);
this.initMethod = initMethod;
this.instanceClass = instanceClass;
assert(initMethod.isResolved());
}
@Override
MethodHandle copyWith(MethodType mt, LambdaForm lf) {
return new Constructor(mt, lf, member, crackable, initMethod, instanceClass);
}
@Override
MethodHandle viewAsType(MethodType newType, boolean strict) {
assert(viewAsTypeChecks(newType, strict));
return new Constructor(newType, form, member, false, initMethod, instanceClass);
}
}
/*non-public*/
static Object constructorMethod(Object mh) {
Constructor dmh = (Constructor)mh;
return dmh.initMethod;
}
/*non-public*/
static Object allocateInstance(Object mh) throws InstantiationException {
Constructor dmh = (Constructor)mh;
return UNSAFE.allocateInstance(dmh.instanceClass);
}
/** This subclass handles non-static field references. */
static class Accessor extends DirectMethodHandle {
final Class> fieldType;
final int fieldOffset;
private Accessor(MethodType mtype, LambdaForm form, MemberName member,
boolean crackable, int fieldOffset) {
super(mtype, form, member, crackable);
this.fieldType = member.getFieldType();
this.fieldOffset = fieldOffset;
}
@Override Object checkCast(Object obj) {
return fieldType.cast(obj);
}
@Override
MethodHandle copyWith(MethodType mt, LambdaForm lf) {
return new Accessor(mt, lf, member, crackable, fieldOffset);
}
@Override
MethodHandle viewAsType(MethodType newType, boolean strict) {
assert(viewAsTypeChecks(newType, strict));
return new Accessor(newType, form, member, false, fieldOffset);
}
}
@ForceInline
/*non-public*/
static long fieldOffset(Object accessorObj) {
// Note: We return a long because that is what Unsafe.getObject likes.
// We store a plain int because it is more compact.
return ((Accessor)accessorObj).fieldOffset;
}
@ForceInline
/*non-public*/
static Object checkBase(Object obj) {
// Note that the object's class has already been verified,
// since the parameter type of the Accessor method handle
// is either member.getDeclaringClass or a subclass.
// This was verified in DirectMethodHandle.make.
// Therefore, the only remaining check is for null.
// Since this check is *not* guaranteed by Unsafe.getInt
// and its siblings, we need to make an explicit one here.
return Objects.requireNonNull(obj);
}
/** This subclass handles static field references. */
static class StaticAccessor extends DirectMethodHandle {
private final Class> fieldType;
private final Object staticBase;
private final long staticOffset;
private StaticAccessor(MethodType mtype, LambdaForm form, MemberName member,
boolean crackable, Object staticBase, long staticOffset) {
super(mtype, form, member, crackable);
this.fieldType = member.getFieldType();
this.staticBase = staticBase;
this.staticOffset = staticOffset;
}
@Override Object checkCast(Object obj) {
return fieldType.cast(obj);
}
@Override
MethodHandle copyWith(MethodType mt, LambdaForm lf) {
return new StaticAccessor(mt, lf, member, crackable, staticBase, staticOffset);
}
@Override
MethodHandle viewAsType(MethodType newType, boolean strict) {
assert(viewAsTypeChecks(newType, strict));
return new StaticAccessor(newType, form, member, false, staticBase, staticOffset);
}
}
@ForceInline
/*non-public*/
static Object nullCheck(Object obj) {
return Objects.requireNonNull(obj);
}
@ForceInline
/*non-public*/
static Object staticBase(Object accessorObj) {
return ((StaticAccessor)accessorObj).staticBase;
}
@ForceInline
/*non-public*/
static long staticOffset(Object accessorObj) {
return ((StaticAccessor)accessorObj).staticOffset;
}
@ForceInline
/*non-public*/
static Object checkCast(Object mh, Object obj) {
return ((DirectMethodHandle) mh).checkCast(obj);
}
Object checkCast(Object obj) {
return member.getReturnType().cast(obj);
}
// Caching machinery for field accessors:
static final byte
AF_GETFIELD = 0,
AF_PUTFIELD = 1,
AF_GETSTATIC = 2,
AF_PUTSTATIC = 3,
AF_GETSTATIC_INIT = 4,
AF_PUTSTATIC_INIT = 5,
AF_LIMIT = 6;
// Enumerate the different field kinds using Wrapper,
// with an extra case added for checked references.
static final int
FT_LAST_WRAPPER = Wrapper.COUNT-1,
FT_UNCHECKED_REF = Wrapper.OBJECT.ordinal(),
FT_CHECKED_REF = FT_LAST_WRAPPER+1,
FT_LIMIT = FT_LAST_WRAPPER+2;
private static int afIndex(byte formOp, boolean isVolatile, int ftypeKind) {
return ((formOp * FT_LIMIT * 2)
+ (isVolatile ? FT_LIMIT : 0)
+ ftypeKind);
}
@Stable
private static final LambdaForm[] ACCESSOR_FORMS
= new LambdaForm[afIndex(AF_LIMIT, false, 0)];
static int ftypeKind(Class> ftype) {
if (ftype.isPrimitive())
return Wrapper.forPrimitiveType(ftype).ordinal();
else if (VerifyType.isNullReferenceConversion(Object.class, ftype))
return FT_UNCHECKED_REF;
else
return FT_CHECKED_REF;
}
/**
* Create a LF which can access the given field.
* Cache and share this structure among all fields with
* the same basicType and refKind.
*/
private static LambdaForm preparedFieldLambdaForm(MemberName m) {
Class> ftype = m.getFieldType();
boolean isVolatile = m.isVolatile();
byte formOp = switch (m.getReferenceKind()) {
case REF_getField -> AF_GETFIELD;
case REF_putField -> AF_PUTFIELD;
case REF_getStatic -> AF_GETSTATIC;
case REF_putStatic -> AF_PUTSTATIC;
default -> throw new InternalError(m.toString());
};
if (shouldBeInitialized(m)) {
// precompute the barrier-free version:
preparedFieldLambdaForm(formOp, isVolatile, ftype);
assert((AF_GETSTATIC_INIT - AF_GETSTATIC) ==
(AF_PUTSTATIC_INIT - AF_PUTSTATIC));
formOp += (AF_GETSTATIC_INIT - AF_GETSTATIC);
}
LambdaForm lform = preparedFieldLambdaForm(formOp, isVolatile, ftype);
maybeCompile(lform, m);
assert(lform.methodType().dropParameterTypes(0, 1)
.equals(m.getInvocationType().basicType()))
: Arrays.asList(m, m.getInvocationType().basicType(), lform, lform.methodType());
return lform;
}
private static LambdaForm preparedFieldLambdaForm(byte formOp, boolean isVolatile, Class> ftype) {
int ftypeKind = ftypeKind(ftype);
int afIndex = afIndex(formOp, isVolatile, ftypeKind);
LambdaForm lform = ACCESSOR_FORMS[afIndex];
if (lform != null) return lform;
lform = makePreparedFieldLambdaForm(formOp, isVolatile, ftypeKind);
ACCESSOR_FORMS[afIndex] = lform; // don't bother with a CAS
return lform;
}
private static final Wrapper[] ALL_WRAPPERS = Wrapper.values();
private static Kind getFieldKind(boolean isGetter, boolean isVolatile, Wrapper wrapper) {
if (isGetter) {
if (isVolatile) {
switch (wrapper) {
case BOOLEAN: return GET_BOOLEAN_VOLATILE;
case BYTE: return GET_BYTE_VOLATILE;
case SHORT: return GET_SHORT_VOLATILE;
case CHAR: return GET_CHAR_VOLATILE;
case INT: return GET_INT_VOLATILE;
case LONG: return GET_LONG_VOLATILE;
case FLOAT: return GET_FLOAT_VOLATILE;
case DOUBLE: return GET_DOUBLE_VOLATILE;
case OBJECT: return GET_REFERENCE_VOLATILE;
}
} else {
switch (wrapper) {
case BOOLEAN: return GET_BOOLEAN;
case BYTE: return GET_BYTE;
case SHORT: return GET_SHORT;
case CHAR: return GET_CHAR;
case INT: return GET_INT;
case LONG: return GET_LONG;
case FLOAT: return GET_FLOAT;
case DOUBLE: return GET_DOUBLE;
case OBJECT: return GET_REFERENCE;
}
}
} else {
if (isVolatile) {
switch (wrapper) {
case BOOLEAN: return PUT_BOOLEAN_VOLATILE;
case BYTE: return PUT_BYTE_VOLATILE;
case SHORT: return PUT_SHORT_VOLATILE;
case CHAR: return PUT_CHAR_VOLATILE;
case INT: return PUT_INT_VOLATILE;
case LONG: return PUT_LONG_VOLATILE;
case FLOAT: return PUT_FLOAT_VOLATILE;
case DOUBLE: return PUT_DOUBLE_VOLATILE;
case OBJECT: return PUT_REFERENCE_VOLATILE;
}
} else {
switch (wrapper) {
case BOOLEAN: return PUT_BOOLEAN;
case BYTE: return PUT_BYTE;
case SHORT: return PUT_SHORT;
case CHAR: return PUT_CHAR;
case INT: return PUT_INT;
case LONG: return PUT_LONG;
case FLOAT: return PUT_FLOAT;
case DOUBLE: return PUT_DOUBLE;
case OBJECT: return PUT_REFERENCE;
}
}
}
throw new AssertionError("Invalid arguments");
}
static LambdaForm makePreparedFieldLambdaForm(byte formOp, boolean isVolatile, int ftypeKind) {
boolean isGetter = (formOp & 1) == (AF_GETFIELD & 1);
boolean isStatic = (formOp >= AF_GETSTATIC);
boolean needsInit = (formOp >= AF_GETSTATIC_INIT);
boolean needsCast = (ftypeKind == FT_CHECKED_REF);
Wrapper fw = (needsCast ? Wrapper.OBJECT : ALL_WRAPPERS[ftypeKind]);
Class> ft = fw.primitiveType();
assert(ftypeKind(needsCast ? String.class : ft) == ftypeKind);
// getObject, putIntVolatile, etc.
Kind kind = getFieldKind(isGetter, isVolatile, fw);
MethodType linkerType;
if (isGetter)
linkerType = MethodType.methodType(ft, Object.class, long.class);
else
linkerType = MethodType.methodType(void.class, Object.class, long.class, ft);
MemberName linker = new MemberName(Unsafe.class, kind.methodName, linkerType, REF_invokeVirtual);
try {
linker = IMPL_NAMES.resolveOrFail(REF_invokeVirtual, linker, null, LM_TRUSTED,
NoSuchMethodException.class);
} catch (ReflectiveOperationException ex) {
throw newInternalError(ex);
}
// What is the external type of the lambda form?
MethodType mtype;
if (isGetter)
mtype = MethodType.methodType(ft);
else
mtype = MethodType.methodType(void.class, ft);
mtype = mtype.basicType(); // erase short to int, etc.
if (!isStatic)
mtype = mtype.insertParameterTypes(0, Object.class);
final int DMH_THIS = 0;
final int ARG_BASE = 1;
final int ARG_LIMIT = ARG_BASE + mtype.parameterCount();
// if this is for non-static access, the base pointer is stored at this index:
final int OBJ_BASE = isStatic ? -1 : ARG_BASE;
// if this is for write access, the value to be written is stored at this index:
final int SET_VALUE = isGetter ? -1 : ARG_LIMIT - 1;
int nameCursor = ARG_LIMIT;
final int F_HOLDER = (isStatic ? nameCursor++ : -1); // static base if any
final int F_OFFSET = nameCursor++; // Either static offset or field offset.
final int OBJ_CHECK = (OBJ_BASE >= 0 ? nameCursor++ : -1);
final int U_HOLDER = nameCursor++; // UNSAFE holder
final int INIT_BAR = (needsInit ? nameCursor++ : -1);
final int PRE_CAST = (needsCast && !isGetter ? nameCursor++ : -1);
final int LINKER_CALL = nameCursor++;
final int POST_CAST = (needsCast && isGetter ? nameCursor++ : -1);
final int RESULT = nameCursor-1; // either the call or the cast
Name[] names = arguments(nameCursor - ARG_LIMIT, mtype.invokerType());
if (needsInit)
names[INIT_BAR] = new Name(getFunction(NF_ensureInitialized), names[DMH_THIS]);
if (needsCast && !isGetter)
names[PRE_CAST] = new Name(getFunction(NF_checkCast), names[DMH_THIS], names[SET_VALUE]);
Object[] outArgs = new Object[1 + linkerType.parameterCount()];
assert(outArgs.length == (isGetter ? 3 : 4));
outArgs[0] = names[U_HOLDER] = new Name(getFunction(NF_UNSAFE));
if (isStatic) {
outArgs[1] = names[F_HOLDER] = new Name(getFunction(NF_staticBase), names[DMH_THIS]);
outArgs[2] = names[F_OFFSET] = new Name(getFunction(NF_staticOffset), names[DMH_THIS]);
} else {
outArgs[1] = names[OBJ_CHECK] = new Name(getFunction(NF_checkBase), names[OBJ_BASE]);
outArgs[2] = names[F_OFFSET] = new Name(getFunction(NF_fieldOffset), names[DMH_THIS]);
}
if (!isGetter) {
outArgs[3] = (needsCast ? names[PRE_CAST] : names[SET_VALUE]);
}
for (Object a : outArgs) assert(a != null);
names[LINKER_CALL] = new Name(linker, outArgs);
if (needsCast && isGetter)
names[POST_CAST] = new Name(getFunction(NF_checkCast), names[DMH_THIS], names[LINKER_CALL]);
for (Name n : names) assert(n != null);
LambdaForm form;
if (needsCast || needsInit) {
// can't use the pre-generated form when casting and/or initializing
form = new LambdaForm(ARG_LIMIT, names, RESULT);
} else {
form = new LambdaForm(ARG_LIMIT, names, RESULT, kind);
}
if (LambdaForm.debugNames()) {
// add some detail to the lambdaForm debugname,
// significant only for debugging
StringBuilder nameBuilder = new StringBuilder(kind.methodName);
if (isStatic) {
nameBuilder.append("Static");
} else {
nameBuilder.append("Field");
}
if (needsCast) {
nameBuilder.append("Cast");
}
if (needsInit) {
nameBuilder.append("Init");
}
LambdaForm.associateWithDebugName(form, nameBuilder.toString());
}
return form;
}
/**
* Pre-initialized NamedFunctions for bootstrapping purposes.
*/
static final byte NF_internalMemberName = 0,
NF_internalMemberNameEnsureInit = 1,
NF_ensureInitialized = 2,
NF_fieldOffset = 3,
NF_checkBase = 4,
NF_staticBase = 5,
NF_staticOffset = 6,
NF_checkCast = 7,
NF_allocateInstance = 8,
NF_constructorMethod = 9,
NF_UNSAFE = 10,
NF_checkReceiver = 11,
NF_LIMIT = 12;
private static final @Stable NamedFunction[] NFS = new NamedFunction[NF_LIMIT];
private static NamedFunction getFunction(byte func) {
NamedFunction nf = NFS[func];
if (nf != null) {
return nf;
}
// Each nf must be statically invocable or we get tied up in our bootstraps.
nf = NFS[func] = createFunction(func);
assert(InvokerBytecodeGenerator.isStaticallyInvocable(nf));
return nf;
}
private static final MethodType OBJ_OBJ_TYPE = MethodType.methodType(Object.class, Object.class);
private static final MethodType LONG_OBJ_TYPE = MethodType.methodType(long.class, Object.class);
private static NamedFunction createFunction(byte func) {
try {
switch (func) {
case NF_internalMemberName:
return getNamedFunction("internalMemberName", OBJ_OBJ_TYPE);
case NF_internalMemberNameEnsureInit:
return getNamedFunction("internalMemberNameEnsureInit", OBJ_OBJ_TYPE);
case NF_ensureInitialized:
return getNamedFunction("ensureInitialized", MethodType.methodType(void.class, Object.class));
case NF_fieldOffset:
return getNamedFunction("fieldOffset", LONG_OBJ_TYPE);
case NF_checkBase:
return getNamedFunction("checkBase", OBJ_OBJ_TYPE);
case NF_staticBase:
return getNamedFunction("staticBase", OBJ_OBJ_TYPE);
case NF_staticOffset:
return getNamedFunction("staticOffset", LONG_OBJ_TYPE);
case NF_checkCast:
return getNamedFunction("checkCast", MethodType.methodType(Object.class, Object.class, Object.class));
case NF_allocateInstance:
return getNamedFunction("allocateInstance", OBJ_OBJ_TYPE);
case NF_constructorMethod:
return getNamedFunction("constructorMethod", OBJ_OBJ_TYPE);
case NF_UNSAFE:
MemberName member = new MemberName(MethodHandleStatics.class, "UNSAFE", Unsafe.class, REF_getField);
return new NamedFunction(
MemberName.getFactory().resolveOrFail(REF_getField, member,
DirectMethodHandle.class, LM_TRUSTED,
NoSuchMethodException.class));
case NF_checkReceiver:
member = new MemberName(DirectMethodHandle.class, "checkReceiver", OBJ_OBJ_TYPE, REF_invokeVirtual);
return new NamedFunction(
MemberName.getFactory().resolveOrFail(REF_invokeVirtual, member,
DirectMethodHandle.class, LM_TRUSTED,
NoSuchMethodException.class));
default:
throw newInternalError("Unknown function: " + func);
}
} catch (ReflectiveOperationException ex) {
throw newInternalError(ex);
}
}
private static NamedFunction getNamedFunction(String name, MethodType type)
throws ReflectiveOperationException
{
MemberName member = new MemberName(DirectMethodHandle.class, name, type, REF_invokeStatic);
return new NamedFunction(
MemberName.getFactory().resolveOrFail(REF_invokeStatic, member,
DirectMethodHandle.class, LM_TRUSTED,
NoSuchMethodException.class));
}
static {
// The Holder class will contain pre-generated DirectMethodHandles resolved
// speculatively using MemberName.getFactory().resolveOrNull. However, that
// doesn't initialize the class, which subtly breaks inlining etc. By forcing
// initialization of the Holder class we avoid these issues.
UNSAFE.ensureClassInitialized(Holder.class);
}
/* Placeholder class for DirectMethodHandles generated ahead of time */
final class Holder {}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy