java.lang.module.ModuleFinder Maven / Gradle / Ivy
/*
* Copyright (c) 2014, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang.module;
import java.nio.file.Path;
import java.security.AccessController;
import java.security.Permission;
import java.security.PrivilegedAction;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.Set;
import jdk.internal.module.ModulePath;
import jdk.internal.module.SystemModuleFinders;
/**
* A finder of modules. A {@code ModuleFinder} is used to find modules during
* resolution or
* service binding.
*
* A {@code ModuleFinder} can only find one module with a given name. A
* {@code ModuleFinder} that finds modules in a sequence of directories, for
* example, will locate the first occurrence of a module of a given name and
* will ignore other modules of that name that appear in directories later in
* the sequence.
*
* Example usage:
*
* {@code
* Path dir1, dir2, dir3;
*
* ModuleFinder finder = ModuleFinder.of(dir1, dir2, dir3);
*
* Optional omref = finder.find("jdk.foo");
* omref.ifPresent(mref -> ... );
*
* }
*
* The {@link #find(String) find} and {@link #findAll() findAll} methods
* defined here can fail for several reasons. These include I/O errors, errors
* detected parsing a module descriptor ({@code module-info.class}), or in the
* case of {@code ModuleFinder} returned by {@link #of ModuleFinder.of}, that
* two or more modules with the same name are found in a directory.
* When an error is detected then these methods throw {@link FindException
* FindException} with an appropriate {@link Throwable#getCause cause}.
* The behavior of a {@code ModuleFinder} after a {@code FindException} is
* thrown is undefined. For example, invoking {@code find} after an exception
* is thrown may or may not scan the same modules that lead to the exception.
* It is recommended that a module finder be discarded after an exception is
* thrown.
*
* A {@code ModuleFinder} is not required to be thread safe.
*
* @since 9
*/
public interface ModuleFinder {
/**
* Finds a reference to a module of a given name.
*
* A {@code ModuleFinder} provides a consistent view of the
* modules that it locates. If {@code find} is invoked several times to
* locate the same module (by name) then it will return the same result
* each time. If a module is located then it is guaranteed to be a member
* of the set of modules returned by the {@link #findAll() findAll}
* method.
*
* @param name
* The name of the module to find
*
* @return A reference to a module with the given name or an empty
* {@code Optional} if not found
*
* @throws FindException
* If an error occurs finding the module
*
* @throws SecurityException
* If denied by the security manager
*/
Optional find(String name);
/**
* Returns the set of all module references that this finder can locate.
*
* A {@code ModuleFinder} provides a consistent view of the modules
* that it locates. If {@link #findAll() findAll} is invoked several times
* then it will return the same (equals) result each time. For each {@code
* ModuleReference} element in the returned set then it is guaranteed that
* {@link #find find} will locate the {@code ModuleReference} if invoked
* to find that module.
*
* @apiNote This is important to have for methods such as {@link
* Configuration#resolveAndBind resolveAndBind} that need to scan the
* module path to find modules that provide a specific service.
*
* @return The set of all module references that this finder locates
*
* @throws FindException
* If an error occurs finding all modules
*
* @throws SecurityException
* If denied by the security manager
*/
Set findAll();
/**
* Returns a module finder that locates the system modules. The
* system modules are the modules in the Java run-time image.
* The module finder will always find {@code java.base}.
*
* If there is a security manager set then its {@link
* SecurityManager#checkPermission(Permission) checkPermission} method is
* invoked to check that the caller has been granted
* {@link RuntimePermission RuntimePermission("accessSystemModules")}
* to access the system modules.
*
* @return A {@code ModuleFinder} that locates the system modules
*
* @throws SecurityException
* If denied by the security manager
*/
@SuppressWarnings("removal")
static ModuleFinder ofSystem() {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(new RuntimePermission("accessSystemModules"));
PrivilegedAction pa = SystemModuleFinders::ofSystem;
return AccessController.doPrivileged(pa);
} else {
return SystemModuleFinders.ofSystem();
}
}
/**
* Returns a module finder that locates modules on the file system by
* searching a sequence of directories and/or packaged modules.
*
* Each element in the given array is one of:
*
* A path to a directory of modules.
* A path to the top-level directory of an
* exploded module.
* A path to a packaged module.
*
*
* The module finder locates modules by searching each directory, exploded
* module, or packaged module in array index order. It finds the first
* occurrence of a module with a given name and ignores other modules of
* that name that appear later in the sequence.
*
* If an element is a path to a directory of modules then each entry in
* the directory is a packaged module or the top-level directory of an
* exploded module. It is an error if a directory contains more than one
* module with the same name. If an element is a path to a directory, and
* that directory contains a file named {@code module-info.class}, then the
* directory is treated as an exploded module rather than a directory of
* modules.
*
* The module finder returned by this method
* supports modules packaged as JAR files. A JAR file with a {@code
* module-info.class} in its top-level directory, or in a versioned entry
* in a {@linkplain java.util.jar.JarFile#isMultiRelease() multi-release}
* JAR file, is a modular JAR file and thus defines an explicit
* module. A JAR file that does not have a {@code module-info.class} in its
* top-level directory defines an automatic module, as follows:
*
*
*
*
* If the JAR file has the attribute "{@code Automatic-Module-Name}"
* in its main manifest then its value is the {@linkplain
* ModuleDescriptor#name() module name}. The module name is otherwise
* derived from the name of the JAR file.
*
* The {@link ModuleDescriptor#version() version}, and the
* module name when the attribute "{@code Automatic-Module-Name}" is not
* present, are derived from the file name of the JAR file as follows:
*
*
*
* The "{@code .jar}" suffix is removed.
*
* If the name matches the regular expression {@code
* "-(\\d+(\\.|$))"} then the module name will be derived from the
* subsequence preceding the hyphen of the first occurrence. The
* subsequence after the hyphen is parsed as a {@link
* ModuleDescriptor.Version Version} and ignored if it cannot be
* parsed as a {@code Version}.
*
* All non-alphanumeric characters ({@code [^A-Za-z0-9]})
* in the module name are replaced with a dot ({@code "."}), all
* repeating dots are replaced with one dot, and all leading and
* trailing dots are removed.
*
* As an example, a JAR file named "{@code foo-bar.jar}" will
* derive a module name "{@code foo.bar}" and no version. A JAR file
* named "{@code foo-bar-1.2.3-SNAPSHOT.jar}" will derive a module
* name "{@code foo.bar}" and "{@code 1.2.3-SNAPSHOT}" as the version.
*
*
*
*
* The set of packages in the module is derived from the
* non-directory entries in the JAR file that have names ending in
* "{@code .class}". A candidate package name is derived from the name
* using the characters up to, but not including, the last forward slash.
* All remaining forward slashes are replaced with dot ({@code "."}). If
* the resulting string is a legal package name then it is assumed to be
* a package name. For example, if the JAR file contains the entry
* "{@code p/q/Foo.class}" then the package name derived is
* "{@code p.q}".
*
* The contents of entries starting with {@code
* META-INF/services/} are assumed to be service configuration files
* (see {@link java.util.ServiceLoader}). If the name of a file
* (that follows {@code META-INF/services/}) is a legal class name
* then it is assumed to be the fully-qualified class name of a service
* type. The entries in the file are assumed to be the fully-qualified
* class names of provider classes.
*
* If the JAR file has a {@code Main-Class} attribute in its
* main manifest, its value is a legal class name, and its package is
* in the set of packages derived for the module, then the value is the
* module {@linkplain ModuleDescriptor#mainClass() main class}.
*
*
*
* If a {@code ModuleDescriptor} cannot be created (by means of the
* {@link ModuleDescriptor.Builder ModuleDescriptor.Builder} API) for an
* automatic module then {@code FindException} is thrown. This can arise
* when the value of the "{@code Automatic-Module-Name}" attribute is not a
* legal module name, a legal module name cannot be derived from the file
* name of the JAR file, where the JAR file contains a {@code .class} in
* the top-level directory of the JAR file, where an entry in a service
* configuration file is not a legal class name or its package name is not
* in the set of packages derived for the module.
*
* In addition to JAR files, an implementation may also support modules
* that are packaged in other implementation specific module formats. If
* an element in the array specified to this method is a path to a directory
* of modules then entries in the directory that not recognized as modules
* are ignored. If an element in the array is a path to a packaged module
* that is not recognized then a {@code FindException} is thrown when the
* file is encountered. Paths to files that do not exist are always ignored.
*
*
* As with automatic modules, the contents of a packaged or exploded
* module may need to be scanned in order to determine the packages
* in the module. Whether {@linkplain java.nio.file.Files#isHidden(Path)
* hidden files} are ignored or not is implementation specific and therefore
* not specified. If a {@code .class} file (other than {@code
* module-info.class}) is found in the top-level directory then it is
* assumed to be a class in the unnamed package and so {@code FindException}
* is thrown.
*
* Finders created by this method are lazy and do not eagerly check
* that the given file paths are directories or packaged modules.
* Consequently, the {@code find} or {@code findAll} methods will only
* fail if invoking these methods results in searching a directory or
* packaged module and an error is encountered.
*
* @param entries
* A possibly-empty array of paths to directories of modules
* or paths to packaged or exploded modules
*
* @return A {@code ModuleFinder} that locates modules on the file system
*/
static ModuleFinder of(Path... entries) {
// special case zero entries
if (entries.length == 0) {
return new ModuleFinder() {
@Override
public Optional find(String name) {
Objects.requireNonNull(name);
return Optional.empty();
}
@Override
public Set findAll() {
return Set.of();
}
};
}
return ModulePath.of(entries);
}
/**
* Returns a module finder that is composed from a sequence of zero or more
* module finders. The {@link #find(String) find} method of the resulting
* module finder will locate a module by invoking the {@code find} method
* of each module finder, in array index order, until either the module is
* found or all module finders have been searched. The {@link #findAll()
* findAll} method of the resulting module finder will return a set of
* modules that includes all modules located by the first module finder.
* The set of modules will include all modules located by the second or
* subsequent module finder that are not located by previous module finders
* in the sequence.
*
* When locating modules then any exceptions or errors thrown by the
* {@code find} or {@code findAll} methods of the underlying module finders
* will be propagated to the caller of the resulting module finder's
* {@code find} or {@code findAll} methods.
*
* @param finders
* The array of module finders
*
* @return A {@code ModuleFinder} that composes a sequence of module finders
*/
static ModuleFinder compose(ModuleFinder... finders) {
// copy the list and check for nulls
final List finderList = List.of(finders);
return new ModuleFinder() {
private final Map nameToModule = new HashMap<>();
private Set allModules;
@Override
public Optional find(String name) {
// cached?
ModuleReference mref = nameToModule.get(name);
if (mref != null)
return Optional.of(mref);
Optional omref = finderList.stream()
.map(f -> f.find(name))
.flatMap(Optional::stream)
.findFirst();
omref.ifPresent(m -> nameToModule.put(name, m));
return omref;
}
@Override
public Set findAll() {
if (allModules != null)
return allModules;
// seed with modules already found
Set result = new HashSet<>(nameToModule.values());
finderList.stream()
.flatMap(f -> f.findAll().stream())
.forEach(mref -> {
String name = mref.descriptor().name();
if (nameToModule.putIfAbsent(name, mref) == null) {
result.add(mref);
}
});
allModules = Collections.unmodifiableSet(result);
return allModules;
}
};
}
}