All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.lang.invoke.MethodHandleImpl Maven / Gradle / Ivy

There is a newer version: 17.alpha.0.57
Show newest version
/*
 * Copyright (c) 2008, 2021, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.invoke;

import jdk.internal.access.JavaLangInvokeAccess;
import jdk.internal.access.SharedSecrets;
import jdk.internal.invoke.NativeEntryPoint;
import jdk.internal.org.objectweb.asm.ClassWriter;
import jdk.internal.org.objectweb.asm.MethodVisitor;
import jdk.internal.reflect.CallerSensitive;
import jdk.internal.reflect.Reflection;
import jdk.internal.vm.annotation.ForceInline;
import jdk.internal.vm.annotation.Hidden;
import jdk.internal.vm.annotation.Stable;
import sun.invoke.empty.Empty;
import sun.invoke.util.ValueConversions;
import sun.invoke.util.VerifyType;
import sun.invoke.util.Wrapper;

import java.lang.invoke.MethodHandles.Lookup;
import java.lang.reflect.Array;
import java.nio.ByteOrder;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.concurrent.ConcurrentHashMap;
import java.util.function.Function;
import java.util.stream.Stream;

import static java.lang.invoke.LambdaForm.*;
import static java.lang.invoke.MethodHandleStatics.*;
import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
import static jdk.internal.org.objectweb.asm.Opcodes.*;

/**
 * Trusted implementation code for MethodHandle.
 * @author jrose
 */
/*non-public*/
abstract class MethodHandleImpl {

    /// Factory methods to create method handles:

    static MethodHandle makeArrayElementAccessor(Class arrayClass, ArrayAccess access) {
        if (arrayClass == Object[].class) {
            return ArrayAccess.objectAccessor(access);
        }
        if (!arrayClass.isArray())
            throw newIllegalArgumentException("not an array: "+arrayClass);
        MethodHandle[] cache = ArrayAccessor.TYPED_ACCESSORS.get(arrayClass);
        int cacheIndex = ArrayAccess.cacheIndex(access);
        MethodHandle mh = cache[cacheIndex];
        if (mh != null)  return mh;
        mh = ArrayAccessor.getAccessor(arrayClass, access);
        MethodType correctType = ArrayAccessor.correctType(arrayClass, access);
        if (mh.type() != correctType) {
            assert(mh.type().parameterType(0) == Object[].class);
            /* if access == SET */ assert(access != ArrayAccess.SET || mh.type().parameterType(2) == Object.class);
            /* if access == GET */ assert(access != ArrayAccess.GET ||
                    (mh.type().returnType() == Object.class &&
                     correctType.parameterType(0).getComponentType() == correctType.returnType()));
            // safe to view non-strictly, because element type follows from array type
            mh = mh.viewAsType(correctType, false);
        }
        mh = makeIntrinsic(mh, ArrayAccess.intrinsic(access));
        // Atomically update accessor cache.
        synchronized(cache) {
            if (cache[cacheIndex] == null) {
                cache[cacheIndex] = mh;
            } else {
                // Throw away newly constructed accessor and use cached version.
                mh = cache[cacheIndex];
            }
        }
        return mh;
    }

    enum ArrayAccess {
        GET, SET, LENGTH;

        // As ArrayAccess and ArrayAccessor have a circular dependency, the ArrayAccess properties cannot be stored in
        // final fields.

        static String opName(ArrayAccess a) {
            return switch (a) {
                case GET    -> "getElement";
                case SET    -> "setElement";
                case LENGTH -> "length";
                default -> throw unmatchedArrayAccess(a);
            };
        }

        static MethodHandle objectAccessor(ArrayAccess a) {
            return switch (a) {
                case GET    -> ArrayAccessor.OBJECT_ARRAY_GETTER;
                case SET    -> ArrayAccessor.OBJECT_ARRAY_SETTER;
                case LENGTH -> ArrayAccessor.OBJECT_ARRAY_LENGTH;
                default -> throw unmatchedArrayAccess(a);
            };
        }

        static int cacheIndex(ArrayAccess a) {
            return switch (a) {
                case GET    -> ArrayAccessor.GETTER_INDEX;
                case SET    -> ArrayAccessor.SETTER_INDEX;
                case LENGTH -> ArrayAccessor.LENGTH_INDEX;
                default -> throw unmatchedArrayAccess(a);
            };
        }

        static Intrinsic intrinsic(ArrayAccess a) {
            return switch (a) {
                case GET    -> Intrinsic.ARRAY_LOAD;
                case SET    -> Intrinsic.ARRAY_STORE;
                case LENGTH -> Intrinsic.ARRAY_LENGTH;
                default -> throw unmatchedArrayAccess(a);
            };
        }
    }

    static InternalError unmatchedArrayAccess(ArrayAccess a) {
        return newInternalError("should not reach here (unmatched ArrayAccess: " + a + ")");
    }

    static final class ArrayAccessor {
        /// Support for array element and length access
        static final int GETTER_INDEX = 0, SETTER_INDEX = 1, LENGTH_INDEX = 2, INDEX_LIMIT = 3;
        static final ClassValue TYPED_ACCESSORS
                = new ClassValue() {
                    @Override
                    protected MethodHandle[] computeValue(Class type) {
                        return new MethodHandle[INDEX_LIMIT];
                    }
                };
        static final MethodHandle OBJECT_ARRAY_GETTER, OBJECT_ARRAY_SETTER, OBJECT_ARRAY_LENGTH;
        static {
            MethodHandle[] cache = TYPED_ACCESSORS.get(Object[].class);
            cache[GETTER_INDEX] = OBJECT_ARRAY_GETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.GET),    Intrinsic.ARRAY_LOAD);
            cache[SETTER_INDEX] = OBJECT_ARRAY_SETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.SET),    Intrinsic.ARRAY_STORE);
            cache[LENGTH_INDEX] = OBJECT_ARRAY_LENGTH = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.LENGTH), Intrinsic.ARRAY_LENGTH);

            assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_GETTER.internalMemberName()));
            assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_SETTER.internalMemberName()));
            assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_LENGTH.internalMemberName()));
        }

        static int     getElementI(int[]     a, int i)            { return              a[i]; }
        static long    getElementJ(long[]    a, int i)            { return              a[i]; }
        static float   getElementF(float[]   a, int i)            { return              a[i]; }
        static double  getElementD(double[]  a, int i)            { return              a[i]; }
        static boolean getElementZ(boolean[] a, int i)            { return              a[i]; }
        static byte    getElementB(byte[]    a, int i)            { return              a[i]; }
        static short   getElementS(short[]   a, int i)            { return              a[i]; }
        static char    getElementC(char[]    a, int i)            { return              a[i]; }
        static Object  getElementL(Object[]  a, int i)            { return              a[i]; }

        static void    setElementI(int[]     a, int i, int     x) {              a[i] = x; }
        static void    setElementJ(long[]    a, int i, long    x) {              a[i] = x; }
        static void    setElementF(float[]   a, int i, float   x) {              a[i] = x; }
        static void    setElementD(double[]  a, int i, double  x) {              a[i] = x; }
        static void    setElementZ(boolean[] a, int i, boolean x) {              a[i] = x; }
        static void    setElementB(byte[]    a, int i, byte    x) {              a[i] = x; }
        static void    setElementS(short[]   a, int i, short   x) {              a[i] = x; }
        static void    setElementC(char[]    a, int i, char    x) {              a[i] = x; }
        static void    setElementL(Object[]  a, int i, Object  x) {              a[i] = x; }

        static int     lengthI(int[]     a)                       { return a.length; }
        static int     lengthJ(long[]    a)                       { return a.length; }
        static int     lengthF(float[]   a)                       { return a.length; }
        static int     lengthD(double[]  a)                       { return a.length; }
        static int     lengthZ(boolean[] a)                       { return a.length; }
        static int     lengthB(byte[]    a)                       { return a.length; }
        static int     lengthS(short[]   a)                       { return a.length; }
        static int     lengthC(char[]    a)                       { return a.length; }
        static int     lengthL(Object[]  a)                       { return a.length; }

        static String name(Class arrayClass, ArrayAccess access) {
            Class elemClass = arrayClass.getComponentType();
            if (elemClass == null)  throw newIllegalArgumentException("not an array", arrayClass);
            return ArrayAccess.opName(access) + Wrapper.basicTypeChar(elemClass);
        }
        static MethodType type(Class arrayClass, ArrayAccess access) {
            Class elemClass = arrayClass.getComponentType();
            Class arrayArgClass = arrayClass;
            if (!elemClass.isPrimitive()) {
                arrayArgClass = Object[].class;
                elemClass = Object.class;
            }
            return switch (access) {
                case GET    -> MethodType.methodType(elemClass, arrayArgClass, int.class);
                case SET    -> MethodType.methodType(void.class, arrayArgClass, int.class, elemClass);
                case LENGTH -> MethodType.methodType(int.class, arrayArgClass);
                default -> throw unmatchedArrayAccess(access);
            };
        }
        static MethodType correctType(Class arrayClass, ArrayAccess access) {
            Class elemClass = arrayClass.getComponentType();
            return switch (access) {
                case GET    -> MethodType.methodType(elemClass, arrayClass, int.class);
                case SET    -> MethodType.methodType(void.class, arrayClass, int.class, elemClass);
                case LENGTH -> MethodType.methodType(int.class, arrayClass);
                default -> throw unmatchedArrayAccess(access);
            };
        }
        static MethodHandle getAccessor(Class arrayClass, ArrayAccess access) {
            String     name = name(arrayClass, access);
            MethodType type = type(arrayClass, access);
            try {
                return IMPL_LOOKUP.findStatic(ArrayAccessor.class, name, type);
            } catch (ReflectiveOperationException ex) {
                throw uncaughtException(ex);
            }
        }
    }

    /**
     * Create a JVM-level adapter method handle to conform the given method
     * handle to the similar newType, using only pairwise argument conversions.
     * For each argument, convert incoming argument to the exact type needed.
     * The argument conversions allowed are casting, boxing and unboxing,
     * integral widening or narrowing, and floating point widening or narrowing.
     * @param srcType required call type
     * @param target original method handle
     * @param strict if true, only asType conversions are allowed; if false, explicitCastArguments conversions allowed
     * @param monobox if true, unboxing conversions are assumed to be exactly typed (Integer to int only, not long or double)
     * @return an adapter to the original handle with the desired new type,
     *          or the original target if the types are already identical
     *          or null if the adaptation cannot be made
     */
    static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
                                            boolean strict, boolean monobox) {
        MethodType dstType = target.type();
        if (srcType == dstType)
            return target;
        return makePairwiseConvertByEditor(target, srcType, strict, monobox);
    }

    private static int countNonNull(Object[] array) {
        int count = 0;
        if (array != null) {
            for (Object x : array) {
                if (x != null) ++count;
            }
        }
        return count;
    }

    static MethodHandle makePairwiseConvertByEditor(MethodHandle target, MethodType srcType,
                                                    boolean strict, boolean monobox) {
        // In method types arguments start at index 0, while the LF
        // editor have the MH receiver at position 0 - adjust appropriately.
        final int MH_RECEIVER_OFFSET = 1;
        Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
        int convCount = countNonNull(convSpecs);
        if (convCount == 0)
            return target.viewAsType(srcType, strict);
        MethodType basicSrcType = srcType.basicType();
        MethodType midType = target.type().basicType();
        BoundMethodHandle mh = target.rebind();

        // Match each unique conversion to the positions at which it is to be applied
        var convSpecMap = new HashMap(((4 * convCount) / 3) + 1);
        for (int i = 0; i < convSpecs.length - MH_RECEIVER_OFFSET; i++) {
            Object convSpec = convSpecs[i];
            if (convSpec == null) continue;
            int[] positions = convSpecMap.get(convSpec);
            if (positions == null) {
                positions = new int[] { i + MH_RECEIVER_OFFSET };
            } else {
                positions = Arrays.copyOf(positions, positions.length + 1);
                positions[positions.length - 1] = i + MH_RECEIVER_OFFSET;
            }
            convSpecMap.put(convSpec, positions);
        }
        for (var entry : convSpecMap.entrySet()) {
            Object convSpec = entry.getKey();

            MethodHandle fn;
            if (convSpec instanceof Class) {
                fn = getConstantHandle(MH_cast).bindTo(convSpec);
            } else {
                fn = (MethodHandle) convSpec;
            }
            int[] positions = entry.getValue();
            Class newType = basicSrcType.parameterType(positions[0] - MH_RECEIVER_OFFSET);
            BasicType newBasicType = BasicType.basicType(newType);
            convCount -= positions.length;
            if (convCount == 0) {
                midType = srcType;
            } else {
                Class[] ptypes = midType.ptypes().clone();
                for (int pos : positions) {
                    ptypes[pos - 1] = newType;
                }
                midType = MethodType.makeImpl(midType.rtype(), ptypes, true);
            }
            LambdaForm form2;
            if (positions.length > 1) {
                form2 = mh.editor().filterRepeatedArgumentForm(newBasicType, positions);
            } else {
                form2 = mh.editor().filterArgumentForm(positions[0], newBasicType);
            }
            mh = mh.copyWithExtendL(midType, form2, fn);
        }
        Object convSpec = convSpecs[convSpecs.length - 1];
        if (convSpec != null) {
            MethodHandle fn;
            if (convSpec instanceof Class) {
                if (convSpec == void.class)
                    fn = null;
                else
                    fn = getConstantHandle(MH_cast).bindTo(convSpec);
            } else {
                fn = (MethodHandle) convSpec;
            }
            Class newType = basicSrcType.returnType();
            assert(--convCount == 0);
            midType = srcType;
            if (fn != null) {
                mh = mh.rebind();  // rebind if too complex
                LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), false);
                mh = mh.copyWithExtendL(midType, form2, fn);
            } else {
                LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), true);
                mh = mh.copyWith(midType, form2);
            }
        }
        assert(convCount == 0);
        assert(mh.type().equals(srcType));
        return mh;
    }

    static Object[] computeValueConversions(MethodType srcType, MethodType dstType,
                                            boolean strict, boolean monobox) {
        final int INARG_COUNT = srcType.parameterCount();
        Object[] convSpecs = null;
        for (int i = 0; i <= INARG_COUNT; i++) {
            boolean isRet = (i == INARG_COUNT);
            Class src = isRet ? dstType.returnType() : srcType.parameterType(i);
            Class dst = isRet ? srcType.returnType() : dstType.parameterType(i);
            if (!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict)) {
                if (convSpecs == null) {
                    convSpecs = new Object[INARG_COUNT + 1];
                }
                convSpecs[i] = valueConversion(src, dst, strict, monobox);
            }
        }
        return convSpecs;
    }
    static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
                                            boolean strict) {
        return makePairwiseConvert(target, srcType, strict, /*monobox=*/ false);
    }

    /**
     * Find a conversion function from the given source to the given destination.
     * This conversion function will be used as a LF NamedFunction.
     * Return a Class object if a simple cast is needed.
     * Return void.class if void is involved.
     */
    static Object valueConversion(Class src, Class dst, boolean strict, boolean monobox) {
        assert(!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict));  // caller responsibility
        if (dst == void.class)
            return dst;
        MethodHandle fn;
        if (src.isPrimitive()) {
            if (src == void.class) {
                return void.class;  // caller must recognize this specially
            } else if (dst.isPrimitive()) {
                // Examples: int->byte, byte->int, boolean->int (!strict)
                fn = ValueConversions.convertPrimitive(src, dst);
            } else {
                // Examples: int->Integer, boolean->Object, float->Number
                Wrapper wsrc = Wrapper.forPrimitiveType(src);
                fn = ValueConversions.boxExact(wsrc);
                assert(fn.type().parameterType(0) == wsrc.primitiveType());
                assert(fn.type().returnType() == wsrc.wrapperType());
                if (!VerifyType.isNullConversion(wsrc.wrapperType(), dst, strict)) {
                    // Corner case, such as int->Long, which will probably fail.
                    MethodType mt = MethodType.methodType(dst, src);
                    if (strict)
                        fn = fn.asType(mt);
                    else
                        fn = MethodHandleImpl.makePairwiseConvert(fn, mt, /*strict=*/ false);
                }
            }
        } else if (dst.isPrimitive()) {
            Wrapper wdst = Wrapper.forPrimitiveType(dst);
            if (monobox || src == wdst.wrapperType()) {
                // Use a strongly-typed unboxer, if possible.
                fn = ValueConversions.unboxExact(wdst, strict);
            } else {
                // Examples:  Object->int, Number->int, Comparable->int, Byte->int
                // must include additional conversions
                // src must be examined at runtime, to detect Byte, Character, etc.
                fn = (strict
                        ? ValueConversions.unboxWiden(wdst)
                        : ValueConversions.unboxCast(wdst));
            }
        } else {
            // Simple reference conversion.
            // Note:  Do not check for a class hierarchy relation
            // between src and dst.  In all cases a 'null' argument
            // will pass the cast conversion.
            return dst;
        }
        assert(fn.type().parameterCount() <= 1) : "pc"+Arrays.asList(src.getSimpleName(), dst.getSimpleName(), fn);
        return fn;
    }

    static MethodHandle makeVarargsCollector(MethodHandle target, Class arrayType) {
        MethodType type = target.type();
        int last = type.parameterCount() - 1;
        if (type.parameterType(last) != arrayType)
            target = target.asType(type.changeParameterType(last, arrayType));
        target = target.asFixedArity();  // make sure this attribute is turned off
        return new AsVarargsCollector(target, arrayType);
    }

    private static final class AsVarargsCollector extends DelegatingMethodHandle {
        private final MethodHandle target;
        private final Class arrayType;
        private @Stable MethodHandle asCollectorCache;

        AsVarargsCollector(MethodHandle target, Class arrayType) {
            this(target.type(), target, arrayType);
        }
        AsVarargsCollector(MethodType type, MethodHandle target, Class arrayType) {
            super(type, target);
            this.target = target;
            this.arrayType = arrayType;
        }

        @Override
        public boolean isVarargsCollector() {
            return true;
        }

        @Override
        protected MethodHandle getTarget() {
            return target;
        }

        @Override
        public MethodHandle asFixedArity() {
            return target;
        }

        @Override
        MethodHandle setVarargs(MemberName member) {
            if (member.isVarargs())  return this;
            return asFixedArity();
        }

        @Override
        public MethodHandle withVarargs(boolean makeVarargs) {
            if (makeVarargs)  return this;
            return asFixedArity();
        }

        @Override
        public MethodHandle asTypeUncached(MethodType newType) {
            MethodType type = this.type();
            int collectArg = type.parameterCount() - 1;
            int newArity = newType.parameterCount();
            if (newArity == collectArg+1 &&
                type.parameterType(collectArg).isAssignableFrom(newType.parameterType(collectArg))) {
                // if arity and trailing parameter are compatible, do normal thing
                return asTypeCache = asFixedArity().asType(newType);
            }
            // check cache
            MethodHandle acc = asCollectorCache;
            if (acc != null && acc.type().parameterCount() == newArity)
                return asTypeCache = acc.asType(newType);
            // build and cache a collector
            int arrayLength = newArity - collectArg;
            MethodHandle collector;
            try {
                collector = asFixedArity().asCollector(arrayType, arrayLength);
                assert(collector.type().parameterCount() == newArity) : "newArity="+newArity+" but collector="+collector;
            } catch (IllegalArgumentException ex) {
                throw new WrongMethodTypeException("cannot build collector", ex);
            }
            asCollectorCache = collector;
            return asTypeCache = collector.asType(newType);
        }

        @Override
        boolean viewAsTypeChecks(MethodType newType, boolean strict) {
            super.viewAsTypeChecks(newType, true);
            if (strict) return true;
            // extra assertion for non-strict checks:
            assert (type().lastParameterType().getComponentType()
                    .isAssignableFrom(
                            newType.lastParameterType().getComponentType()))
                    : Arrays.asList(this, newType);
            return true;
        }

        @Override
        public Object invokeWithArguments(Object... arguments) throws Throwable {
            MethodType type = this.type();
            int argc;
            final int MAX_SAFE = 127;  // 127 longs require 254 slots, which is safe to spread
            if (arguments == null
                    || (argc = arguments.length) <= MAX_SAFE
                    || argc < type.parameterCount()) {
                return super.invokeWithArguments(arguments);
            }

            // a jumbo invocation requires more explicit reboxing of the trailing arguments
            int uncollected = type.parameterCount() - 1;
            Class elemType = arrayType.getComponentType();
            int collected = argc - uncollected;
            Object collArgs = (elemType == Object.class)
                ? new Object[collected] : Array.newInstance(elemType, collected);
            if (!elemType.isPrimitive()) {
                // simple cast:  just do some casting
                try {
                    System.arraycopy(arguments, uncollected, collArgs, 0, collected);
                } catch (ArrayStoreException ex) {
                    return super.invokeWithArguments(arguments);
                }
            } else {
                // corner case of flat array requires reflection (or specialized copy loop)
                MethodHandle arraySetter = MethodHandles.arrayElementSetter(arrayType);
                try {
                    for (int i = 0; i < collected; i++) {
                        arraySetter.invoke(collArgs, i, arguments[uncollected + i]);
                    }
                } catch (WrongMethodTypeException|ClassCastException ex) {
                    return super.invokeWithArguments(arguments);
                }
            }

            // chop the jumbo list down to size and call in non-varargs mode
            Object[] newArgs = new Object[uncollected + 1];
            System.arraycopy(arguments, 0, newArgs, 0, uncollected);
            newArgs[uncollected] = collArgs;
            return asFixedArity().invokeWithArguments(newArgs);
        }
    }

    static void checkSpreadArgument(Object av, int n) {
        if (av == null && n == 0) {
            return;
        } else if (av == null) {
            throw new NullPointerException("null array reference");
        } else if (av instanceof Object[]) {
            int len = ((Object[])av).length;
            if (len == n)  return;
        } else {
            int len = java.lang.reflect.Array.getLength(av);
            if (len == n)  return;
        }
        // fall through to error:
        throw newIllegalArgumentException("array is not of length "+n);
    }

    @Hidden
    static MethodHandle selectAlternative(boolean testResult, MethodHandle target, MethodHandle fallback) {
        if (testResult) {
            return target;
        } else {
            return fallback;
        }
    }

    // Intrinsified by C2. Counters are used during parsing to calculate branch frequencies.
    @Hidden
    @jdk.internal.vm.annotation.IntrinsicCandidate
    static boolean profileBoolean(boolean result, int[] counters) {
        // Profile is int[2] where [0] and [1] correspond to false and true occurrences respectively.
        int idx = result ? 1 : 0;
        try {
            counters[idx] = Math.addExact(counters[idx], 1);
        } catch (ArithmeticException e) {
            // Avoid continuous overflow by halving the problematic count.
            counters[idx] = counters[idx] / 2;
        }
        return result;
    }

    // Intrinsified by C2. Returns true if obj is a compile-time constant.
    @Hidden
    @jdk.internal.vm.annotation.IntrinsicCandidate
    static boolean isCompileConstant(Object obj) {
        return false;
    }

    static MethodHandle makeGuardWithTest(MethodHandle test,
                                   MethodHandle target,
                                   MethodHandle fallback) {
        MethodType type = target.type();
        assert(test.type().equals(type.changeReturnType(boolean.class)) && fallback.type().equals(type));
        MethodType basicType = type.basicType();
        LambdaForm form = makeGuardWithTestForm(basicType);
        BoundMethodHandle mh;
        try {
            if (PROFILE_GWT) {
                int[] counts = new int[2];
                mh = (BoundMethodHandle)
                        BoundMethodHandle.speciesData_LLLL().factory().invokeBasic(type, form,
                                (Object) test, (Object) profile(target), (Object) profile(fallback), counts);
            } else {
                mh = (BoundMethodHandle)
                        BoundMethodHandle.speciesData_LLL().factory().invokeBasic(type, form,
                                (Object) test, (Object) profile(target), (Object) profile(fallback));
            }
        } catch (Throwable ex) {
            throw uncaughtException(ex);
        }
        assert(mh.type() == type);
        return mh;
    }


    static MethodHandle profile(MethodHandle target) {
        if (DONT_INLINE_THRESHOLD >= 0) {
            return makeBlockInliningWrapper(target);
        } else {
            return target;
        }
    }

    /**
     * Block inlining during JIT-compilation of a target method handle if it hasn't been invoked enough times.
     * Corresponding LambdaForm has @DontInline when compiled into bytecode.
     */
    static MethodHandle makeBlockInliningWrapper(MethodHandle target) {
        LambdaForm lform;
        if (DONT_INLINE_THRESHOLD > 0) {
            lform = Makers.PRODUCE_BLOCK_INLINING_FORM.apply(target);
        } else {
            lform = Makers.PRODUCE_REINVOKER_FORM.apply(target);
        }
        return new CountingWrapper(target, lform,
                Makers.PRODUCE_BLOCK_INLINING_FORM, Makers.PRODUCE_REINVOKER_FORM,
                                   DONT_INLINE_THRESHOLD);
    }

    private static final class Makers {
        /** Constructs reinvoker lambda form which block inlining during JIT-compilation for a particular method handle */
        static final Function PRODUCE_BLOCK_INLINING_FORM = new Function() {
            @Override
            public LambdaForm apply(MethodHandle target) {
                return DelegatingMethodHandle.makeReinvokerForm(target,
                                   MethodTypeForm.LF_DELEGATE_BLOCK_INLINING, CountingWrapper.class, false,
                                   DelegatingMethodHandle.NF_getTarget, CountingWrapper.NF_maybeStopCounting);
            }
        };

        /** Constructs simple reinvoker lambda form for a particular method handle */
        static final Function PRODUCE_REINVOKER_FORM = new Function() {
            @Override
            public LambdaForm apply(MethodHandle target) {
                return DelegatingMethodHandle.makeReinvokerForm(target,
                        MethodTypeForm.LF_DELEGATE, DelegatingMethodHandle.class, DelegatingMethodHandle.NF_getTarget);
            }
        };

        /** Maker of type-polymorphic varargs */
        static final ClassValue TYPED_COLLECTORS = new ClassValue() {
            @Override
            protected MethodHandle[] computeValue(Class type) {
                return new MethodHandle[MAX_JVM_ARITY + 1];
            }
        };
    }

    /**
     * Counting method handle. It has 2 states: counting and non-counting.
     * It is in counting state for the first n invocations and then transitions to non-counting state.
     * Behavior in counting and non-counting states is determined by lambda forms produced by
     * countingFormProducer & nonCountingFormProducer respectively.
     */
    static class CountingWrapper extends DelegatingMethodHandle {
        private final MethodHandle target;
        private int count;
        private Function countingFormProducer;
        private Function nonCountingFormProducer;
        private volatile boolean isCounting;

        private CountingWrapper(MethodHandle target, LambdaForm lform,
                                Function countingFromProducer,
                                Function nonCountingFormProducer,
                                int count) {
            super(target.type(), lform);
            this.target = target;
            this.count = count;
            this.countingFormProducer = countingFromProducer;
            this.nonCountingFormProducer = nonCountingFormProducer;
            this.isCounting = (count > 0);
        }

        @Hidden
        @Override
        protected MethodHandle getTarget() {
            return target;
        }

        @Override
        public MethodHandle asTypeUncached(MethodType newType) {
            MethodHandle newTarget = target.asType(newType);
            MethodHandle wrapper;
            if (isCounting) {
                LambdaForm lform;
                lform = countingFormProducer.apply(newTarget);
                wrapper = new CountingWrapper(newTarget, lform, countingFormProducer, nonCountingFormProducer, DONT_INLINE_THRESHOLD);
            } else {
                wrapper = newTarget; // no need for a counting wrapper anymore
            }
            return (asTypeCache = wrapper);
        }

        boolean countDown() {
            int c = count;
            target.maybeCustomize(); // customize if counting happens for too long
            if (c <= 1) {
                // Try to limit number of updates. MethodHandle.updateForm() doesn't guarantee LF update visibility.
                if (isCounting) {
                    isCounting = false;
                    return true;
                } else {
                    return false;
                }
            } else {
                count = c - 1;
                return false;
            }
        }

        @Hidden
        static void maybeStopCounting(Object o1) {
             final CountingWrapper wrapper = (CountingWrapper) o1;
             if (wrapper.countDown()) {
                 // Reached invocation threshold. Replace counting behavior with a non-counting one.
                 wrapper.updateForm(new Function<>() {
                     public LambdaForm apply(LambdaForm oldForm) {
                         LambdaForm lform = wrapper.nonCountingFormProducer.apply(wrapper.target);
                         lform.compileToBytecode(); // speed up warmup by avoiding LF interpretation again after transition
                         return lform;
                     }});
             }
        }

        static final NamedFunction NF_maybeStopCounting;
        static {
            Class THIS_CLASS = CountingWrapper.class;
            try {
                NF_maybeStopCounting = new NamedFunction(THIS_CLASS.getDeclaredMethod("maybeStopCounting", Object.class));
            } catch (ReflectiveOperationException ex) {
                throw newInternalError(ex);
            }
        }
    }

    static LambdaForm makeGuardWithTestForm(MethodType basicType) {
        LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWT);
        if (lform != null)  return lform;
        final int THIS_MH      = 0;  // the BMH_LLL
        final int ARG_BASE     = 1;  // start of incoming arguments
        final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
        int nameCursor = ARG_LIMIT;
        final int GET_TEST     = nameCursor++;
        final int GET_TARGET   = nameCursor++;
        final int GET_FALLBACK = nameCursor++;
        final int GET_COUNTERS = PROFILE_GWT ? nameCursor++ : -1;
        final int CALL_TEST    = nameCursor++;
        final int PROFILE      = (GET_COUNTERS != -1) ? nameCursor++ : -1;
        final int TEST         = nameCursor-1; // previous statement: either PROFILE or CALL_TEST
        final int SELECT_ALT   = nameCursor++;
        final int CALL_TARGET  = nameCursor++;
        assert(CALL_TARGET == SELECT_ALT+1);  // must be true to trigger IBG.emitSelectAlternative

        MethodType lambdaType = basicType.invokerType();
        Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);

        BoundMethodHandle.SpeciesData data =
                (GET_COUNTERS != -1) ? BoundMethodHandle.speciesData_LLLL()
                                     : BoundMethodHandle.speciesData_LLL();
        names[THIS_MH] = names[THIS_MH].withConstraint(data);
        names[GET_TEST]     = new Name(data.getterFunction(0), names[THIS_MH]);
        names[GET_TARGET]   = new Name(data.getterFunction(1), names[THIS_MH]);
        names[GET_FALLBACK] = new Name(data.getterFunction(2), names[THIS_MH]);
        if (GET_COUNTERS != -1) {
            names[GET_COUNTERS] = new Name(data.getterFunction(3), names[THIS_MH]);
        }
        Object[] invokeArgs = Arrays.copyOfRange(names, 0, ARG_LIMIT, Object[].class);

        // call test
        MethodType testType = basicType.changeReturnType(boolean.class).basicType();
        invokeArgs[0] = names[GET_TEST];
        names[CALL_TEST] = new Name(testType, invokeArgs);

        // profile branch
        if (PROFILE != -1) {
            names[PROFILE] = new Name(getFunction(NF_profileBoolean), names[CALL_TEST], names[GET_COUNTERS]);
        }
        // call selectAlternative
        names[SELECT_ALT] = new Name(new NamedFunction(
                makeIntrinsic(getConstantHandle(MH_selectAlternative), Intrinsic.SELECT_ALTERNATIVE)),
                names[TEST], names[GET_TARGET], names[GET_FALLBACK]);

        // call target or fallback
        invokeArgs[0] = names[SELECT_ALT];
        names[CALL_TARGET] = new Name(basicType, invokeArgs);

        lform = new LambdaForm(lambdaType.parameterCount(), names, /*forceInline=*/true, Kind.GUARD);

        return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWT, lform);
    }

    /**
     * The LambdaForm shape for catchException combinator is the following:
     * 
{@code
     *  guardWithCatch=Lambda(a0:L,a1:L,a2:L)=>{
     *    t3:L=BoundMethodHandle$Species_LLLLL.argL0(a0:L);
     *    t4:L=BoundMethodHandle$Species_LLLLL.argL1(a0:L);
     *    t5:L=BoundMethodHandle$Species_LLLLL.argL2(a0:L);
     *    t6:L=BoundMethodHandle$Species_LLLLL.argL3(a0:L);
     *    t7:L=BoundMethodHandle$Species_LLLLL.argL4(a0:L);
     *    t8:L=MethodHandle.invokeBasic(t6:L,a1:L,a2:L);
     *    t9:L=MethodHandleImpl.guardWithCatch(t3:L,t4:L,t5:L,t8:L);
     *   t10:I=MethodHandle.invokeBasic(t7:L,t9:L);t10:I}
     * }
* * argL0 and argL2 are target and catcher method handles. argL1 is exception class. * argL3 and argL4 are auxiliary method handles: argL3 boxes arguments and wraps them into Object[] * (ValueConversions.array()) and argL4 unboxes result if necessary (ValueConversions.unbox()). * * Having t8 and t10 passed outside and not hardcoded into a lambda form allows to share lambda forms * among catchException combinators with the same basic type. */ private static LambdaForm makeGuardWithCatchForm(MethodType basicType) { MethodType lambdaType = basicType.invokerType(); LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWC); if (lform != null) { return lform; } final int THIS_MH = 0; // the BMH_LLLLL final int ARG_BASE = 1; // start of incoming arguments final int ARG_LIMIT = ARG_BASE + basicType.parameterCount(); int nameCursor = ARG_LIMIT; final int GET_TARGET = nameCursor++; final int GET_CLASS = nameCursor++; final int GET_CATCHER = nameCursor++; final int GET_COLLECT_ARGS = nameCursor++; final int GET_UNBOX_RESULT = nameCursor++; final int BOXED_ARGS = nameCursor++; final int TRY_CATCH = nameCursor++; final int UNBOX_RESULT = nameCursor++; Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL(); names[THIS_MH] = names[THIS_MH].withConstraint(data); names[GET_TARGET] = new Name(data.getterFunction(0), names[THIS_MH]); names[GET_CLASS] = new Name(data.getterFunction(1), names[THIS_MH]); names[GET_CATCHER] = new Name(data.getterFunction(2), names[THIS_MH]); names[GET_COLLECT_ARGS] = new Name(data.getterFunction(3), names[THIS_MH]); names[GET_UNBOX_RESULT] = new Name(data.getterFunction(4), names[THIS_MH]); // FIXME: rework argument boxing/result unboxing logic for LF interpretation // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...); MethodType collectArgsType = basicType.changeReturnType(Object.class); MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType); Object[] args = new Object[invokeBasic.type().parameterCount()]; args[0] = names[GET_COLLECT_ARGS]; System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE); names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.GUARD_WITH_CATCH)), args); // t_{i+1}:L=MethodHandleImpl.guardWithCatch(target:L,exType:L,catcher:L,t_{i}:L); Object[] gwcArgs = new Object[] {names[GET_TARGET], names[GET_CLASS], names[GET_CATCHER], names[BOXED_ARGS]}; names[TRY_CATCH] = new Name(getFunction(NF_guardWithCatch), gwcArgs); // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L); MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class)); Object[] unboxArgs = new Object[] {names[GET_UNBOX_RESULT], names[TRY_CATCH]}; names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs); lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.GUARD_WITH_CATCH); return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWC, lform); } static MethodHandle makeGuardWithCatch(MethodHandle target, Class exType, MethodHandle catcher) { MethodType type = target.type(); LambdaForm form = makeGuardWithCatchForm(type.basicType()); // Prepare auxiliary method handles used during LambdaForm interpretation. // Box arguments and wrap them into Object[]: ValueConversions.array(). MethodType varargsType = type.changeReturnType(Object[].class); MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType); MethodHandle unboxResult = unboxResultHandle(type.returnType()); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL(); BoundMethodHandle mh; try { mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) exType, (Object) catcher, (Object) collectArgs, (Object) unboxResult); } catch (Throwable ex) { throw uncaughtException(ex); } assert(mh.type() == type); return mh; } /** * Intrinsified during LambdaForm compilation * (see {@link InvokerBytecodeGenerator#emitGuardWithCatch emitGuardWithCatch}). */ @Hidden static Object guardWithCatch(MethodHandle target, Class exType, MethodHandle catcher, Object... av) throws Throwable { // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case. try { return target.asFixedArity().invokeWithArguments(av); } catch (Throwable t) { if (!exType.isInstance(t)) throw t; return catcher.asFixedArity().invokeWithArguments(prepend(av, t)); } } /** Prepend elements to an array. */ @Hidden private static Object[] prepend(Object[] array, Object... elems) { int nArray = array.length; int nElems = elems.length; Object[] newArray = new Object[nArray + nElems]; System.arraycopy(elems, 0, newArray, 0, nElems); System.arraycopy(array, 0, newArray, nElems, nArray); return newArray; } static MethodHandle throwException(MethodType type) { assert(Throwable.class.isAssignableFrom(type.parameterType(0))); int arity = type.parameterCount(); if (arity > 1) { MethodHandle mh = throwException(type.dropParameterTypes(1, arity)); mh = MethodHandles.dropArguments(mh, 1, Arrays.copyOfRange(type.parameterArray(), 1, arity)); return mh; } return makePairwiseConvert(getFunction(NF_throwException).resolvedHandle(), type, false, true); } static Empty throwException(T t) throws T { throw t; } static MethodHandle[] FAKE_METHOD_HANDLE_INVOKE = new MethodHandle[2]; static MethodHandle fakeMethodHandleInvoke(MemberName method) { assert(method.isMethodHandleInvoke()); int idx = switch (method.getName()) { case "invoke" -> 0; case "invokeExact" -> 1; default -> throw new InternalError(method.getName()); }; MethodHandle mh = FAKE_METHOD_HANDLE_INVOKE[idx]; if (mh != null) return mh; MethodType type = MethodType.methodType(Object.class, UnsupportedOperationException.class, MethodHandle.class, Object[].class); mh = throwException(type); mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke MethodHandle")); if (!method.getInvocationType().equals(mh.type())) throw new InternalError(method.toString()); mh = mh.withInternalMemberName(method, false); mh = mh.withVarargs(true); assert(method.isVarargs()); FAKE_METHOD_HANDLE_INVOKE[idx] = mh; return mh; } static MethodHandle fakeVarHandleInvoke(MemberName method) { // TODO caching, is it necessary? MethodType type = MethodType.methodType(method.getReturnType(), UnsupportedOperationException.class, VarHandle.class, Object[].class); MethodHandle mh = throwException(type); mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke VarHandle")); if (!method.getInvocationType().equals(mh.type())) throw new InternalError(method.toString()); mh = mh.withInternalMemberName(method, false); mh = mh.asVarargsCollector(Object[].class); assert(method.isVarargs()); return mh; } /** * Create an alias for the method handle which, when called, * appears to be called from the same class loader and protection domain * as hostClass. * This is an expensive no-op unless the method which is called * is sensitive to its caller. A small number of system methods * are in this category, including Class.forName and Method.invoke. */ static MethodHandle bindCaller(MethodHandle mh, Class hostClass) { return BindCaller.bindCaller(mh, hostClass); } // Put the whole mess into its own nested class. // That way we can lazily load the code and set up the constants. private static class BindCaller { private static MethodType INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object[].class); static MethodHandle bindCaller(MethodHandle mh, Class hostClass) { // Code in the boot layer should now be careful while creating method handles or // functional interface instances created from method references to @CallerSensitive methods, // it needs to be ensured the handles or interface instances are kept safe and are not passed // from the boot layer to untrusted code. if (hostClass == null || (hostClass.isArray() || hostClass.isPrimitive() || hostClass.getName().startsWith("java.lang.invoke."))) { throw new InternalError(); // does not happen, and should not anyway } // For simplicity, convert mh to a varargs-like method. MethodHandle vamh = prepareForInvoker(mh); // Cache the result of makeInjectedInvoker once per argument class. MethodHandle bccInvoker = CV_makeInjectedInvoker.get(hostClass); return restoreToType(bccInvoker.bindTo(vamh), mh, hostClass); } private static MethodHandle makeInjectedInvoker(Class targetClass) { try { /* * The invoker class defined to the same class loader as the lookup class * but in an unnamed package so that the class bytes can be cached and * reused for any @CSM. * * @CSM must be public and exported if called by any module. */ String name = targetClass.getName() + "$$InjectedInvoker"; if (targetClass.isHidden()) { // use the original class name name = name.replace('/', '_'); } Class invokerClass = new Lookup(targetClass) .makeHiddenClassDefiner(name, INJECTED_INVOKER_TEMPLATE) .defineClass(true); assert checkInjectedInvoker(targetClass, invokerClass); return IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT); } catch (ReflectiveOperationException ex) { throw uncaughtException(ex); } } private static ClassValue CV_makeInjectedInvoker = new ClassValue() { @Override protected MethodHandle computeValue(Class hostClass) { return makeInjectedInvoker(hostClass); } }; // Adapt mh so that it can be called directly from an injected invoker: private static MethodHandle prepareForInvoker(MethodHandle mh) { mh = mh.asFixedArity(); MethodType mt = mh.type(); int arity = mt.parameterCount(); MethodHandle vamh = mh.asType(mt.generic()); vamh.internalForm().compileToBytecode(); // eliminate LFI stack frames vamh = vamh.asSpreader(Object[].class, arity); vamh.internalForm().compileToBytecode(); // eliminate LFI stack frames return vamh; } // Undo the adapter effect of prepareForInvoker: private static MethodHandle restoreToType(MethodHandle vamh, MethodHandle original, Class hostClass) { MethodType type = original.type(); MethodHandle mh = vamh.asCollector(Object[].class, type.parameterCount()); MemberName member = original.internalMemberName(); mh = mh.asType(type); mh = new WrappedMember(mh, type, member, original.isInvokeSpecial(), hostClass); return mh; } private static boolean checkInjectedInvoker(Class hostClass, Class invokerClass) { assert (hostClass.getClassLoader() == invokerClass.getClassLoader()) : hostClass.getName()+" (CL)"; try { assert (hostClass.getProtectionDomain() == invokerClass.getProtectionDomain()) : hostClass.getName()+" (PD)"; } catch (SecurityException ex) { // Self-check was blocked by security manager. This is OK. } try { // Test the invoker to ensure that it really injects into the right place. MethodHandle invoker = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT); MethodHandle vamh = prepareForInvoker(MH_checkCallerClass); return (boolean)invoker.invoke(vamh, new Object[]{ invokerClass }); } catch (Throwable ex) { throw new InternalError(ex); } } private static final MethodHandle MH_checkCallerClass; static { final Class THIS_CLASS = BindCaller.class; assert(checkCallerClass(THIS_CLASS)); try { MH_checkCallerClass = IMPL_LOOKUP .findStatic(THIS_CLASS, "checkCallerClass", MethodType.methodType(boolean.class, Class.class)); assert((boolean) MH_checkCallerClass.invokeExact(THIS_CLASS)); } catch (Throwable ex) { throw new InternalError(ex); } } @CallerSensitive @ForceInline // to ensure Reflection.getCallerClass optimization private static boolean checkCallerClass(Class expected) { // This method is called via MH_checkCallerClass and so it's correct to ask for the immediate caller here. Class actual = Reflection.getCallerClass(); if (actual != expected) throw new InternalError("found " + actual.getName() + ", expected " + expected.getName()); return true; } private static final byte[] INJECTED_INVOKER_TEMPLATE = generateInvokerTemplate(); /** Produces byte code for a class that is used as an injected invoker. */ private static byte[] generateInvokerTemplate() { ClassWriter cw = new ClassWriter(0); // private static class InjectedInvoker { // @Hidden // static Object invoke_V(MethodHandle vamh, Object[] args) throws Throwable { // return vamh.invokeExact(args); // } // } cw.visit(52, ACC_PRIVATE | ACC_SUPER, "InjectedInvoker", null, "java/lang/Object", null); MethodVisitor mv = cw.visitMethod(ACC_STATIC, "invoke_V", "(Ljava/lang/invoke/MethodHandle;[Ljava/lang/Object;)Ljava/lang/Object;", null, null); mv.visitCode(); mv.visitVarInsn(ALOAD, 0); mv.visitVarInsn(ALOAD, 1); mv.visitMethodInsn(INVOKEVIRTUAL, "java/lang/invoke/MethodHandle", "invokeExact", "([Ljava/lang/Object;)Ljava/lang/Object;", false); mv.visitInsn(ARETURN); mv.visitMaxs(2, 2); mv.visitEnd(); cw.visitEnd(); return cw.toByteArray(); } } /** This subclass allows a wrapped method handle to be re-associated with an arbitrary member name. */ private static final class WrappedMember extends DelegatingMethodHandle { private final MethodHandle target; private final MemberName member; private final Class callerClass; private final boolean isInvokeSpecial; private WrappedMember(MethodHandle target, MethodType type, MemberName member, boolean isInvokeSpecial, Class callerClass) { super(type, target); this.target = target; this.member = member; this.callerClass = callerClass; this.isInvokeSpecial = isInvokeSpecial; } @Override MemberName internalMemberName() { return member; } @Override Class internalCallerClass() { return callerClass; } @Override boolean isInvokeSpecial() { return isInvokeSpecial; } @Override protected MethodHandle getTarget() { return target; } @Override public MethodHandle asTypeUncached(MethodType newType) { // This MH is an alias for target, except for the MemberName // Drop the MemberName if there is any conversion. return asTypeCache = target.asType(newType); } } static MethodHandle makeWrappedMember(MethodHandle target, MemberName member, boolean isInvokeSpecial) { if (member.equals(target.internalMemberName()) && isInvokeSpecial == target.isInvokeSpecial()) return target; return new WrappedMember(target, target.type(), member, isInvokeSpecial, null); } /** Intrinsic IDs */ /*non-public*/ enum Intrinsic { SELECT_ALTERNATIVE, GUARD_WITH_CATCH, TRY_FINALLY, TABLE_SWITCH, LOOP, ARRAY_LOAD, ARRAY_STORE, ARRAY_LENGTH, IDENTITY, ZERO, NONE // no intrinsic associated } /** Mark arbitrary method handle as intrinsic. * InvokerBytecodeGenerator uses this info to produce more efficient bytecode shape. */ static final class IntrinsicMethodHandle extends DelegatingMethodHandle { private final MethodHandle target; private final Intrinsic intrinsicName; private final Object intrinsicData; IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName) { this(target, intrinsicName, null); } IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName, Object intrinsicData) { super(target.type(), target); this.target = target; this.intrinsicName = intrinsicName; this.intrinsicData = intrinsicData; } @Override protected MethodHandle getTarget() { return target; } @Override Intrinsic intrinsicName() { return intrinsicName; } @Override Object intrinsicData() { return intrinsicData; } @Override public MethodHandle asTypeUncached(MethodType newType) { // This MH is an alias for target, except for the intrinsic name // Drop the name if there is any conversion. return asTypeCache = target.asType(newType); } @Override String internalProperties() { return super.internalProperties() + "\n& Intrinsic="+intrinsicName; } @Override public MethodHandle asCollector(Class arrayType, int arrayLength) { if (intrinsicName == Intrinsic.IDENTITY) { MethodType resultType = type().asCollectorType(arrayType, type().parameterCount() - 1, arrayLength); MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength); return newArray.asType(resultType); } return super.asCollector(arrayType, arrayLength); } } static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName) { return makeIntrinsic(target, intrinsicName, null); } static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName, Object intrinsicData) { if (intrinsicName == target.intrinsicName()) return target; return new IntrinsicMethodHandle(target, intrinsicName, intrinsicData); } static MethodHandle makeIntrinsic(MethodType type, LambdaForm form, Intrinsic intrinsicName) { return new IntrinsicMethodHandle(SimpleMethodHandle.make(type, form), intrinsicName); } private static final @Stable MethodHandle[] ARRAYS = new MethodHandle[MAX_ARITY + 1]; /** Return a method handle that takes the indicated number of Object * arguments and returns an Object array of them, as if for varargs. */ static MethodHandle varargsArray(int nargs) { MethodHandle mh = ARRAYS[nargs]; if (mh != null) { return mh; } mh = makeCollector(Object[].class, nargs); assert(assertCorrectArity(mh, nargs)); return ARRAYS[nargs] = mh; } /** Return a method handle that takes the indicated number of * typed arguments and returns an array of them. * The type argument is the array type. */ static MethodHandle varargsArray(Class arrayType, int nargs) { Class elemType = arrayType.getComponentType(); if (elemType == null) throw new IllegalArgumentException("not an array: "+arrayType); if (nargs >= MAX_JVM_ARITY/2 - 1) { int slots = nargs; final int MAX_ARRAY_SLOTS = MAX_JVM_ARITY - 1; // 1 for receiver MH if (slots <= MAX_ARRAY_SLOTS && elemType.isPrimitive()) slots *= Wrapper.forPrimitiveType(elemType).stackSlots(); if (slots > MAX_ARRAY_SLOTS) throw new IllegalArgumentException("too many arguments: "+arrayType.getSimpleName()+", length "+nargs); } if (elemType == Object.class) return varargsArray(nargs); // other cases: primitive arrays, subtypes of Object[] MethodHandle cache[] = Makers.TYPED_COLLECTORS.get(elemType); MethodHandle mh = nargs < cache.length ? cache[nargs] : null; if (mh != null) return mh; mh = makeCollector(arrayType, nargs); assert(assertCorrectArity(mh, nargs)); if (nargs < cache.length) cache[nargs] = mh; return mh; } private static boolean assertCorrectArity(MethodHandle mh, int arity) { assert(mh.type().parameterCount() == arity) : "arity != "+arity+": "+mh; return true; } static final int MAX_JVM_ARITY = 255; // limit imposed by the JVM /*non-public*/ static void assertSame(Object mh1, Object mh2) { if (mh1 != mh2) { String msg = String.format("mh1 != mh2: mh1 = %s (form: %s); mh2 = %s (form: %s)", mh1, ((MethodHandle)mh1).form, mh2, ((MethodHandle)mh2).form); throw newInternalError(msg); } } // Local constant functions: /* non-public */ static final byte NF_checkSpreadArgument = 0, NF_guardWithCatch = 1, NF_throwException = 2, NF_tryFinally = 3, NF_loop = 4, NF_profileBoolean = 5, NF_tableSwitch = 6, NF_LIMIT = 7; private static final @Stable NamedFunction[] NFS = new NamedFunction[NF_LIMIT]; static NamedFunction getFunction(byte func) { NamedFunction nf = NFS[func]; if (nf != null) { return nf; } return NFS[func] = createFunction(func); } private static NamedFunction createFunction(byte func) { try { return switch (func) { case NF_checkSpreadArgument -> new NamedFunction(MethodHandleImpl.class .getDeclaredMethod("checkSpreadArgument", Object.class, int.class)); case NF_guardWithCatch -> new NamedFunction(MethodHandleImpl.class .getDeclaredMethod("guardWithCatch", MethodHandle.class, Class.class, MethodHandle.class, Object[].class)); case NF_tryFinally -> new NamedFunction(MethodHandleImpl.class .getDeclaredMethod("tryFinally", MethodHandle.class, MethodHandle.class, Object[].class)); case NF_loop -> new NamedFunction(MethodHandleImpl.class .getDeclaredMethod("loop", BasicType[].class, LoopClauses.class, Object[].class)); case NF_throwException -> new NamedFunction(MethodHandleImpl.class .getDeclaredMethod("throwException", Throwable.class)); case NF_profileBoolean -> new NamedFunction(MethodHandleImpl.class .getDeclaredMethod("profileBoolean", boolean.class, int[].class)); case NF_tableSwitch -> new NamedFunction(MethodHandleImpl.class .getDeclaredMethod("tableSwitch", int.class, MethodHandle.class, CasesHolder.class, Object[].class)); default -> throw new InternalError("Undefined function: " + func); }; } catch (ReflectiveOperationException ex) { throw newInternalError(ex); } } static { SharedSecrets.setJavaLangInvokeAccess(new JavaLangInvokeAccess() { @Override public Object newMemberName() { return new MemberName(); } @Override public String getName(Object mname) { MemberName memberName = (MemberName)mname; return memberName.getName(); } @Override public Class getDeclaringClass(Object mname) { MemberName memberName = (MemberName)mname; return memberName.getDeclaringClass(); } @Override public MethodType getMethodType(Object mname) { MemberName memberName = (MemberName)mname; return memberName.getMethodType(); } @Override public String getMethodDescriptor(Object mname) { MemberName memberName = (MemberName)mname; return memberName.getMethodDescriptor(); } @Override public boolean isNative(Object mname) { MemberName memberName = (MemberName)mname; return memberName.isNative(); } @Override public Map generateHolderClasses(Stream traces) { return GenerateJLIClassesHelper.generateHolderClasses(traces); } @Override public void ensureCustomized(MethodHandle mh) { mh.customize(); } @Override public VarHandle memoryAccessVarHandle(Class carrier, boolean skipAlignmentMaskCheck, long alignmentMask, ByteOrder order) { return VarHandles.makeMemoryAddressViewHandle(carrier, skipAlignmentMaskCheck, alignmentMask, order); } @Override public MethodHandle nativeMethodHandle(NativeEntryPoint nep, MethodHandle fallback) { return NativeMethodHandle.make(nep, fallback); } @Override public VarHandle filterValue(VarHandle target, MethodHandle filterToTarget, MethodHandle filterFromTarget) { return VarHandles.filterValue(target, filterToTarget, filterFromTarget); } @Override public VarHandle filterCoordinates(VarHandle target, int pos, MethodHandle... filters) { return VarHandles.filterCoordinates(target, pos, filters); } @Override public VarHandle dropCoordinates(VarHandle target, int pos, Class... valueTypes) { return VarHandles.dropCoordinates(target, pos, valueTypes); } @Override public VarHandle permuteCoordinates(VarHandle target, List> newCoordinates, int... reorder) { return VarHandles.permuteCoordinates(target, newCoordinates, reorder); } @Override public VarHandle collectCoordinates(VarHandle target, int pos, MethodHandle filter) { return VarHandles.collectCoordinates(target, pos, filter); } @Override public VarHandle insertCoordinates(VarHandle target, int pos, Object... values) { return VarHandles.insertCoordinates(target, pos, values); } }); } /** Result unboxing: ValueConversions.unbox() OR ValueConversions.identity() OR ValueConversions.ignore(). */ private static MethodHandle unboxResultHandle(Class returnType) { if (returnType.isPrimitive()) { if (returnType == void.class) { return ValueConversions.ignore(); } else { Wrapper w = Wrapper.forPrimitiveType(returnType); return ValueConversions.unboxExact(w); } } else { return MethodHandles.identity(Object.class); } } /** * Assembles a loop method handle from the given handles and type information. * * @param tloop the return type of the loop. * @param targs types of the arguments to be passed to the loop. * @param init sanitized array of initializers for loop-local variables. * @param step sanitited array of loop bodies. * @param pred sanitized array of predicates. * @param fini sanitized array of loop finalizers. * * @return a handle that, when invoked, will execute the loop. */ static MethodHandle makeLoop(Class tloop, List> targs, List init, List step, List pred, List fini) { MethodType type = MethodType.methodType(tloop, targs); BasicType[] initClauseTypes = init.stream().map(h -> h.type().returnType()).map(BasicType::basicType).toArray(BasicType[]::new); LambdaForm form = makeLoopForm(type.basicType(), initClauseTypes); // Prepare auxiliary method handles used during LambdaForm interpretation. // Box arguments and wrap them into Object[]: ValueConversions.array(). MethodType varargsType = type.changeReturnType(Object[].class); MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType); MethodHandle unboxResult = unboxResultHandle(tloop); LoopClauses clauseData = new LoopClauses(new MethodHandle[][]{toArray(init), toArray(step), toArray(pred), toArray(fini)}); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL(); BoundMethodHandle mh; try { mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) clauseData, (Object) collectArgs, (Object) unboxResult); } catch (Throwable ex) { throw uncaughtException(ex); } assert(mh.type() == type); return mh; } private static MethodHandle[] toArray(List l) { return l.toArray(new MethodHandle[0]); } /** * Loops introduce some complexity as they can have additional local state. Hence, LambdaForms for loops are * generated from a template. The LambdaForm template shape for the loop combinator is as follows (assuming one * reference parameter passed in {@code a1}, and a reference return type, with the return value represented by * {@code t12}): *
{@code
     *  loop=Lambda(a0:L,a1:L)=>{
     *    t2:L=BoundMethodHandle$Species_L3.argL0(a0:L);    // LoopClauses holding init, step, pred, fini handles
     *    t3:L=BoundMethodHandle$Species_L3.argL1(a0:L);    // helper handle to box the arguments into an Object[]
     *    t4:L=BoundMethodHandle$Species_L3.argL2(a0:L);    // helper handle to unbox the result
     *    t5:L=MethodHandle.invokeBasic(t3:L,a1:L);         // box the arguments into an Object[]
     *    t6:L=MethodHandleImpl.loop(null,t2:L,t3:L);       // call the loop executor
     *    t7:L=MethodHandle.invokeBasic(t4:L,t6:L);t7:L}    // unbox the result; return the result
     * }
*

* {@code argL0} is a LoopClauses instance holding, in a 2-dimensional array, the init, step, pred, and fini method * handles. {@code argL1} and {@code argL2} are auxiliary method handles: {@code argL1} boxes arguments and wraps * them into {@code Object[]} ({@code ValueConversions.array()}), and {@code argL2} unboxes the result if necessary * ({@code ValueConversions.unbox()}). *

* Having {@code t3} and {@code t4} passed in via a BMH and not hardcoded in the lambda form allows to share lambda * forms among loop combinators with the same basic type. *

* The above template is instantiated by using the {@link LambdaFormEditor} to replace the {@code null} argument to * the {@code loop} invocation with the {@code BasicType} array describing the loop clause types. This argument is * ignored in the loop invoker, but will be extracted and used in {@linkplain InvokerBytecodeGenerator#emitLoop(int) * bytecode generation}. */ private static LambdaForm makeLoopForm(MethodType basicType, BasicType[] localVarTypes) { MethodType lambdaType = basicType.invokerType(); final int THIS_MH = 0; // the BMH_LLL final int ARG_BASE = 1; // start of incoming arguments final int ARG_LIMIT = ARG_BASE + basicType.parameterCount(); int nameCursor = ARG_LIMIT; final int GET_CLAUSE_DATA = nameCursor++; final int GET_COLLECT_ARGS = nameCursor++; final int GET_UNBOX_RESULT = nameCursor++; final int BOXED_ARGS = nameCursor++; final int LOOP = nameCursor++; final int UNBOX_RESULT = nameCursor++; LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_LOOP); if (lform == null) { Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL(); names[THIS_MH] = names[THIS_MH].withConstraint(data); names[GET_CLAUSE_DATA] = new Name(data.getterFunction(0), names[THIS_MH]); names[GET_COLLECT_ARGS] = new Name(data.getterFunction(1), names[THIS_MH]); names[GET_UNBOX_RESULT] = new Name(data.getterFunction(2), names[THIS_MH]); // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...); MethodType collectArgsType = basicType.changeReturnType(Object.class); MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType); Object[] args = new Object[invokeBasic.type().parameterCount()]; args[0] = names[GET_COLLECT_ARGS]; System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE); names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.LOOP)), args); // t_{i+1}:L=MethodHandleImpl.loop(localTypes:L,clauses:L,t_{i}:L); Object[] lArgs = new Object[]{null, // placeholder for BasicType[] localTypes - will be added by LambdaFormEditor names[GET_CLAUSE_DATA], names[BOXED_ARGS]}; names[LOOP] = new Name(getFunction(NF_loop), lArgs); // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L); MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class)); Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[LOOP]}; names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs); lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_LOOP, new LambdaForm(lambdaType.parameterCount(), names, Kind.LOOP)); } // BOXED_ARGS is the index into the names array where the loop idiom starts return lform.editor().noteLoopLocalTypesForm(BOXED_ARGS, localVarTypes); } static class LoopClauses { @Stable final MethodHandle[][] clauses; LoopClauses(MethodHandle[][] clauses) { assert clauses.length == 4; this.clauses = clauses; } @Override public String toString() { StringBuilder sb = new StringBuilder("LoopClauses -- "); for (int i = 0; i < 4; ++i) { if (i > 0) { sb.append(" "); } sb.append('<').append(i).append(">: "); MethodHandle[] hs = clauses[i]; for (int j = 0; j < hs.length; ++j) { if (j > 0) { sb.append(" "); } sb.append('*').append(j).append(": ").append(hs[j]).append('\n'); } } sb.append(" --\n"); return sb.toString(); } } /** * Intrinsified during LambdaForm compilation * (see {@link InvokerBytecodeGenerator#emitLoop(int)}). */ @Hidden static Object loop(BasicType[] localTypes, LoopClauses clauseData, Object... av) throws Throwable { final MethodHandle[] init = clauseData.clauses[0]; final MethodHandle[] step = clauseData.clauses[1]; final MethodHandle[] pred = clauseData.clauses[2]; final MethodHandle[] fini = clauseData.clauses[3]; int varSize = (int) Stream.of(init).filter(h -> h.type().returnType() != void.class).count(); int nArgs = init[0].type().parameterCount(); Object[] varsAndArgs = new Object[varSize + nArgs]; for (int i = 0, v = 0; i < init.length; ++i) { MethodHandle ih = init[i]; if (ih.type().returnType() == void.class) { ih.invokeWithArguments(av); } else { varsAndArgs[v++] = ih.invokeWithArguments(av); } } System.arraycopy(av, 0, varsAndArgs, varSize, nArgs); final int nSteps = step.length; for (; ; ) { for (int i = 0, v = 0; i < nSteps; ++i) { MethodHandle p = pred[i]; MethodHandle s = step[i]; MethodHandle f = fini[i]; if (s.type().returnType() == void.class) { s.invokeWithArguments(varsAndArgs); } else { varsAndArgs[v++] = s.invokeWithArguments(varsAndArgs); } if (!(boolean) p.invokeWithArguments(varsAndArgs)) { return f.invokeWithArguments(varsAndArgs); } } } } /** * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle, * MethodHandle) counting loops}. * * @param limit the upper bound of the parameter, statically bound at loop creation time. * @param counter the counter parameter, passed in during loop execution. * * @return whether the counter has reached the limit. */ static boolean countedLoopPredicate(int limit, int counter) { return counter < limit; } /** * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle, * MethodHandle) counting loops} to increment the counter. * * @param limit the upper bound of the loop counter (ignored). * @param counter the loop counter. * * @return the loop counter incremented by 1. */ static int countedLoopStep(int limit, int counter) { return counter + 1; } /** * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}. * * @param it the {@link Iterable} over which the loop iterates. * * @return an {@link Iterator} over the argument's elements. */ static Iterator initIterator(Iterable it) { return it.iterator(); } /** * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}. * * @param it the iterator to be checked. * * @return {@code true} iff there are more elements to iterate over. */ static boolean iteratePredicate(Iterator it) { return it.hasNext(); } /** * This method is bound as the step for retrieving the current value from the iterator in {@linkplain * MethodHandles#iteratedLoop iterating loops}. * * @param it the iterator. * * @return the next element from the iterator. */ static Object iterateNext(Iterator it) { return it.next(); } /** * Makes a {@code try-finally} handle that conforms to the type constraints. * * @param target the target to execute in a {@code try-finally} block. * @param cleanup the cleanup to execute in the {@code finally} block. * @param rtype the result type of the entire construct. * @param argTypes the types of the arguments. * * @return a handle on the constructed {@code try-finally} block. */ static MethodHandle makeTryFinally(MethodHandle target, MethodHandle cleanup, Class rtype, List> argTypes) { MethodType type = MethodType.methodType(rtype, argTypes); LambdaForm form = makeTryFinallyForm(type.basicType()); // Prepare auxiliary method handles used during LambdaForm interpretation. // Box arguments and wrap them into Object[]: ValueConversions.array(). MethodType varargsType = type.changeReturnType(Object[].class); MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType); MethodHandle unboxResult = unboxResultHandle(rtype); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL(); BoundMethodHandle mh; try { mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) cleanup, (Object) collectArgs, (Object) unboxResult); } catch (Throwable ex) { throw uncaughtException(ex); } assert(mh.type() == type); return mh; } /** * The LambdaForm shape for the tryFinally combinator is as follows (assuming one reference parameter passed in * {@code a1}, and a reference return type, with the return value represented by {@code t8}): *

{@code
     *  tryFinally=Lambda(a0:L,a1:L)=>{
     *    t2:L=BoundMethodHandle$Species_LLLL.argL0(a0:L);  // target method handle
     *    t3:L=BoundMethodHandle$Species_LLLL.argL1(a0:L);  // cleanup method handle
     *    t4:L=BoundMethodHandle$Species_LLLL.argL2(a0:L);  // helper handle to box the arguments into an Object[]
     *    t5:L=BoundMethodHandle$Species_LLLL.argL3(a0:L);  // helper handle to unbox the result
     *    t6:L=MethodHandle.invokeBasic(t4:L,a1:L);         // box the arguments into an Object[]
     *    t7:L=MethodHandleImpl.tryFinally(t2:L,t3:L,t6:L); // call the tryFinally executor
     *    t8:L=MethodHandle.invokeBasic(t5:L,t7:L);t8:L}    // unbox the result; return the result
     * }
*

* {@code argL0} and {@code argL1} are the target and cleanup method handles. * {@code argL2} and {@code argL3} are auxiliary method handles: {@code argL2} boxes arguments and wraps them into * {@code Object[]} ({@code ValueConversions.array()}), and {@code argL3} unboxes the result if necessary * ({@code ValueConversions.unbox()}). *

* Having {@code t4} and {@code t5} passed in via a BMH and not hardcoded in the lambda form allows to share lambda * forms among tryFinally combinators with the same basic type. */ private static LambdaForm makeTryFinallyForm(MethodType basicType) { MethodType lambdaType = basicType.invokerType(); LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_TF); if (lform != null) { return lform; } final int THIS_MH = 0; // the BMH_LLLL final int ARG_BASE = 1; // start of incoming arguments final int ARG_LIMIT = ARG_BASE + basicType.parameterCount(); int nameCursor = ARG_LIMIT; final int GET_TARGET = nameCursor++; final int GET_CLEANUP = nameCursor++; final int GET_COLLECT_ARGS = nameCursor++; final int GET_UNBOX_RESULT = nameCursor++; final int BOXED_ARGS = nameCursor++; final int TRY_FINALLY = nameCursor++; final int UNBOX_RESULT = nameCursor++; Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL(); names[THIS_MH] = names[THIS_MH].withConstraint(data); names[GET_TARGET] = new Name(data.getterFunction(0), names[THIS_MH]); names[GET_CLEANUP] = new Name(data.getterFunction(1), names[THIS_MH]); names[GET_COLLECT_ARGS] = new Name(data.getterFunction(2), names[THIS_MH]); names[GET_UNBOX_RESULT] = new Name(data.getterFunction(3), names[THIS_MH]); // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...); MethodType collectArgsType = basicType.changeReturnType(Object.class); MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType); Object[] args = new Object[invokeBasic.type().parameterCount()]; args[0] = names[GET_COLLECT_ARGS]; System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE); names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.TRY_FINALLY)), args); // t_{i+1}:L=MethodHandleImpl.tryFinally(target:L,exType:L,catcher:L,t_{i}:L); Object[] tfArgs = new Object[] {names[GET_TARGET], names[GET_CLEANUP], names[BOXED_ARGS]}; names[TRY_FINALLY] = new Name(getFunction(NF_tryFinally), tfArgs); // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L); MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class)); Object[] unboxArgs = new Object[] {names[GET_UNBOX_RESULT], names[TRY_FINALLY]}; names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs); lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.TRY_FINALLY); return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_TF, lform); } /** * Intrinsified during LambdaForm compilation * (see {@link InvokerBytecodeGenerator#emitTryFinally emitTryFinally}). */ @Hidden static Object tryFinally(MethodHandle target, MethodHandle cleanup, Object... av) throws Throwable { Throwable t = null; Object r = null; try { r = target.invokeWithArguments(av); } catch (Throwable thrown) { t = thrown; throw t; } finally { Object[] args = target.type().returnType() == void.class ? prepend(av, t) : prepend(av, t, r); r = cleanup.invokeWithArguments(args); } return r; } // see varargsArray method for chaching/package-private version of this private static MethodHandle makeCollector(Class arrayType, int parameterCount) { MethodType type = MethodType.methodType(arrayType, Collections.nCopies(parameterCount, arrayType.componentType())); MethodHandle newArray = MethodHandles.arrayConstructor(arrayType); LambdaForm form = makeCollectorForm(type.basicType(), arrayType); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_L(); BoundMethodHandle mh; try { mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) newArray); } catch (Throwable ex) { throw uncaughtException(ex); } assert(mh.type() == type); return mh; } private static LambdaForm makeCollectorForm(MethodType basicType, Class arrayType) { MethodType lambdaType = basicType.invokerType(); int parameterCount = basicType.parameterCount(); // Only share the lambda form for empty arrays and reference types. // Sharing based on the basic type alone doesn't work because // we need a separate lambda form for byte/short/char/int which // are all erased to int otherwise. // Other caching for primitive types happens at the MethodHandle level (see varargsArray). boolean isReferenceType = !arrayType.componentType().isPrimitive(); boolean isSharedLambdaForm = parameterCount == 0 || isReferenceType; if (isSharedLambdaForm) { LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_COLLECTOR); if (lform != null) { return lform; } } // use erased accessor for reference types MethodHandle storeFunc = isReferenceType ? ArrayAccessor.OBJECT_ARRAY_SETTER : makeArrayElementAccessor(arrayType, ArrayAccess.SET); final int THIS_MH = 0; // the BMH_L final int ARG_BASE = 1; // start of incoming arguments final int ARG_LIMIT = ARG_BASE + parameterCount; int nameCursor = ARG_LIMIT; final int GET_NEW_ARRAY = nameCursor++; final int CALL_NEW_ARRAY = nameCursor++; final int STORE_ELEMENT_BASE = nameCursor; final int STORE_ELEMENT_LIMIT = STORE_ELEMENT_BASE + parameterCount; nameCursor = STORE_ELEMENT_LIMIT; Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_L(); names[THIS_MH] = names[THIS_MH].withConstraint(data); names[GET_NEW_ARRAY] = new Name(data.getterFunction(0), names[THIS_MH]); MethodHandle invokeBasic = MethodHandles.basicInvoker(MethodType.methodType(Object.class, int.class)); names[CALL_NEW_ARRAY] = new Name(new NamedFunction(invokeBasic), names[GET_NEW_ARRAY], parameterCount); for (int storeIndex = 0, storeNameCursor = STORE_ELEMENT_BASE, argCursor = ARG_BASE; storeNameCursor < STORE_ELEMENT_LIMIT; storeIndex++, storeNameCursor++, argCursor++){ names[storeNameCursor] = new Name(new NamedFunction(makeIntrinsic(storeFunc, Intrinsic.ARRAY_STORE)), names[CALL_NEW_ARRAY], storeIndex, names[argCursor]); } LambdaForm lform = new LambdaForm(lambdaType.parameterCount(), names, CALL_NEW_ARRAY, Kind.COLLECTOR); if (isSharedLambdaForm) { lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_COLLECTOR, lform); } return lform; } // use a wrapper because we need this array to be @Stable static class CasesHolder { @Stable final MethodHandle[] cases; public CasesHolder(MethodHandle[] cases) { this.cases = cases; } } static MethodHandle makeTableSwitch(MethodType type, MethodHandle defaultCase, MethodHandle[] caseActions) { MethodType varargsType = type.changeReturnType(Object[].class); MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType); MethodHandle unboxResult = unboxResultHandle(type.returnType()); BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL(); LambdaForm form = makeTableSwitchForm(type.basicType(), data, caseActions.length); BoundMethodHandle mh; CasesHolder caseHolder = new CasesHolder(caseActions); try { mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) defaultCase, (Object) collectArgs, (Object) unboxResult, (Object) caseHolder); } catch (Throwable ex) { throw uncaughtException(ex); } assert(mh.type() == type); return mh; } private static class TableSwitchCacheKey { private static final Map CACHE = new ConcurrentHashMap<>(); private final MethodType basicType; private final int numberOfCases; public TableSwitchCacheKey(MethodType basicType, int numberOfCases) { this.basicType = basicType; this.numberOfCases = numberOfCases; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; TableSwitchCacheKey that = (TableSwitchCacheKey) o; return numberOfCases == that.numberOfCases && Objects.equals(basicType, that.basicType); } @Override public int hashCode() { return Objects.hash(basicType, numberOfCases); } } private static LambdaForm makeTableSwitchForm(MethodType basicType, BoundMethodHandle.SpeciesData data, int numCases) { MethodType lambdaType = basicType.invokerType(); // We need to cache based on the basic type X number of cases, // since the number of cases is used when generating bytecode. // This also means that we can't use the cache in MethodTypeForm, // which only uses the basic type as a key. TableSwitchCacheKey key = new TableSwitchCacheKey(basicType, numCases); LambdaForm lform = TableSwitchCacheKey.CACHE.get(key); if (lform != null) { return lform; } final int THIS_MH = 0; final int ARG_BASE = 1; // start of incoming arguments final int ARG_LIMIT = ARG_BASE + basicType.parameterCount(); final int ARG_SWITCH_ON = ARG_BASE; assert ARG_SWITCH_ON < ARG_LIMIT; int nameCursor = ARG_LIMIT; final int GET_COLLECT_ARGS = nameCursor++; final int GET_DEFAULT_CASE = nameCursor++; final int GET_UNBOX_RESULT = nameCursor++; final int GET_CASES = nameCursor++; final int BOXED_ARGS = nameCursor++; final int TABLE_SWITCH = nameCursor++; final int UNBOXED_RESULT = nameCursor++; int fieldCursor = 0; final int FIELD_DEFAULT_CASE = fieldCursor++; final int FIELD_COLLECT_ARGS = fieldCursor++; final int FIELD_UNBOX_RESULT = fieldCursor++; final int FIELD_CASES = fieldCursor++; Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType); names[THIS_MH] = names[THIS_MH].withConstraint(data); names[GET_DEFAULT_CASE] = new Name(data.getterFunction(FIELD_DEFAULT_CASE), names[THIS_MH]); names[GET_COLLECT_ARGS] = new Name(data.getterFunction(FIELD_COLLECT_ARGS), names[THIS_MH]); names[GET_UNBOX_RESULT] = new Name(data.getterFunction(FIELD_UNBOX_RESULT), names[THIS_MH]); names[GET_CASES] = new Name(data.getterFunction(FIELD_CASES), names[THIS_MH]); { MethodType collectArgsType = basicType.changeReturnType(Object.class); MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType); Object[] args = new Object[invokeBasic.type().parameterCount()]; args[0] = names[GET_COLLECT_ARGS]; System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE); names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.TABLE_SWITCH, numCases)), args); } { Object[] tfArgs = new Object[]{ names[ARG_SWITCH_ON], names[GET_DEFAULT_CASE], names[GET_CASES], names[BOXED_ARGS]}; names[TABLE_SWITCH] = new Name(getFunction(NF_tableSwitch), tfArgs); } { MethodHandle invokeBasic = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class)); Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[TABLE_SWITCH]}; names[UNBOXED_RESULT] = new Name(invokeBasic, unboxArgs); } lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.TABLE_SWITCH); LambdaForm prev = TableSwitchCacheKey.CACHE.putIfAbsent(key, lform); return prev != null ? prev : lform; } @Hidden static Object tableSwitch(int input, MethodHandle defaultCase, CasesHolder holder, Object[] args) throws Throwable { MethodHandle[] caseActions = holder.cases; MethodHandle selectedCase; if (input < 0 || input >= caseActions.length) { selectedCase = defaultCase; } else { selectedCase = caseActions[input]; } return selectedCase.invokeWithArguments(args); } // Indexes into constant method handles: static final int MH_cast = 0, MH_selectAlternative = 1, MH_countedLoopPred = 2, MH_countedLoopStep = 3, MH_initIterator = 4, MH_iteratePred = 5, MH_iterateNext = 6, MH_Array_newInstance = 7, MH_LIMIT = 8; static MethodHandle getConstantHandle(int idx) { MethodHandle handle = HANDLES[idx]; if (handle != null) { return handle; } return setCachedHandle(idx, makeConstantHandle(idx)); } private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) { // Simulate a CAS, to avoid racy duplication of results. MethodHandle prev = HANDLES[idx]; if (prev != null) { return prev; } HANDLES[idx] = method; return method; } // Local constant method handles: private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT]; private static MethodHandle makeConstantHandle(int idx) { try { switch (idx) { case MH_cast: return IMPL_LOOKUP.findVirtual(Class.class, "cast", MethodType.methodType(Object.class, Object.class)); case MH_selectAlternative: return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative", MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class)); case MH_countedLoopPred: return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate", MethodType.methodType(boolean.class, int.class, int.class)); case MH_countedLoopStep: return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep", MethodType.methodType(int.class, int.class, int.class)); case MH_initIterator: return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator", MethodType.methodType(Iterator.class, Iterable.class)); case MH_iteratePred: return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate", MethodType.methodType(boolean.class, Iterator.class)); case MH_iterateNext: return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext", MethodType.methodType(Object.class, Iterator.class)); case MH_Array_newInstance: return IMPL_LOOKUP.findStatic(Array.class, "newInstance", MethodType.methodType(Object.class, Class.class, int.class)); } } catch (ReflectiveOperationException ex) { throw newInternalError(ex); } throw newInternalError("Unknown function index: " + idx); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy