java.time.chrono.ChronoLocalDateTime Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of JSR-310 nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package java.time.chrono;
import static java.time.temporal.ChronoField.EPOCH_DAY;
import static java.time.temporal.ChronoField.NANO_OF_DAY;
import static java.time.temporal.ChronoUnit.FOREVER;
import static java.time.temporal.ChronoUnit.NANOS;
import java.io.Serializable;
import java.time.DateTimeException;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.LocalTime;
import java.time.ZoneId;
import java.time.ZoneOffset;
import java.time.format.DateTimeFormatter;
import java.time.temporal.ChronoField;
import java.time.temporal.ChronoUnit;
import java.time.temporal.Temporal;
import java.time.temporal.TemporalAccessor;
import java.time.temporal.TemporalAdjuster;
import java.time.temporal.TemporalAmount;
import java.time.temporal.TemporalField;
import java.time.temporal.TemporalQueries;
import java.time.temporal.TemporalQuery;
import java.time.temporal.TemporalUnit;
import java.time.zone.ZoneRules;
import java.util.Comparator;
import java.util.Objects;
/**
* A date-time without a time-zone in an arbitrary chronology, intended
* for advanced globalization use cases.
*
* Most applications should declare method signatures, fields and variables
* as {@link LocalDateTime}, not this interface.
*
* A {@code ChronoLocalDateTime} is the abstract representation of a local date-time
* where the {@code Chronology chronology}, or calendar system, is pluggable.
* The date-time is defined in terms of fields expressed by {@link TemporalField},
* where most common implementations are defined in {@link ChronoField}.
* The chronology defines how the calendar system operates and the meaning of
* the standard fields.
*
*
When to use this interface
* The design of the API encourages the use of {@code LocalDateTime} rather than this
* interface, even in the case where the application needs to deal with multiple
* calendar systems. The rationale for this is explored in detail in {@link ChronoLocalDate}.
*
* Ensure that the discussion in {@code ChronoLocalDate} has been read and understood
* before using this interface.
*
* @implSpec
* This interface must be implemented with care to ensure other classes operate correctly.
* All implementations that can be instantiated must be final, immutable and thread-safe.
* Subclasses should be Serializable wherever possible.
*
* @param the concrete type for the date of this date-time
* @since 1.8
*/
public interface ChronoLocalDateTime
extends Temporal, TemporalAdjuster, Comparable> {
/**
* Gets a comparator that compares {@code ChronoLocalDateTime} in
* time-line order ignoring the chronology.
*
* This comparator differs from the comparison in {@link #compareTo} in that it
* only compares the underlying date-time and not the chronology.
* This allows dates in different calendar systems to be compared based
* on the position of the date-time on the local time-line.
* The underlying comparison is equivalent to comparing the epoch-day and nano-of-day.
*
* @return a comparator that compares in time-line order ignoring the chronology
* @see #isAfter
* @see #isBefore
* @see #isEqual
*/
static Comparator> timeLineOrder() {
return (Comparator> & Serializable) (dateTime1, dateTime2) -> {
int cmp = Long.compare(dateTime1.toLocalDate().toEpochDay(), dateTime2.toLocalDate().toEpochDay());
if (cmp == 0) {
cmp = Long.compare(dateTime1.toLocalTime().toNanoOfDay(), dateTime2.toLocalTime().toNanoOfDay());
}
return cmp;
};
}
//-----------------------------------------------------------------------
/**
* Obtains an instance of {@code ChronoLocalDateTime} from a temporal object.
*
* This obtains a local date-time based on the specified temporal.
* A {@code TemporalAccessor} represents an arbitrary set of date and time information,
* which this factory converts to an instance of {@code ChronoLocalDateTime}.
*
* The conversion extracts and combines the chronology and the date-time
* from the temporal object. The behavior is equivalent to using
* {@link Chronology#localDateTime(TemporalAccessor)} with the extracted chronology.
* Implementations are permitted to perform optimizations such as accessing
* those fields that are equivalent to the relevant objects.
*
* This method matches the signature of the functional interface {@link TemporalQuery}
* allowing it to be used as a query via method reference, {@code ChronoLocalDateTime::from}.
*
* @param temporal the temporal object to convert, not null
* @return the date-time, not null
* @throws DateTimeException if unable to convert to a {@code ChronoLocalDateTime}
* @see Chronology#localDateTime(TemporalAccessor)
*/
static ChronoLocalDateTime> from(TemporalAccessor temporal) {
if (temporal instanceof ChronoLocalDateTime) {
return (ChronoLocalDateTime>) temporal;
}
Objects.requireNonNull(temporal, "temporal");
Chronology chrono = temporal.query(TemporalQueries.chronology());
if (chrono == null) {
throw new DateTimeException("Unable to obtain ChronoLocalDateTime from TemporalAccessor: " + temporal.getClass());
}
return chrono.localDateTime(temporal);
}
//-----------------------------------------------------------------------
/**
* Gets the chronology of this date-time.
*
* The {@code Chronology} represents the calendar system in use.
* The era and other fields in {@link ChronoField} are defined by the chronology.
*
* @return the chronology, not null
*/
default Chronology getChronology() {
return toLocalDate().getChronology();
}
/**
* Gets the local date part of this date-time.
*
* This returns a local date with the same year, month and day
* as this date-time.
*
* @return the date part of this date-time, not null
*/
D toLocalDate();
/**
* Gets the local time part of this date-time.
*
* This returns a local time with the same hour, minute, second and
* nanosecond as this date-time.
*
* @return the time part of this date-time, not null
*/
LocalTime toLocalTime();
/**
* Checks if the specified field is supported.
*
* This checks if the specified field can be queried on this date-time.
* If false, then calling the {@link #range(TemporalField) range},
* {@link #get(TemporalField) get} and {@link #with(TemporalField, long)}
* methods will throw an exception.
*
* The set of supported fields is defined by the chronology and normally includes
* all {@code ChronoField} date and time fields.
*
* If the field is not a {@code ChronoField}, then the result of this method
* is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
* passing {@code this} as the argument.
* Whether the field is supported is determined by the field.
*
* @param field the field to check, null returns false
* @return true if the field can be queried, false if not
*/
@Override
boolean isSupported(TemporalField field);
/**
* Checks if the specified unit is supported.
*
* This checks if the specified unit can be added to or subtracted from this date-time.
* If false, then calling the {@link #plus(long, TemporalUnit)} and
* {@link #minus(long, TemporalUnit) minus} methods will throw an exception.
*
* The set of supported units is defined by the chronology and normally includes
* all {@code ChronoUnit} units except {@code FOREVER}.
*
* If the unit is not a {@code ChronoUnit}, then the result of this method
* is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)}
* passing {@code this} as the argument.
* Whether the unit is supported is determined by the unit.
*
* @param unit the unit to check, null returns false
* @return true if the unit can be added/subtracted, false if not
*/
@Override
default boolean isSupported(TemporalUnit unit) {
if (unit instanceof ChronoUnit) {
return unit != FOREVER;
}
return unit != null && unit.isSupportedBy(this);
}
//-----------------------------------------------------------------------
// override for covariant return type
/**
* {@inheritDoc}
* @throws DateTimeException {@inheritDoc}
* @throws ArithmeticException {@inheritDoc}
*/
@Override
default ChronoLocalDateTime with(TemporalAdjuster adjuster) {
return ChronoLocalDateTimeImpl.ensureValid(getChronology(), Temporal.super.with(adjuster));
}
/**
* {@inheritDoc}
* @throws DateTimeException {@inheritDoc}
* @throws ArithmeticException {@inheritDoc}
*/
@Override
ChronoLocalDateTime with(TemporalField field, long newValue);
/**
* {@inheritDoc}
* @throws DateTimeException {@inheritDoc}
* @throws ArithmeticException {@inheritDoc}
*/
@Override
default ChronoLocalDateTime plus(TemporalAmount amount) {
return ChronoLocalDateTimeImpl.ensureValid(getChronology(), Temporal.super.plus(amount));
}
/**
* {@inheritDoc}
* @throws DateTimeException {@inheritDoc}
* @throws ArithmeticException {@inheritDoc}
*/
@Override
ChronoLocalDateTime plus(long amountToAdd, TemporalUnit unit);
/**
* {@inheritDoc}
* @throws DateTimeException {@inheritDoc}
* @throws ArithmeticException {@inheritDoc}
*/
@Override
default ChronoLocalDateTime minus(TemporalAmount amount) {
return ChronoLocalDateTimeImpl.ensureValid(getChronology(), Temporal.super.minus(amount));
}
/**
* {@inheritDoc}
* @throws DateTimeException {@inheritDoc}
* @throws ArithmeticException {@inheritDoc}
*/
@Override
default ChronoLocalDateTime minus(long amountToSubtract, TemporalUnit unit) {
return ChronoLocalDateTimeImpl.ensureValid(getChronology(), Temporal.super.minus(amountToSubtract, unit));
}
//-----------------------------------------------------------------------
/**
* Queries this date-time using the specified query.
*
* This queries this date-time using the specified query strategy object.
* The {@code TemporalQuery} object defines the logic to be used to
* obtain the result. Read the documentation of the query to understand
* what the result of this method will be.
*
* The result of this method is obtained by invoking the
* {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
* specified query passing {@code this} as the argument.
*
* @param the type of the result
* @param query the query to invoke, not null
* @return the query result, null may be returned (defined by the query)
* @throws DateTimeException if unable to query (defined by the query)
* @throws ArithmeticException if numeric overflow occurs (defined by the query)
*/
@SuppressWarnings("unchecked")
@Override
default R query(TemporalQuery query) {
if (query == TemporalQueries.zoneId() || query == TemporalQueries.zone() || query == TemporalQueries.offset()) {
return null;
} else if (query == TemporalQueries.localTime()) {
return (R) toLocalTime();
} else if (query == TemporalQueries.chronology()) {
return (R) getChronology();
} else if (query == TemporalQueries.precision()) {
return (R) NANOS;
}
// inline TemporalAccessor.super.query(query) as an optimization
// non-JDK classes are not permitted to make this optimization
return query.queryFrom(this);
}
/**
* Adjusts the specified temporal object to have the same date and time as this object.
*
* This returns a temporal object of the same observable type as the input
* with the date and time changed to be the same as this.
*
* The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)}
* twice, passing {@link ChronoField#EPOCH_DAY} and
* {@link ChronoField#NANO_OF_DAY} as the fields.
*
* In most cases, it is clearer to reverse the calling pattern by using
* {@link Temporal#with(TemporalAdjuster)}:
*
* // these two lines are equivalent, but the second approach is recommended
* temporal = thisLocalDateTime.adjustInto(temporal);
* temporal = temporal.with(thisLocalDateTime);
*
*
* This instance is immutable and unaffected by this method call.
*
* @param temporal the target object to be adjusted, not null
* @return the adjusted object, not null
* @throws DateTimeException if unable to make the adjustment
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
default Temporal adjustInto(Temporal temporal) {
return temporal
.with(EPOCH_DAY, toLocalDate().toEpochDay())
.with(NANO_OF_DAY, toLocalTime().toNanoOfDay());
}
/**
* Formats this date-time using the specified formatter.
*
* This date-time will be passed to the formatter to produce a string.
*
* The default implementation must behave as follows:
*
* return formatter.format(this);
*
*
* @param formatter the formatter to use, not null
* @return the formatted date-time string, not null
* @throws DateTimeException if an error occurs during printing
*/
default String format(DateTimeFormatter formatter) {
Objects.requireNonNull(formatter, "formatter");
return formatter.format(this);
}
//-----------------------------------------------------------------------
/**
* Combines this time with a time-zone to create a {@code ChronoZonedDateTime}.
*
* This returns a {@code ChronoZonedDateTime} formed from this date-time at the
* specified time-zone. The result will match this date-time as closely as possible.
* Time-zone rules, such as daylight savings, mean that not every local date-time
* is valid for the specified zone, thus the local date-time may be adjusted.
*
* The local date-time is resolved to a single instant on the time-line.
* This is achieved by finding a valid offset from UTC/Greenwich for the local
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
*
* In most cases, there is only one valid offset for a local date-time.
* In the case of an overlap, where clocks are set back, there are two valid offsets.
* This method uses the earlier offset typically corresponding to "summer".
*
* In the case of a gap, where clocks jump forward, there is no valid offset.
* Instead, the local date-time is adjusted to be later by the length of the gap.
* For a typical one hour daylight savings change, the local date-time will be
* moved one hour later into the offset typically corresponding to "summer".
*
* To obtain the later offset during an overlap, call
* {@link ChronoZonedDateTime#withLaterOffsetAtOverlap()} on the result of this method.
*
* @param zone the time-zone to use, not null
* @return the zoned date-time formed from this date-time, not null
*/
ChronoZonedDateTime atZone(ZoneId zone);
//-----------------------------------------------------------------------
/**
* Converts this date-time to an {@code Instant}.
*
* This combines this local date-time and the specified offset to form
* an {@code Instant}.
*
* This default implementation calculates from the epoch-day of the date and the
* second-of-day of the time.
*
* @param offset the offset to use for the conversion, not null
* @return an {@code Instant} representing the same instant, not null
*/
default Instant toInstant(ZoneOffset offset) {
return Instant.ofEpochSecond(toEpochSecond(offset), toLocalTime().getNano());
}
/**
* Converts this date-time to the number of seconds from the epoch
* of 1970-01-01T00:00:00Z.
*
* This combines this local date-time and the specified offset to calculate the
* epoch-second value, which is the number of elapsed seconds from 1970-01-01T00:00:00Z.
* Instants on the time-line after the epoch are positive, earlier are negative.
*
* This default implementation calculates from the epoch-day of the date and the
* second-of-day of the time.
*
* @param offset the offset to use for the conversion, not null
* @return the number of seconds from the epoch of 1970-01-01T00:00:00Z
*/
default long toEpochSecond(ZoneOffset offset) {
Objects.requireNonNull(offset, "offset");
long epochDay = toLocalDate().toEpochDay();
long secs = epochDay * 86400 + toLocalTime().toSecondOfDay();
secs -= offset.getTotalSeconds();
return secs;
}
//-----------------------------------------------------------------------
/**
* Compares this date-time to another date-time, including the chronology.
*
* The comparison is based first on the underlying time-line date-time, then
* on the chronology.
* It is "consistent with equals", as defined by {@link Comparable}.
*
* For example, the following is the comparator order:
*
* - {@code 2012-12-03T12:00 (ISO)}
* - {@code 2012-12-04T12:00 (ISO)}
* - {@code 2555-12-04T12:00 (ThaiBuddhist)}
* - {@code 2012-12-05T12:00 (ISO)}
*
* Values #2 and #3 represent the same date-time on the time-line.
* When two values represent the same date-time, the chronology ID is compared to distinguish them.
* This step is needed to make the ordering "consistent with equals".
*
* If all the date-time objects being compared are in the same chronology, then the
* additional chronology stage is not required and only the local date-time is used.
*
* This default implementation performs the comparison defined above.
*
* @param other the other date-time to compare to, not null
* @return the comparator value, negative if less, positive if greater
*/
@Override
default int compareTo(ChronoLocalDateTime> other) {
int cmp = toLocalDate().compareTo(other.toLocalDate());
if (cmp == 0) {
cmp = toLocalTime().compareTo(other.toLocalTime());
if (cmp == 0) {
cmp = getChronology().compareTo(other.getChronology());
}
}
return cmp;
}
/**
* Checks if this date-time is after the specified date-time ignoring the chronology.
*
* This method differs from the comparison in {@link #compareTo} in that it
* only compares the underlying date-time and not the chronology.
* This allows dates in different calendar systems to be compared based
* on the time-line position.
*
* This default implementation performs the comparison based on the epoch-day
* and nano-of-day.
*
* @param other the other date-time to compare to, not null
* @return true if this is after the specified date-time
*/
default boolean isAfter(ChronoLocalDateTime> other) {
long thisEpDay = this.toLocalDate().toEpochDay();
long otherEpDay = other.toLocalDate().toEpochDay();
return thisEpDay > otherEpDay ||
(thisEpDay == otherEpDay && this.toLocalTime().toNanoOfDay() > other.toLocalTime().toNanoOfDay());
}
/**
* Checks if this date-time is before the specified date-time ignoring the chronology.
*
* This method differs from the comparison in {@link #compareTo} in that it
* only compares the underlying date-time and not the chronology.
* This allows dates in different calendar systems to be compared based
* on the time-line position.
*
* This default implementation performs the comparison based on the epoch-day
* and nano-of-day.
*
* @param other the other date-time to compare to, not null
* @return true if this is before the specified date-time
*/
default boolean isBefore(ChronoLocalDateTime> other) {
long thisEpDay = this.toLocalDate().toEpochDay();
long otherEpDay = other.toLocalDate().toEpochDay();
return thisEpDay < otherEpDay ||
(thisEpDay == otherEpDay && this.toLocalTime().toNanoOfDay() < other.toLocalTime().toNanoOfDay());
}
/**
* Checks if this date-time is equal to the specified date-time ignoring the chronology.
*
* This method differs from the comparison in {@link #compareTo} in that it
* only compares the underlying date and time and not the chronology.
* This allows date-times in different calendar systems to be compared based
* on the time-line position.
*
* This default implementation performs the comparison based on the epoch-day
* and nano-of-day.
*
* @param other the other date-time to compare to, not null
* @return true if the underlying date-time is equal to the specified date-time on the timeline
*/
default boolean isEqual(ChronoLocalDateTime> other) {
// Do the time check first, it is cheaper than computing EPOCH day.
return this.toLocalTime().toNanoOfDay() == other.toLocalTime().toNanoOfDay() &&
this.toLocalDate().toEpochDay() == other.toLocalDate().toEpochDay();
}
/**
* Checks if this date-time is equal to another date-time, including the chronology.
*
* Compares this date-time with another ensuring that the date-time and chronology are the same.
*
* @param obj the object to check, null returns false
* @return true if this is equal to the other date
*/
@Override
boolean equals(Object obj);
/**
* A hash code for this date-time.
*
* @return a suitable hash code
*/
@Override
int hashCode();
//-----------------------------------------------------------------------
/**
* Outputs this date-time as a {@code String}.
*
* The output will include the full local date-time.
*
* @return a string representation of this date-time, not null
*/
@Override
String toString();
}