java.time.format.DateTimeFormatterBuilder Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 2012, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Copyright (c) 2008-2012, Stephen Colebourne & Michael Nascimento Santos
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of JSR-310 nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package java.time.format;
import static java.time.temporal.ChronoField.DAY_OF_MONTH;
import static java.time.temporal.ChronoField.HOUR_OF_DAY;
import static java.time.temporal.ChronoField.INSTANT_SECONDS;
import static java.time.temporal.ChronoField.MINUTE_OF_HOUR;
import static java.time.temporal.ChronoField.MONTH_OF_YEAR;
import static java.time.temporal.ChronoField.NANO_OF_SECOND;
import static java.time.temporal.ChronoField.OFFSET_SECONDS;
import static java.time.temporal.ChronoField.SECOND_OF_MINUTE;
import static java.time.temporal.ChronoField.YEAR;
import static java.time.temporal.ChronoField.ERA;
import java.lang.ref.SoftReference;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.text.ParsePosition;
import java.time.DateTimeException;
import java.time.Instant;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.LocalTime;
import java.time.ZoneId;
import java.time.ZoneOffset;
import java.time.chrono.ChronoLocalDate;
import java.time.chrono.Chronology;
import java.time.chrono.Era;
import java.time.chrono.IsoChronology;
import java.time.format.DateTimeTextProvider.LocaleStore;
import java.time.temporal.ChronoField;
import java.time.temporal.IsoFields;
import java.time.temporal.JulianFields;
import java.time.temporal.TemporalAccessor;
import java.time.temporal.TemporalField;
import java.time.temporal.TemporalQueries;
import java.time.temporal.TemporalQuery;
import java.time.temporal.ValueRange;
import java.time.temporal.WeekFields;
import java.time.zone.ZoneRulesProvider;
import java.util.AbstractMap.SimpleImmutableEntry;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Calendar;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Objects;
import java.util.Set;
import java.util.TimeZone;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import sun.text.spi.JavaTimeDateTimePatternProvider;
import sun.util.locale.provider.CalendarDataUtility;
import sun.util.locale.provider.LocaleProviderAdapter;
import sun.util.locale.provider.LocaleResources;
import sun.util.locale.provider.TimeZoneNameUtility;
/**
* Builder to create date-time formatters.
*
* This allows a {@code DateTimeFormatter} to be created.
* All date-time formatters are created ultimately using this builder.
*
* The basic elements of date-time can all be added:
*
* - Value - a numeric value
* - Fraction - a fractional value including the decimal place. Always use this when
* outputting fractions to ensure that the fraction is parsed correctly
* - Text - the textual equivalent for the value
* - OffsetId/Offset - the {@linkplain ZoneOffset zone offset}
* - ZoneId - the {@linkplain ZoneId time-zone} id
* - ZoneText - the name of the time-zone
* - ChronologyId - the {@linkplain Chronology chronology} id
* - ChronologyText - the name of the chronology
* - Literal - a text literal
* - Nested and Optional - formats can be nested or made optional
*
* In addition, any of the elements may be decorated by padding, either with spaces or any other character.
*
* Finally, a shorthand pattern, mostly compatible with {@code java.text.SimpleDateFormat SimpleDateFormat}
* can be used, see {@link #appendPattern(String)}.
* In practice, this simply parses the pattern and calls other methods on the builder.
*
* @implSpec
* This class is a mutable builder intended for use from a single thread.
*
* @since 1.8
*/
public final class DateTimeFormatterBuilder {
/**
* Query for a time-zone that is region-only.
*/
private static final TemporalQuery QUERY_REGION_ONLY = (temporal) -> {
ZoneId zone = temporal.query(TemporalQueries.zoneId());
return zone instanceof ZoneOffset ? null : zone;
};
/**
* The currently active builder, used by the outermost builder.
*/
private DateTimeFormatterBuilder active = this;
/**
* The parent builder, null for the outermost builder.
*/
private final DateTimeFormatterBuilder parent;
/**
* The list of printers that will be used.
*/
private final List printerParsers = new ArrayList<>();
/**
* Whether this builder produces an optional formatter.
*/
private final boolean optional;
/**
* The width to pad the next field to.
*/
private int padNextWidth;
/**
* The character to pad the next field with.
*/
private char padNextChar;
/**
* The index of the last variable width value parser.
*/
private int valueParserIndex = -1;
/**
* Gets the formatting pattern for date and time styles for a locale and chronology.
* The locale and chronology are used to lookup the locale specific format
* for the requested dateStyle and/or timeStyle.
*
* If the locale contains the "rg" (region override)
* Unicode extensions,
* the formatting pattern is overridden with the one appropriate for the region.
*
* @param dateStyle the FormatStyle for the date, null for time-only pattern
* @param timeStyle the FormatStyle for the time, null for date-only pattern
* @param chrono the Chronology, non-null
* @param locale the locale, non-null
* @return the locale and Chronology specific formatting pattern
* @throws IllegalArgumentException if both dateStyle and timeStyle are null
*/
public static String getLocalizedDateTimePattern(FormatStyle dateStyle, FormatStyle timeStyle,
Chronology chrono, Locale locale) {
Objects.requireNonNull(locale, "locale");
Objects.requireNonNull(chrono, "chrono");
if (dateStyle == null && timeStyle == null) {
throw new IllegalArgumentException("Either dateStyle or timeStyle must be non-null");
}
LocaleProviderAdapter adapter = LocaleProviderAdapter.getAdapter(JavaTimeDateTimePatternProvider.class, locale);
JavaTimeDateTimePatternProvider provider = adapter.getJavaTimeDateTimePatternProvider();
return provider.getJavaTimeDateTimePattern(convertStyle(timeStyle),
convertStyle(dateStyle), chrono.getCalendarType(),
CalendarDataUtility.findRegionOverride(locale));
}
/**
* Converts the given FormatStyle to the java.text.DateFormat style.
*
* @param style the FormatStyle style
* @return the int style, or -1 if style is null, indicating un-required
*/
private static int convertStyle(FormatStyle style) {
if (style == null) {
return -1;
}
return style.ordinal(); // indices happen to align
}
/**
* Constructs a new instance of the builder.
*/
public DateTimeFormatterBuilder() {
super();
parent = null;
optional = false;
}
/**
* Constructs a new instance of the builder.
*
* @param parent the parent builder, not null
* @param optional whether the formatter is optional, not null
*/
private DateTimeFormatterBuilder(DateTimeFormatterBuilder parent, boolean optional) {
super();
this.parent = parent;
this.optional = optional;
}
//-----------------------------------------------------------------------
/**
* Changes the parse style to be case sensitive for the remainder of the formatter.
*
* Parsing can be case sensitive or insensitive - by default it is case sensitive.
* This method allows the case sensitivity setting of parsing to be changed.
*
* Calling this method changes the state of the builder such that all
* subsequent builder method calls will parse text in case sensitive mode.
* See {@link #parseCaseInsensitive} for the opposite setting.
* The parse case sensitive/insensitive methods may be called at any point
* in the builder, thus the parser can swap between case parsing modes
* multiple times during the parse.
*
* Since the default is case sensitive, this method should only be used after
* a previous call to {@code #parseCaseInsensitive}.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseCaseSensitive() {
appendInternal(SettingsParser.SENSITIVE);
return this;
}
/**
* Changes the parse style to be case insensitive for the remainder of the formatter.
*
* Parsing can be case sensitive or insensitive - by default it is case sensitive.
* This method allows the case sensitivity setting of parsing to be changed.
*
* Calling this method changes the state of the builder such that all
* subsequent builder method calls will parse text in case insensitive mode.
* See {@link #parseCaseSensitive()} for the opposite setting.
* The parse case sensitive/insensitive methods may be called at any point
* in the builder, thus the parser can swap between case parsing modes
* multiple times during the parse.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseCaseInsensitive() {
appendInternal(SettingsParser.INSENSITIVE);
return this;
}
//-----------------------------------------------------------------------
/**
* Changes the parse style to be strict for the remainder of the formatter.
*
* Parsing can be strict or lenient - by default it is strict.
* This controls the degree of flexibility in matching the text and sign styles.
*
* When used, this method changes the parsing to be strict from this point onwards.
* As strict is the default, this is normally only needed after calling {@link #parseLenient()}.
* The change will remain in force until the end of the formatter that is eventually
* constructed or until {@code parseLenient} is called.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseStrict() {
appendInternal(SettingsParser.STRICT);
return this;
}
/**
* Changes the parse style to be lenient for the remainder of the formatter.
* Note that case sensitivity is set separately to this method.
*
* Parsing can be strict or lenient - by default it is strict.
* This controls the degree of flexibility in matching the text and sign styles.
* Applications calling this method should typically also call {@link #parseCaseInsensitive()}.
*
* When used, this method changes the parsing to be lenient from this point onwards.
* The change will remain in force until the end of the formatter that is eventually
* constructed or until {@code parseStrict} is called.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseLenient() {
appendInternal(SettingsParser.LENIENT);
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a default value for a field to the formatter for use in parsing.
*
* This appends an instruction to the builder to inject a default value
* into the parsed result. This is especially useful in conjunction with
* optional parts of the formatter.
*
* For example, consider a formatter that parses the year, followed by
* an optional month, with a further optional day-of-month. Using such a
* formatter would require the calling code to check whether a full date,
* year-month or just a year had been parsed. This method can be used to
* default the month and day-of-month to a sensible value, such as the
* first of the month, allowing the calling code to always get a date.
*
* During formatting, this method has no effect.
*
* During parsing, the current state of the parse is inspected.
* If the specified field has no associated value, because it has not been
* parsed successfully at that point, then the specified value is injected
* into the parse result. Injection is immediate, thus the field-value pair
* will be visible to any subsequent elements in the formatter.
* As such, this method is normally called at the end of the builder.
*
* @param field the field to default the value of, not null
* @param value the value to default the field to
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseDefaulting(TemporalField field, long value) {
Objects.requireNonNull(field, "field");
appendInternal(new DefaultValueParser(field, value));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the value of a date-time field to the formatter using a normal
* output style.
*
* The value of the field will be output during a format.
* If the value cannot be obtained then an exception will be thrown.
*
* The value will be printed as per the normal format of an integer value.
* Only negative numbers will be signed. No padding will be added.
*
* The parser for a variable width value such as this normally behaves greedily,
* requiring one digit, but accepting as many digits as possible.
* This behavior can be affected by 'adjacent value parsing'.
* See {@link #appendValue(java.time.temporal.TemporalField, int)} for full details.
*
* @param field the field to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendValue(TemporalField field) {
Objects.requireNonNull(field, "field");
appendValue(new NumberPrinterParser(field, 1, 19, SignStyle.NORMAL));
return this;
}
/**
* Appends the value of a date-time field to the formatter using a fixed
* width, zero-padded approach.
*
* The value of the field will be output during a format.
* If the value cannot be obtained then an exception will be thrown.
*
* The value will be zero-padded on the left. If the size of the value
* means that it cannot be printed within the width then an exception is thrown.
* If the value of the field is negative then an exception is thrown during formatting.
*
* This method supports a special technique of parsing known as 'adjacent value parsing'.
* This technique solves the problem where a value, variable or fixed width, is followed by one or more
* fixed length values. The standard parser is greedy, and thus it would normally
* steal the digits that are needed by the fixed width value parsers that follow the
* variable width one.
*
* No action is required to initiate 'adjacent value parsing'.
* When a call to {@code appendValue} is made, the builder
* enters adjacent value parsing setup mode. If the immediately subsequent method
* call or calls on the same builder are for a fixed width value, then the parser will reserve
* space so that the fixed width values can be parsed.
*
* For example, consider {@code builder.appendValue(YEAR).appendValue(MONTH_OF_YEAR, 2);}
* The year is a variable width parse of between 1 and 19 digits.
* The month is a fixed width parse of 2 digits.
* Because these were appended to the same builder immediately after one another,
* the year parser will reserve two digits for the month to parse.
* Thus, the text '201106' will correctly parse to a year of 2011 and a month of 6.
* Without adjacent value parsing, the year would greedily parse all six digits and leave
* nothing for the month.
*
* Adjacent value parsing applies to each set of fixed width not-negative values in the parser
* that immediately follow any kind of value, variable or fixed width.
* Calling any other append method will end the setup of adjacent value parsing.
* Thus, in the unlikely event that you need to avoid adjacent value parsing behavior,
* simply add the {@code appendValue} to another {@code DateTimeFormatterBuilder}
* and add that to this builder.
*
* If adjacent parsing is active, then parsing must match exactly the specified
* number of digits in both strict and lenient modes.
* In addition, no positive or negative sign is permitted.
*
* @param field the field to append, not null
* @param width the width of the printed field, from 1 to 19
* @return this, for chaining, not null
* @throws IllegalArgumentException if the width is invalid
*/
public DateTimeFormatterBuilder appendValue(TemporalField field, int width) {
Objects.requireNonNull(field, "field");
if (width < 1 || width > 19) {
throw new IllegalArgumentException("The width must be from 1 to 19 inclusive but was " + width);
}
NumberPrinterParser pp = new NumberPrinterParser(field, width, width, SignStyle.NOT_NEGATIVE);
appendValue(pp);
return this;
}
/**
* Appends the value of a date-time field to the formatter providing full
* control over formatting.
*
* The value of the field will be output during a format.
* If the value cannot be obtained then an exception will be thrown.
*
* This method provides full control of the numeric formatting, including
* zero-padding and the positive/negative sign.
*
* The parser for a variable width value such as this normally behaves greedily,
* accepting as many digits as possible.
* This behavior can be affected by 'adjacent value parsing'.
* See {@link #appendValue(java.time.temporal.TemporalField, int)} for full details.
*
* In strict parsing mode, the minimum number of parsed digits is {@code minWidth}
* and the maximum is {@code maxWidth}.
* In lenient parsing mode, the minimum number of parsed digits is one
* and the maximum is 19 (except as limited by adjacent value parsing).
*
* If this method is invoked with equal minimum and maximum widths and a sign style of
* {@code NOT_NEGATIVE} then it delegates to {@code appendValue(TemporalField,int)}.
* In this scenario, the formatting and parsing behavior described there occur.
*
* @param field the field to append, not null
* @param minWidth the minimum field width of the printed field, from 1 to 19
* @param maxWidth the maximum field width of the printed field, from 1 to 19
* @param signStyle the positive/negative output style, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the widths are invalid
*/
public DateTimeFormatterBuilder appendValue(
TemporalField field, int minWidth, int maxWidth, SignStyle signStyle) {
if (minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE) {
return appendValue(field, maxWidth);
}
Objects.requireNonNull(field, "field");
Objects.requireNonNull(signStyle, "signStyle");
if (minWidth < 1 || minWidth > 19) {
throw new IllegalArgumentException("The minimum width must be from 1 to 19 inclusive but was " + minWidth);
}
if (maxWidth < 1 || maxWidth > 19) {
throw new IllegalArgumentException("The maximum width must be from 1 to 19 inclusive but was " + maxWidth);
}
if (maxWidth < minWidth) {
throw new IllegalArgumentException("The maximum width must exceed or equal the minimum width but " +
maxWidth + " < " + minWidth);
}
NumberPrinterParser pp = new NumberPrinterParser(field, minWidth, maxWidth, signStyle);
appendValue(pp);
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the reduced value of a date-time field to the formatter.
*
* Since fields such as year vary by chronology, it is recommended to use the
* {@link #appendValueReduced(TemporalField, int, int, ChronoLocalDate)} date}
* variant of this method in most cases. This variant is suitable for
* simple fields or working with only the ISO chronology.
*
* For formatting, the {@code width} and {@code maxWidth} are used to
* determine the number of characters to format.
* If they are equal then the format is fixed width.
* If the value of the field is within the range of the {@code baseValue} using
* {@code width} characters then the reduced value is formatted otherwise the value is
* truncated to fit {@code maxWidth}.
* The rightmost characters are output to match the width, left padding with zero.
*
* For strict parsing, the number of characters allowed by {@code width} to {@code maxWidth} are parsed.
* For lenient parsing, the number of characters must be at least 1 and less than 10.
* If the number of digits parsed is equal to {@code width} and the value is positive,
* the value of the field is computed to be the first number greater than
* or equal to the {@code baseValue} with the same least significant characters,
* otherwise the value parsed is the field value.
* This allows a reduced value to be entered for values in range of the baseValue
* and width and absolute values can be entered for values outside the range.
*
* For example, a base value of {@code 1980} and a width of {@code 2} will have
* valid values from {@code 1980} to {@code 2079}.
* During parsing, the text {@code "12"} will result in the value {@code 2012} as that
* is the value within the range where the last two characters are "12".
* By contrast, parsing the text {@code "1915"} will result in the value {@code 1915}.
*
* @param field the field to append, not null
* @param width the field width of the printed and parsed field, from 1 to 10
* @param maxWidth the maximum field width of the printed field, from 1 to 10
* @param baseValue the base value of the range of valid values
* @return this, for chaining, not null
* @throws IllegalArgumentException if the width or base value is invalid
*/
public DateTimeFormatterBuilder appendValueReduced(TemporalField field,
int width, int maxWidth, int baseValue) {
Objects.requireNonNull(field, "field");
ReducedPrinterParser pp = new ReducedPrinterParser(field, width, maxWidth, baseValue, null);
appendValue(pp);
return this;
}
/**
* Appends the reduced value of a date-time field to the formatter.
*
* This is typically used for formatting and parsing a two digit year.
*
* The base date is used to calculate the full value during parsing.
* For example, if the base date is 1950-01-01 then parsed values for
* a two digit year parse will be in the range 1950-01-01 to 2049-12-31.
* Only the year would be extracted from the date, thus a base date of
* 1950-08-25 would also parse to the range 1950-01-01 to 2049-12-31.
* This behavior is necessary to support fields such as week-based-year
* or other calendar systems where the parsed value does not align with
* standard ISO years.
*
* The exact behavior is as follows. Parse the full set of fields and
* determine the effective chronology using the last chronology if
* it appears more than once. Then convert the base date to the
* effective chronology. Then extract the specified field from the
* chronology-specific base date and use it to determine the
* {@code baseValue} used below.
*
* For formatting, the {@code width} and {@code maxWidth} are used to
* determine the number of characters to format.
* If they are equal then the format is fixed width.
* If the value of the field is within the range of the {@code baseValue} using
* {@code width} characters then the reduced value is formatted otherwise the value is
* truncated to fit {@code maxWidth}.
* The rightmost characters are output to match the width, left padding with zero.
*
* For strict parsing, the number of characters allowed by {@code width} to {@code maxWidth} are parsed.
* For lenient parsing, the number of characters must be at least 1 and less than 10.
* If the number of digits parsed is equal to {@code width} and the value is positive,
* the value of the field is computed to be the first number greater than
* or equal to the {@code baseValue} with the same least significant characters,
* otherwise the value parsed is the field value.
* This allows a reduced value to be entered for values in range of the baseValue
* and width and absolute values can be entered for values outside the range.
*
* For example, a base value of {@code 1980} and a width of {@code 2} will have
* valid values from {@code 1980} to {@code 2079}.
* During parsing, the text {@code "12"} will result in the value {@code 2012} as that
* is the value within the range where the last two characters are "12".
* By contrast, parsing the text {@code "1915"} will result in the value {@code 1915}.
*
* @param field the field to append, not null
* @param width the field width of the printed and parsed field, from 1 to 10
* @param maxWidth the maximum field width of the printed field, from 1 to 10
* @param baseDate the base date used to calculate the base value for the range
* of valid values in the parsed chronology, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the width or base value is invalid
*/
public DateTimeFormatterBuilder appendValueReduced(
TemporalField field, int width, int maxWidth, ChronoLocalDate baseDate) {
Objects.requireNonNull(field, "field");
Objects.requireNonNull(baseDate, "baseDate");
ReducedPrinterParser pp = new ReducedPrinterParser(field, width, maxWidth, 0, baseDate);
appendValue(pp);
return this;
}
/**
* Appends a fixed or variable width printer-parser handling adjacent value mode.
* If a PrinterParser is not active then the new PrinterParser becomes
* the active PrinterParser.
* Otherwise, the active PrinterParser is modified depending on the new PrinterParser.
* If the new PrinterParser is fixed width and has sign style {@code NOT_NEGATIVE}
* then its width is added to the active PP and
* the new PrinterParser is forced to be fixed width.
* If the new PrinterParser is variable width, the active PrinterParser is changed
* to be fixed width and the new PrinterParser becomes the active PP.
*
* @param pp the printer-parser, not null
* @return this, for chaining, not null
*/
private DateTimeFormatterBuilder appendValue(NumberPrinterParser pp) {
if (active.valueParserIndex >= 0) {
final int activeValueParser = active.valueParserIndex;
// adjacent parsing mode, update setting in previous parsers
NumberPrinterParser basePP = (NumberPrinterParser) active.printerParsers.get(activeValueParser);
if (pp.minWidth == pp.maxWidth && pp.signStyle == SignStyle.NOT_NEGATIVE) {
// Append the width to the subsequentWidth of the active parser
basePP = basePP.withSubsequentWidth(pp.maxWidth);
// Append the new parser as a fixed width
appendInternal(pp.withFixedWidth());
// Retain the previous active parser
active.valueParserIndex = activeValueParser;
} else {
// Modify the active parser to be fixed width
basePP = basePP.withFixedWidth();
// The new parser becomes the mew active parser
active.valueParserIndex = appendInternal(pp);
}
// Replace the modified parser with the updated one
active.printerParsers.set(activeValueParser, basePP);
} else {
// The new Parser becomes the active parser
active.valueParserIndex = appendInternal(pp);
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the fractional value of a date-time field to the formatter.
*
* The fractional value of the field will be output including the
* preceding decimal point. The preceding value is not output.
* For example, the second-of-minute value of 15 would be output as {@code .25}.
*
* The width of the printed fraction can be controlled. Setting the
* minimum width to zero will cause no output to be generated.
* The printed fraction will have the minimum width necessary between
* the minimum and maximum widths - trailing zeroes are omitted.
* No rounding occurs due to the maximum width - digits are simply dropped.
*
* When parsing in strict mode, the number of parsed digits must be between
* the minimum and maximum width. In strict mode, if the minimum and maximum widths
* are equal and there is no decimal point then the parser will
* participate in adjacent value parsing, see
* {@link #appendValue(java.time.temporal.TemporalField, int)}. When parsing in lenient mode,
* the minimum width is considered to be zero and the maximum is nine.
*
* If the value cannot be obtained then an exception will be thrown.
* If the value is negative an exception will be thrown.
* If the field does not have a fixed set of valid values then an
* exception will be thrown.
* If the field value in the date-time to be printed is invalid it
* cannot be printed and an exception will be thrown.
*
* @param field the field to append, not null
* @param minWidth the minimum width of the field excluding the decimal point, from 0 to 9
* @param maxWidth the maximum width of the field excluding the decimal point, from 1 to 9
* @param decimalPoint whether to output the localized decimal point symbol
* @return this, for chaining, not null
* @throws IllegalArgumentException if the field has a variable set of valid values or
* either width is invalid
*/
public DateTimeFormatterBuilder appendFraction(
TemporalField field, int minWidth, int maxWidth, boolean decimalPoint) {
if (minWidth == maxWidth && decimalPoint == false) {
// adjacent parsing
appendValue(new FractionPrinterParser(field, minWidth, maxWidth, decimalPoint));
} else {
appendInternal(new FractionPrinterParser(field, minWidth, maxWidth, decimalPoint));
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the text of a date-time field to the formatter using the full
* text style.
*
* The text of the field will be output during a format.
* The value must be within the valid range of the field.
* If the value cannot be obtained then an exception will be thrown.
* If the field has no textual representation, then the numeric value will be used.
*
* The value will be printed as per the normal format of an integer value.
* Only negative numbers will be signed. No padding will be added.
*
* @param field the field to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field) {
return appendText(field, TextStyle.FULL);
}
/**
* Appends the text of a date-time field to the formatter.
*
* The text of the field will be output during a format.
* The value must be within the valid range of the field.
* If the value cannot be obtained then an exception will be thrown.
* If the field has no textual representation, then the numeric value will be used.
*
* The value will be printed as per the normal format of an integer value.
* Only negative numbers will be signed. No padding will be added.
*
* @param field the field to append, not null
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field, TextStyle textStyle) {
Objects.requireNonNull(field, "field");
Objects.requireNonNull(textStyle, "textStyle");
appendInternal(new TextPrinterParser(field, textStyle, DateTimeTextProvider.getInstance()));
return this;
}
/**
* Appends the text of a date-time field to the formatter using the specified
* map to supply the text.
*
* The standard text outputting methods use the localized text in the JDK.
* This method allows that text to be specified directly.
* The supplied map is not validated by the builder to ensure that formatting or
* parsing is possible, thus an invalid map may throw an error during later use.
*
* Supplying the map of text provides considerable flexibility in formatting and parsing.
* For example, a legacy application might require or supply the months of the
* year as "JNY", "FBY", "MCH" etc. These do not match the standard set of text
* for localized month names. Using this method, a map can be created which
* defines the connection between each value and the text:
*
* Map<Long, String> map = new HashMap<>();
* map.put(1L, "JNY");
* map.put(2L, "FBY");
* map.put(3L, "MCH");
* ...
* builder.appendText(MONTH_OF_YEAR, map);
*
*
* Other uses might be to output the value with a suffix, such as "1st", "2nd", "3rd",
* or as Roman numerals "I", "II", "III", "IV".
*
* During formatting, the value is obtained and checked that it is in the valid range.
* If text is not available for the value then it is output as a number.
* During parsing, the parser will match against the map of text and numeric values.
*
* @param field the field to append, not null
* @param textLookup the map from the value to the text
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field, Map textLookup) {
Objects.requireNonNull(field, "field");
Objects.requireNonNull(textLookup, "textLookup");
Map copy = new LinkedHashMap<>(textLookup);
Map> map = Collections.singletonMap(TextStyle.FULL, copy);
final LocaleStore store = new LocaleStore(map);
DateTimeTextProvider provider = new DateTimeTextProvider() {
@Override
public String getText(Chronology chrono, TemporalField field,
long value, TextStyle style, Locale locale) {
return store.getText(value, style);
}
@Override
public String getText(TemporalField field, long value, TextStyle style, Locale locale) {
return store.getText(value, style);
}
@Override
public Iterator> getTextIterator(Chronology chrono,
TemporalField field, TextStyle style, Locale locale) {
return store.getTextIterator(style);
}
@Override
public Iterator> getTextIterator(TemporalField field,
TextStyle style, Locale locale) {
return store.getTextIterator(style);
}
};
appendInternal(new TextPrinterParser(field, TextStyle.FULL, provider));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends an instant using ISO-8601 to the formatter, formatting fractional
* digits in groups of three.
*
* Instants have a fixed output format.
* They are converted to a date-time with a zone-offset of UTC and formatted
* using the standard ISO-8601 format.
* With this method, formatting nano-of-second outputs zero, three, six
* or nine digits as necessary.
* The localized decimal style is not used.
*
* The instant is obtained using {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
* and optionally {@code NANO_OF_SECOND}. The value of {@code INSTANT_SECONDS}
* may be outside the maximum range of {@code LocalDateTime}.
*
* The {@linkplain ResolverStyle resolver style} has no effect on instant parsing.
* The end-of-day time of '24:00' is handled as midnight at the start of the following day.
* The leap-second time of '23:59:59' is handled to some degree, see
* {@link DateTimeFormatter#parsedLeapSecond()} for full details.
*
* When formatting, the instant will always be suffixed by 'Z' to indicate UTC.
* When parsing, the behaviour of {@link DateTimeFormatterBuilder#appendOffsetId()}
* will be used to parse the offset, converting the instant to UTC as necessary.
*
* An alternative to this method is to format/parse the instant as a single
* epoch-seconds value. That is achieved using {@code appendValue(INSTANT_SECONDS)}.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendInstant() {
appendInternal(new InstantPrinterParser(-2));
return this;
}
/**
* Appends an instant using ISO-8601 to the formatter with control over
* the number of fractional digits.
*
* Instants have a fixed output format, although this method provides some
* control over the fractional digits. They are converted to a date-time
* with a zone-offset of UTC and printed using the standard ISO-8601 format.
* The localized decimal style is not used.
*
* The {@code fractionalDigits} parameter allows the output of the fractional
* second to be controlled. Specifying zero will cause no fractional digits
* to be output. From 1 to 9 will output an increasing number of digits, using
* zero right-padding if necessary. The special value -1 is used to output as
* many digits as necessary to avoid any trailing zeroes.
*
* When parsing in strict mode, the number of parsed digits must match the
* fractional digits. When parsing in lenient mode, any number of fractional
* digits from zero to nine are accepted.
*
* The instant is obtained using {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
* and optionally {@code NANO_OF_SECOND}. The value of {@code INSTANT_SECONDS}
* may be outside the maximum range of {@code LocalDateTime}.
*
* The {@linkplain ResolverStyle resolver style} has no effect on instant parsing.
* The end-of-day time of '24:00' is handled as midnight at the start of the following day.
* The leap-second time of '23:59:60' is handled to some degree, see
* {@link DateTimeFormatter#parsedLeapSecond()} for full details.
*
* An alternative to this method is to format/parse the instant as a single
* epoch-seconds value. That is achieved using {@code appendValue(INSTANT_SECONDS)}.
*
* @param fractionalDigits the number of fractional second digits to format with,
* from 0 to 9, or -1 to use as many digits as necessary
* @return this, for chaining, not null
* @throws IllegalArgumentException if the number of fractional digits is invalid
*/
public DateTimeFormatterBuilder appendInstant(int fractionalDigits) {
if (fractionalDigits < -1 || fractionalDigits > 9) {
throw new IllegalArgumentException("The fractional digits must be from -1 to 9 inclusive but was " + fractionalDigits);
}
appendInternal(new InstantPrinterParser(fractionalDigits));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the zone offset, such as '+01:00', to the formatter.
*
* This appends an instruction to format/parse the offset ID to the builder.
* This is equivalent to calling {@code appendOffset("+HH:mm:ss", "Z")}.
* See {@link #appendOffset(String, String)} for details on formatting
* and parsing.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendOffsetId() {
appendInternal(OffsetIdPrinterParser.INSTANCE_ID_Z);
return this;
}
/**
* Appends the zone offset, such as '+01:00', to the formatter.
*
* This appends an instruction to format/parse the offset ID to the builder.
*
* During formatting, the offset is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#offset()}.
* It will be printed using the format defined below.
* If the offset cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* When parsing in strict mode, the input must contain the mandatory
* and optional elements are defined by the specified pattern.
* If the offset cannot be parsed then an exception is thrown unless
* the section of the formatter is optional.
*
* When parsing in lenient mode, only the hours are mandatory - minutes
* and seconds are optional. The colons are required if the specified
* pattern contains a colon. If the specified pattern is "+HH", the
* presence of colons is determined by whether the character after the
* hour digits is a colon or not.
* If the offset cannot be parsed then an exception is thrown unless
* the section of the formatter is optional.
*
* The format of the offset is controlled by a pattern which must be one
* of the following:
*
* - {@code +HH} - hour only, ignoring minute and second
*
- {@code +HHmm} - hour, with minute if non-zero, ignoring second, no colon
*
- {@code +HH:mm} - hour, with minute if non-zero, ignoring second, with colon
*
- {@code +HHMM} - hour and minute, ignoring second, no colon
*
- {@code +HH:MM} - hour and minute, ignoring second, with colon
*
- {@code +HHMMss} - hour and minute, with second if non-zero, no colon
*
- {@code +HH:MM:ss} - hour and minute, with second if non-zero, with colon
*
- {@code +HHMMSS} - hour, minute and second, no colon
*
- {@code +HH:MM:SS} - hour, minute and second, with colon
*
- {@code +HHmmss} - hour, with minute if non-zero or with minute and
* second if non-zero, no colon
*
- {@code +HH:mm:ss} - hour, with minute if non-zero or with minute and
* second if non-zero, with colon
*
- {@code +H} - hour only, ignoring minute and second
*
- {@code +Hmm} - hour, with minute if non-zero, ignoring second, no colon
*
- {@code +H:mm} - hour, with minute if non-zero, ignoring second, with colon
*
- {@code +HMM} - hour and minute, ignoring second, no colon
*
- {@code +H:MM} - hour and minute, ignoring second, with colon
*
- {@code +HMMss} - hour and minute, with second if non-zero, no colon
*
- {@code +H:MM:ss} - hour and minute, with second if non-zero, with colon
*
- {@code +HMMSS} - hour, minute and second, no colon
*
- {@code +H:MM:SS} - hour, minute and second, with colon
*
- {@code +Hmmss} - hour, with minute if non-zero or with minute and
* second if non-zero, no colon
*
- {@code +H:mm:ss} - hour, with minute if non-zero or with minute and
* second if non-zero, with colon
*
* Patterns containing "HH" will format and parse a two digit hour,
* zero-padded if necessary. Patterns containing "H" will format with no
* zero-padding, and parse either one or two digits.
* In lenient mode, the parser will be greedy and parse the maximum digits possible.
* The "no offset" text controls what text is printed when the total amount of
* the offset fields to be output is zero.
* Example values would be 'Z', '+00:00', 'UTC' or 'GMT'.
* Three formats are accepted for parsing UTC - the "no offset" text, and the
* plus and minus versions of zero defined by the pattern.
*
* @param pattern the pattern to use, not null
* @param noOffsetText the text to use when the offset is zero, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the pattern is invalid
*/
public DateTimeFormatterBuilder appendOffset(String pattern, String noOffsetText) {
appendInternal(new OffsetIdPrinterParser(pattern, noOffsetText));
return this;
}
/**
* Appends the localized zone offset, such as 'GMT+01:00', to the formatter.
*
* This appends a localized zone offset to the builder, the format of the
* localized offset is controlled by the specified {@link FormatStyle style}
* to this method:
*
* - {@link TextStyle#FULL full} - formats with localized offset text, such
* as 'GMT, 2-digit hour and minute field, optional second field if non-zero,
* and colon.
*
- {@link TextStyle#SHORT short} - formats with localized offset text,
* such as 'GMT, hour without leading zero, optional 2-digit minute and
* second if non-zero, and colon.
*
*
* During formatting, the offset is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#offset()}.
* If the offset cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the offset is parsed using the format defined above.
* If the offset cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
*
* @param style the format style to use, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if style is neither {@link TextStyle#FULL
* full} nor {@link TextStyle#SHORT short}
*/
public DateTimeFormatterBuilder appendLocalizedOffset(TextStyle style) {
Objects.requireNonNull(style, "style");
if (style != TextStyle.FULL && style != TextStyle.SHORT) {
throw new IllegalArgumentException("Style must be either full or short");
}
appendInternal(new LocalizedOffsetIdPrinterParser(style));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the time-zone ID, such as 'Europe/Paris' or '+02:00', to the formatter.
*
* This appends an instruction to format/parse the zone ID to the builder.
* The zone ID is obtained in a strict manner suitable for {@code ZonedDateTime}.
* By contrast, {@code OffsetDateTime} does not have a zone ID suitable
* for use with this method, see {@link #appendZoneOrOffsetId()}.
*
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* It will be printed using the result of {@link ZoneId#getId()}.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the text must match a known zone or offset.
* There are two types of zone ID, offset-based, such as '+01:30' and
* region-based, such as 'Europe/London'. These are parsed differently.
* If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser
* expects an offset-based zone and will not match region-based zones.
* The offset ID, such as '+02:30', may be at the start of the parse,
* or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is
* equivalent to using {@link #appendOffset(String, String)} using the
* arguments 'HH:MM:ss' and the no offset string '0'.
* If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot
* match a following offset ID, then {@link ZoneOffset#UTC} is selected.
* In all other cases, the list of known region-based zones is used to
* find the longest available match. If no match is found, and the parse
* starts with 'Z', then {@code ZoneOffset.UTC} is selected.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
*
* For example, the following will parse:
*
* "Europe/London" -- ZoneId.of("Europe/London")
* "Z" -- ZoneOffset.UTC
* "UT" -- ZoneId.of("UT")
* "UTC" -- ZoneId.of("UTC")
* "GMT" -- ZoneId.of("GMT")
* "+01:30" -- ZoneOffset.of("+01:30")
* "UT+01:30" -- ZoneOffset.of("+01:30")
* "UTC+01:30" -- ZoneOffset.of("+01:30")
* "GMT+01:30" -- ZoneOffset.of("+01:30")
*
*
* @return this, for chaining, not null
* @see #appendZoneRegionId()
*/
public DateTimeFormatterBuilder appendZoneId() {
appendInternal(new ZoneIdPrinterParser(TemporalQueries.zoneId(), "ZoneId()"));
return this;
}
/**
* Appends the time-zone region ID, such as 'Europe/Paris', to the formatter,
* rejecting the zone ID if it is a {@code ZoneOffset}.
*
* This appends an instruction to format/parse the zone ID to the builder
* only if it is a region-based ID.
*
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* If the zone is a {@code ZoneOffset} or it cannot be obtained then
* an exception is thrown unless the section of the formatter is optional.
* If the zone is not an offset, then the zone will be printed using
* the zone ID from {@link ZoneId#getId()}.
*
* During parsing, the text must match a known zone or offset.
* There are two types of zone ID, offset-based, such as '+01:30' and
* region-based, such as 'Europe/London'. These are parsed differently.
* If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser
* expects an offset-based zone and will not match region-based zones.
* The offset ID, such as '+02:30', may be at the start of the parse,
* or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is
* equivalent to using {@link #appendOffset(String, String)} using the
* arguments 'HH:MM:ss' and the no offset string '0'.
* If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot
* match a following offset ID, then {@link ZoneOffset#UTC} is selected.
* In all other cases, the list of known region-based zones is used to
* find the longest available match. If no match is found, and the parse
* starts with 'Z', then {@code ZoneOffset.UTC} is selected.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
*
* For example, the following will parse:
*
* "Europe/London" -- ZoneId.of("Europe/London")
* "Z" -- ZoneOffset.UTC
* "UT" -- ZoneId.of("UT")
* "UTC" -- ZoneId.of("UTC")
* "GMT" -- ZoneId.of("GMT")
* "+01:30" -- ZoneOffset.of("+01:30")
* "UT+01:30" -- ZoneOffset.of("+01:30")
* "UTC+01:30" -- ZoneOffset.of("+01:30")
* "GMT+01:30" -- ZoneOffset.of("+01:30")
*
*
* Note that this method is identical to {@code appendZoneId()} except
* in the mechanism used to obtain the zone.
* Note also that parsing accepts offsets, whereas formatting will never
* produce one.
*
* @return this, for chaining, not null
* @see #appendZoneId()
*/
public DateTimeFormatterBuilder appendZoneRegionId() {
appendInternal(new ZoneIdPrinterParser(QUERY_REGION_ONLY, "ZoneRegionId()"));
return this;
}
/**
* Appends the time-zone ID, such as 'Europe/Paris' or '+02:00', to
* the formatter, using the best available zone ID.
*
* This appends an instruction to format/parse the best available
* zone or offset ID to the builder.
* The zone ID is obtained in a lenient manner that first attempts to
* find a true zone ID, such as that on {@code ZonedDateTime}, and
* then attempts to find an offset, such as that on {@code OffsetDateTime}.
*
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zone()}.
* It will be printed using the result of {@link ZoneId#getId()}.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the text must match a known zone or offset.
* There are two types of zone ID, offset-based, such as '+01:30' and
* region-based, such as 'Europe/London'. These are parsed differently.
* If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser
* expects an offset-based zone and will not match region-based zones.
* The offset ID, such as '+02:30', may be at the start of the parse,
* or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is
* equivalent to using {@link #appendOffset(String, String)} using the
* arguments 'HH:MM:ss' and the no offset string '0'.
* If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot
* match a following offset ID, then {@link ZoneOffset#UTC} is selected.
* In all other cases, the list of known region-based zones is used to
* find the longest available match. If no match is found, and the parse
* starts with 'Z', then {@code ZoneOffset.UTC} is selected.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
*
* For example, the following will parse:
*
* "Europe/London" -- ZoneId.of("Europe/London")
* "Z" -- ZoneOffset.UTC
* "UT" -- ZoneId.of("UT")
* "UTC" -- ZoneId.of("UTC")
* "GMT" -- ZoneId.of("GMT")
* "+01:30" -- ZoneOffset.of("+01:30")
* "UT+01:30" -- ZoneOffset.of("UT+01:30")
* "UTC+01:30" -- ZoneOffset.of("UTC+01:30")
* "GMT+01:30" -- ZoneOffset.of("GMT+01:30")
*
*
* Note that this method is identical to {@code appendZoneId()} except
* in the mechanism used to obtain the zone.
*
* @return this, for chaining, not null
* @see #appendZoneId()
*/
public DateTimeFormatterBuilder appendZoneOrOffsetId() {
appendInternal(new ZoneIdPrinterParser(TemporalQueries.zone(), "ZoneOrOffsetId()"));
return this;
}
/**
* Appends the time-zone name, such as 'British Summer Time', to the formatter.
*
* This appends an instruction to format/parse the textual name of the zone to
* the builder.
*
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* If the zone is a {@code ZoneOffset} it will be printed using the
* result of {@link ZoneOffset#getId()}.
* If the zone is not an offset, the textual name will be looked up
* for the locale set in the {@link DateTimeFormatter}.
* If the temporal object being printed represents an instant, or if it is a
* local date-time that is not in a daylight saving gap or overlap then
* the text will be the summer or winter time text as appropriate.
* If the lookup for text does not find any suitable result, then the
* {@link ZoneId#getId() ID} will be printed.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, either the textual zone name, the zone ID or the offset
* is accepted. Many textual zone names are not unique, such as CST can be
* for both "Central Standard Time" and "China Standard Time". In this
* situation, the zone id will be determined by the region information from
* formatter's {@link DateTimeFormatter#getLocale() locale} and the standard
* zone id for that area, for example, America/New_York for the America Eastern
* zone. The {@link #appendZoneText(TextStyle, Set)} may be used
* to specify a set of preferred {@link ZoneId} in this situation.
*
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendZoneText(TextStyle textStyle) {
appendInternal(new ZoneTextPrinterParser(textStyle, null, false));
return this;
}
/**
* Appends the time-zone name, such as 'British Summer Time', to the formatter.
*
* This appends an instruction to format/parse the textual name of the zone to
* the builder.
*
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* If the zone is a {@code ZoneOffset} it will be printed using the
* result of {@link ZoneOffset#getId()}.
* If the zone is not an offset, the textual name will be looked up
* for the locale set in the {@link DateTimeFormatter}.
* If the temporal object being printed represents an instant, or if it is a
* local date-time that is not in a daylight saving gap or overlap, then the text
* will be the summer or winter time text as appropriate.
* If the lookup for text does not find any suitable result, then the
* {@link ZoneId#getId() ID} will be printed.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, either the textual zone name, the zone ID or the offset
* is accepted. Many textual zone names are not unique, such as CST can be
* for both "Central Standard Time" and "China Standard Time". In this
* situation, the zone id will be determined by the region information from
* formatter's {@link DateTimeFormatter#getLocale() locale} and the standard
* zone id for that area, for example, America/New_York for the America Eastern
* zone. This method also allows a set of preferred {@link ZoneId} to be
* specified for parsing. The matched preferred zone id will be used if the
* textural zone name being parsed is not unique.
*
* If the zone cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
*
* @param textStyle the text style to use, not null
* @param preferredZones the set of preferred zone ids, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendZoneText(TextStyle textStyle,
Set preferredZones) {
Objects.requireNonNull(preferredZones, "preferredZones");
appendInternal(new ZoneTextPrinterParser(textStyle, preferredZones, false));
return this;
}
//----------------------------------------------------------------------
/**
* Appends the generic time-zone name, such as 'Pacific Time', to the formatter.
*
* This appends an instruction to format/parse the generic textual
* name of the zone to the builder. The generic name is the same throughout the whole
* year, ignoring any daylight saving changes. For example, 'Pacific Time' is the
* generic name, whereas 'Pacific Standard Time' and 'Pacific Daylight Time' are the
* specific names, see {@link #appendZoneText(TextStyle)}.
*
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* If the zone is a {@code ZoneOffset} it will be printed using the
* result of {@link ZoneOffset#getId()}.
* If the zone is not an offset, the textual name will be looked up
* for the locale set in the {@link DateTimeFormatter}.
* If the lookup for text does not find any suitable result, then the
* {@link ZoneId#getId() ID} will be printed.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, either the textual zone name, the zone ID or the offset
* is accepted. Many textual zone names are not unique, such as CST can be
* for both "Central Standard Time" and "China Standard Time". In this
* situation, the zone id will be determined by the region information from
* formatter's {@link DateTimeFormatter#getLocale() locale} and the standard
* zone id for that area, for example, America/New_York for the America Eastern zone.
* The {@link #appendGenericZoneText(TextStyle, Set)} may be used
* to specify a set of preferred {@link ZoneId} in this situation.
*
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
* @since 9
*/
public DateTimeFormatterBuilder appendGenericZoneText(TextStyle textStyle) {
appendInternal(new ZoneTextPrinterParser(textStyle, null, true));
return this;
}
/**
* Appends the generic time-zone name, such as 'Pacific Time', to the formatter.
*
* This appends an instruction to format/parse the generic textual
* name of the zone to the builder. The generic name is the same throughout the whole
* year, ignoring any daylight saving changes. For example, 'Pacific Time' is the
* generic name, whereas 'Pacific Standard Time' and 'Pacific Daylight Time' are the
* specific names, see {@link #appendZoneText(TextStyle)}.
*
* This method also allows a set of preferred {@link ZoneId} to be
* specified for parsing. The matched preferred zone id will be used if the
* textural zone name being parsed is not unique.
*
* See {@link #appendGenericZoneText(TextStyle)} for details about
* formatting and parsing.
*
* @param textStyle the text style to use, not null
* @param preferredZones the set of preferred zone ids, not null
* @return this, for chaining, not null
* @since 9
*/
public DateTimeFormatterBuilder appendGenericZoneText(TextStyle textStyle,
Set preferredZones) {
appendInternal(new ZoneTextPrinterParser(textStyle, preferredZones, true));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the chronology ID, such as 'ISO' or 'ThaiBuddhist', to the formatter.
*
* This appends an instruction to format/parse the chronology ID to the builder.
*
* During formatting, the chronology is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#chronology()}.
* It will be printed using the result of {@link Chronology#getId()}.
* If the chronology cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the chronology is parsed and must match one of the chronologies
* in {@link Chronology#getAvailableChronologies()}.
* If the chronology cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendChronologyId() {
appendInternal(new ChronoPrinterParser(null));
return this;
}
/**
* Appends the chronology name to the formatter.
*
* The calendar system name will be output during a format.
* If the chronology cannot be obtained then an exception will be thrown.
*
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendChronologyText(TextStyle textStyle) {
Objects.requireNonNull(textStyle, "textStyle");
appendInternal(new ChronoPrinterParser(textStyle));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a localized date-time pattern to the formatter.
*
* This appends a localized section to the builder, suitable for outputting
* a date, time or date-time combination. The format of the localized
* section is lazily looked up based on four items:
*
* - the {@code dateStyle} specified to this method
*
- the {@code timeStyle} specified to this method
*
- the {@code Locale} of the {@code DateTimeFormatter}
*
- the {@code Chronology}, selecting the best available
*
* During formatting, the chronology is obtained from the temporal object
* being formatted, which may have been overridden by
* {@link DateTimeFormatter#withChronology(Chronology)}.
* The {@code FULL} and {@code LONG} styles typically require a time-zone.
* When formatting using these styles, a {@code ZoneId} must be available,
* either by using {@code ZonedDateTime} or {@link DateTimeFormatter#withZone}.
*
* During parsing, if a chronology has already been parsed, then it is used.
* Otherwise the default from {@code DateTimeFormatter.withChronology(Chronology)}
* is used, with {@code IsoChronology} as the fallback.
*
* Note that this method provides similar functionality to methods on
* {@code DateFormat} such as {@link java.text.DateFormat#getDateTimeInstance(int, int)}.
*
* @param dateStyle the date style to use, null means no date required
* @param timeStyle the time style to use, null means no time required
* @return this, for chaining, not null
* @throws IllegalArgumentException if both the date and time styles are null
*/
public DateTimeFormatterBuilder appendLocalized(FormatStyle dateStyle, FormatStyle timeStyle) {
if (dateStyle == null && timeStyle == null) {
throw new IllegalArgumentException("Either the date or time style must be non-null");
}
appendInternal(new LocalizedPrinterParser(dateStyle, timeStyle));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a character literal to the formatter.
*
* This character will be output during a format.
*
* @param literal the literal to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendLiteral(char literal) {
appendInternal(new CharLiteralPrinterParser(literal));
return this;
}
/**
* Appends a string literal to the formatter.
*
* This string will be output during a format.
*
* If the literal is empty, nothing is added to the formatter.
*
* @param literal the literal to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendLiteral(String literal) {
Objects.requireNonNull(literal, "literal");
if (!literal.isEmpty()) {
if (literal.length() == 1) {
appendInternal(new CharLiteralPrinterParser(literal.charAt(0)));
} else {
appendInternal(new StringLiteralPrinterParser(literal));
}
}
return this;
}
/**
* Appends the day period text to the formatter.
*
* This appends an instruction to format/parse the textual name of the day period
* to the builder. Day periods are defined in LDML's
* "day periods"
* element.
*
* During formatting, the day period is obtained from {@code HOUR_OF_DAY}, and
* optionally {@code MINUTE_OF_HOUR} if exist. It will be mapped to a day period
* type defined in LDML, such as "morning1" and then it will be translated into
* text. Mapping to a day period type and its translation both depend on the
* locale in the formatter.
*
* During parsing, the text will be parsed into a day period type first. Then
* the parsed day period is combined with other fields to make a {@code LocalTime} in
* the resolving phase. If the {@code HOUR_OF_AMPM} field is present, it is combined
* with the day period to make {@code HOUR_OF_DAY} taking into account any
* {@code MINUTE_OF_HOUR} value. If {@code HOUR_OF_DAY} is present, it is validated
* against the day period taking into account any {@code MINUTE_OF_HOUR} value. If a
* day period is present without {@code HOUR_OF_DAY}, {@code MINUTE_OF_HOUR},
* {@code SECOND_OF_MINUTE} and {@code NANO_OF_SECOND} then the midpoint of the
* day period is set as the time in {@code SMART} and {@code LENIENT} mode.
* For example, if the parsed day period type is "night1" and the period defined
* for it in the formatter locale is from 21:00 to 06:00, then it results in
* the {@code LocalTime} of 01:30.
* If the resolved time conflicts with the day period, {@code DateTimeException} is
* thrown in {@code STRICT} and {@code SMART} mode. In {@code LENIENT} mode, no
* exception is thrown and the parsed day period is ignored.
*
* The "midnight" type allows both "00:00" as the start-of-day and "24:00" as the
* end-of-day, as long as they are valid with the resolved hour field.
*
* @param style the text style to use, not null
* @return this, for chaining, not null
* @since 16
*/
public DateTimeFormatterBuilder appendDayPeriodText(TextStyle style) {
Objects.requireNonNull(style, "style");
switch (style) {
// Stand-alone is not applicable. Convert to standard text style
case FULL_STANDALONE -> style = TextStyle.FULL;
case SHORT_STANDALONE -> style = TextStyle.SHORT;
case NARROW_STANDALONE -> style = TextStyle.NARROW;
}
appendInternal(new DayPeriodPrinterParser(style));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends all the elements of a formatter to the builder.
*
* This method has the same effect as appending each of the constituent
* parts of the formatter directly to this builder.
*
* @param formatter the formatter to add, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder append(DateTimeFormatter formatter) {
Objects.requireNonNull(formatter, "formatter");
appendInternal(formatter.toPrinterParser(false));
return this;
}
/**
* Appends a formatter to the builder which will optionally format/parse.
*
* This method has the same effect as appending each of the constituent
* parts directly to this builder surrounded by an {@link #optionalStart()} and
* {@link #optionalEnd()}.
*
* The formatter will format if data is available for all the fields contained within it.
* The formatter will parse if the string matches, otherwise no error is returned.
*
* @param formatter the formatter to add, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendOptional(DateTimeFormatter formatter) {
Objects.requireNonNull(formatter, "formatter");
appendInternal(formatter.toPrinterParser(true));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the elements defined by the specified pattern to the builder.
*
* All letters 'A' to 'Z' and 'a' to 'z' are reserved as pattern letters.
* The characters '#', '{' and '}' are reserved for future use.
* The characters '[' and ']' indicate optional patterns.
* The following pattern letters are defined:
*
* Symbol Meaning Presentation Examples
* ------ ------- ------------ -------
* G era text AD; Anno Domini; A
* u year year 2004; 04
* y year-of-era year 2004; 04
* D day-of-year number 189
* M/L month-of-year number/text 7; 07; Jul; July; J
* d day-of-month number 10
* g modified-julian-day number 2451334
*
* Q/q quarter-of-year number/text 3; 03; Q3; 3rd quarter
* Y week-based-year year 1996; 96
* w week-of-week-based-year number 27
* W week-of-month number 4
* E day-of-week text Tue; Tuesday; T
* e/c localized day-of-week number/text 2; 02; Tue; Tuesday; T
* F day-of-week-in-month number 3
*
* a am-pm-of-day text PM
* B period-of-day text in the morning
* h clock-hour-of-am-pm (1-12) number 12
* K hour-of-am-pm (0-11) number 0
* k clock-hour-of-day (1-24) number 24
*
* H hour-of-day (0-23) number 0
* m minute-of-hour number 30
* s second-of-minute number 55
* S fraction-of-second fraction 978
* A milli-of-day number 1234
* n nano-of-second number 987654321
* N nano-of-day number 1234000000
*
* V time-zone ID zone-id America/Los_Angeles; Z; -08:30
* v generic time-zone name zone-name PT, Pacific Time
* z time-zone name zone-name Pacific Standard Time; PST
* O localized zone-offset offset-O GMT+8; GMT+08:00; UTC-08:00;
* X zone-offset 'Z' for zero offset-X Z; -08; -0830; -08:30; -083015; -08:30:15
* x zone-offset offset-x +0000; -08; -0830; -08:30; -083015; -08:30:15
* Z zone-offset offset-Z +0000; -0800; -08:00
*
* p pad next pad modifier 1
*
* ' escape for text delimiter
* '' single quote literal '
* [ optional section start
* ] optional section end
* # reserved for future use
* { reserved for future use
* } reserved for future use
*
*
* The count of pattern letters determine the format.
* See DateTimeFormatter for a user-focused description of the patterns.
* The following tables define how the pattern letters map to the builder.
*
* Date fields: Pattern letters to output a date.
*
* Pattern Count Equivalent builder methods
* ------- ----- --------------------------
* G 1 appendText(ChronoField.ERA, TextStyle.SHORT)
* GG 2 appendText(ChronoField.ERA, TextStyle.SHORT)
* GGG 3 appendText(ChronoField.ERA, TextStyle.SHORT)
* GGGG 4 appendText(ChronoField.ERA, TextStyle.FULL)
* GGGGG 5 appendText(ChronoField.ERA, TextStyle.NARROW)
*
* u 1 appendValue(ChronoField.YEAR, 1, 19, SignStyle.NORMAL)
* uu 2 appendValueReduced(ChronoField.YEAR, 2, 2, 2000)
* uuu 3 appendValue(ChronoField.YEAR, 3, 19, SignStyle.NORMAL)
* u..u 4..n appendValue(ChronoField.YEAR, n, 19, SignStyle.EXCEEDS_PAD)
* y 1 appendValue(ChronoField.YEAR_OF_ERA, 1, 19, SignStyle.NORMAL)
* yy 2 appendValueReduced(ChronoField.YEAR_OF_ERA, 2, 2, 2000)
* yyy 3 appendValue(ChronoField.YEAR_OF_ERA, 3, 19, SignStyle.NORMAL)
* y..y 4..n appendValue(ChronoField.YEAR_OF_ERA, n, 19, SignStyle.EXCEEDS_PAD)
* Y 1 append special localized WeekFields element for numeric week-based-year
* YY 2 append special localized WeekFields element for reduced numeric week-based-year 2 digits
* YYY 3 append special localized WeekFields element for numeric week-based-year (3, 19, SignStyle.NORMAL)
* Y..Y 4..n append special localized WeekFields element for numeric week-based-year (n, 19, SignStyle.EXCEEDS_PAD)
*
* Q 1 appendValue(IsoFields.QUARTER_OF_YEAR)
* QQ 2 appendValue(IsoFields.QUARTER_OF_YEAR, 2)
* QQQ 3 appendText(IsoFields.QUARTER_OF_YEAR, TextStyle.SHORT)
* QQQQ 4 appendText(IsoFields.QUARTER_OF_YEAR, TextStyle.FULL)
* QQQQQ 5 appendText(IsoFields.QUARTER_OF_YEAR, TextStyle.NARROW)
* q 1 appendValue(IsoFields.QUARTER_OF_YEAR)
* qq 2 appendValue(IsoFields.QUARTER_OF_YEAR, 2)
* qqq 3 appendText(IsoFields.QUARTER_OF_YEAR, TextStyle.SHORT_STANDALONE)
* qqqq 4 appendText(IsoFields.QUARTER_OF_YEAR, TextStyle.FULL_STANDALONE)
* qqqqq 5 appendText(IsoFields.QUARTER_OF_YEAR, TextStyle.NARROW_STANDALONE)
*
* M 1 appendValue(ChronoField.MONTH_OF_YEAR)
* MM 2 appendValue(ChronoField.MONTH_OF_YEAR, 2)
* MMM 3 appendText(ChronoField.MONTH_OF_YEAR, TextStyle.SHORT)
* MMMM 4 appendText(ChronoField.MONTH_OF_YEAR, TextStyle.FULL)
* MMMMM 5 appendText(ChronoField.MONTH_OF_YEAR, TextStyle.NARROW)
* L 1 appendValue(ChronoField.MONTH_OF_YEAR)
* LL 2 appendValue(ChronoField.MONTH_OF_YEAR, 2)
* LLL 3 appendText(ChronoField.MONTH_OF_YEAR, TextStyle.SHORT_STANDALONE)
* LLLL 4 appendText(ChronoField.MONTH_OF_YEAR, TextStyle.FULL_STANDALONE)
* LLLLL 5 appendText(ChronoField.MONTH_OF_YEAR, TextStyle.NARROW_STANDALONE)
*
* w 1 append special localized WeekFields element for numeric week-of-year
* ww 2 append special localized WeekFields element for numeric week-of-year, zero-padded
* W 1 append special localized WeekFields element for numeric week-of-month
* d 1 appendValue(ChronoField.DAY_OF_MONTH)
* dd 2 appendValue(ChronoField.DAY_OF_MONTH, 2)
* D 1 appendValue(ChronoField.DAY_OF_YEAR)
* DD 2 appendValue(ChronoField.DAY_OF_YEAR, 2, 3, SignStyle.NOT_NEGATIVE)
* DDD 3 appendValue(ChronoField.DAY_OF_YEAR, 3)
* F 1 appendValue(ChronoField.ALIGNED_DAY_OF_WEEK_IN_MONTH)
* g..g 1..n appendValue(JulianFields.MODIFIED_JULIAN_DAY, n, 19, SignStyle.NORMAL)
* E 1 appendText(ChronoField.DAY_OF_WEEK, TextStyle.SHORT)
* EE 2 appendText(ChronoField.DAY_OF_WEEK, TextStyle.SHORT)
* EEE 3 appendText(ChronoField.DAY_OF_WEEK, TextStyle.SHORT)
* EEEE 4 appendText(ChronoField.DAY_OF_WEEK, TextStyle.FULL)
* EEEEE 5 appendText(ChronoField.DAY_OF_WEEK, TextStyle.NARROW)
* e 1 append special localized WeekFields element for numeric day-of-week
* ee 2 append special localized WeekFields element for numeric day-of-week, zero-padded
* eee 3 appendText(ChronoField.DAY_OF_WEEK, TextStyle.SHORT)
* eeee 4 appendText(ChronoField.DAY_OF_WEEK, TextStyle.FULL)
* eeeee 5 appendText(ChronoField.DAY_OF_WEEK, TextStyle.NARROW)
* c 1 append special localized WeekFields element for numeric day-of-week
* ccc 3 appendText(ChronoField.DAY_OF_WEEK, TextStyle.SHORT_STANDALONE)
* cccc 4 appendText(ChronoField.DAY_OF_WEEK, TextStyle.FULL_STANDALONE)
* ccccc 5 appendText(ChronoField.DAY_OF_WEEK, TextStyle.NARROW_STANDALONE)
*
*
* Time fields: Pattern letters to output a time.
*
* Pattern Count Equivalent builder methods
* ------- ----- --------------------------
* a 1 appendText(ChronoField.AMPM_OF_DAY, TextStyle.SHORT)
* h 1 appendValue(ChronoField.CLOCK_HOUR_OF_AMPM)
* hh 2 appendValue(ChronoField.CLOCK_HOUR_OF_AMPM, 2)
* H 1 appendValue(ChronoField.HOUR_OF_DAY)
* HH 2 appendValue(ChronoField.HOUR_OF_DAY, 2)
* k 1 appendValue(ChronoField.CLOCK_HOUR_OF_DAY)
* kk 2 appendValue(ChronoField.CLOCK_HOUR_OF_DAY, 2)
* K 1 appendValue(ChronoField.HOUR_OF_AMPM)
* KK 2 appendValue(ChronoField.HOUR_OF_AMPM, 2)
* m 1 appendValue(ChronoField.MINUTE_OF_HOUR)
* mm 2 appendValue(ChronoField.MINUTE_OF_HOUR, 2)
* s 1 appendValue(ChronoField.SECOND_OF_MINUTE)
* ss 2 appendValue(ChronoField.SECOND_OF_MINUTE, 2)
*
* S..S 1..n appendFraction(ChronoField.NANO_OF_SECOND, n, n, false)
* A..A 1..n appendValue(ChronoField.MILLI_OF_DAY, n, 19, SignStyle.NOT_NEGATIVE)
* n..n 1..n appendValue(ChronoField.NANO_OF_SECOND, n, 19, SignStyle.NOT_NEGATIVE)
* N..N 1..n appendValue(ChronoField.NANO_OF_DAY, n, 19, SignStyle.NOT_NEGATIVE)
*
*
* Day periods: Pattern letters to output a day period.
*
* Pattern Count Equivalent builder methods
* ------- ----- --------------------------
* B 1 appendDayPeriodText(TextStyle.SHORT)
* BBBB 4 appendDayPeriodText(TextStyle.FULL)
* BBBBB 5 appendDayPeriodText(TextStyle.NARROW)
*
*
* Zone ID: Pattern letters to output {@code ZoneId}.
*
* Pattern Count Equivalent builder methods
* ------- ----- --------------------------
* VV 2 appendZoneId()
* v 1 appendGenericZoneText(TextStyle.SHORT)
* vvvv 4 appendGenericZoneText(TextStyle.FULL)
* z 1 appendZoneText(TextStyle.SHORT)
* zz 2 appendZoneText(TextStyle.SHORT)
* zzz 3 appendZoneText(TextStyle.SHORT)
* zzzz 4 appendZoneText(TextStyle.FULL)
*
*
* Zone offset: Pattern letters to output {@code ZoneOffset}.
*
* Pattern Count Equivalent builder methods
* ------- ----- --------------------------
* O 1 appendLocalizedOffset(TextStyle.SHORT)
* OOOO 4 appendLocalizedOffset(TextStyle.FULL)
* X 1 appendOffset("+HHmm","Z")
* XX 2 appendOffset("+HHMM","Z")
* XXX 3 appendOffset("+HH:MM","Z")
* XXXX 4 appendOffset("+HHMMss","Z")
* XXXXX 5 appendOffset("+HH:MM:ss","Z")
* x 1 appendOffset("+HHmm","+00")
* xx 2 appendOffset("+HHMM","+0000")
* xxx 3 appendOffset("+HH:MM","+00:00")
* xxxx 4 appendOffset("+HHMMss","+0000")
* xxxxx 5 appendOffset("+HH:MM:ss","+00:00")
* Z 1 appendOffset("+HHMM","+0000")
* ZZ 2 appendOffset("+HHMM","+0000")
* ZZZ 3 appendOffset("+HHMM","+0000")
* ZZZZ 4 appendLocalizedOffset(TextStyle.FULL)
* ZZZZZ 5 appendOffset("+HH:MM:ss","Z")
*
*
* Modifiers: Pattern letters that modify the rest of the pattern:
*
* Pattern Count Equivalent builder methods
* ------- ----- --------------------------
* [ 1 optionalStart()
* ] 1 optionalEnd()
* p..p 1..n padNext(n)
*
*
* Any sequence of letters not specified above, unrecognized letter or
* reserved character will throw an exception.
* Future versions may add to the set of patterns.
* It is recommended to use single quotes around all characters that you want
* to output directly to ensure that future changes do not break your application.
*
* Note that the pattern string is similar, but not identical, to
* {@link java.text.SimpleDateFormat SimpleDateFormat}.
* The pattern string is also similar, but not identical, to that defined by the
* Unicode Common Locale Data Repository (CLDR/LDML).
* Pattern letters 'X' and 'u' are aligned with Unicode CLDR/LDML.
* By contrast, {@code SimpleDateFormat} uses 'u' for the numeric day of week.
* Pattern letters 'y' and 'Y' parse years of two digits and more than 4 digits differently.
* Pattern letters 'n', 'A', 'N', and 'p' are added.
* Number types will reject large numbers.
*
* @param pattern the pattern to add, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the pattern is invalid
*/
public DateTimeFormatterBuilder appendPattern(String pattern) {
Objects.requireNonNull(pattern, "pattern");
parsePattern(pattern);
return this;
}
private void parsePattern(String pattern) {
for (int pos = 0; pos < pattern.length(); pos++) {
char cur = pattern.charAt(pos);
if ((cur >= 'A' && cur <= 'Z') || (cur >= 'a' && cur <= 'z')) {
int start = pos++;
for ( ; pos < pattern.length() && pattern.charAt(pos) == cur; pos++); // short loop
int count = pos - start;
// padding
if (cur == 'p') {
int pad = 0;
if (pos < pattern.length()) {
cur = pattern.charAt(pos);
if ((cur >= 'A' && cur <= 'Z') || (cur >= 'a' && cur <= 'z')) {
pad = count;
start = pos++;
for ( ; pos < pattern.length() && pattern.charAt(pos) == cur; pos++); // short loop
count = pos - start;
}
}
if (pad == 0) {
throw new IllegalArgumentException(
"Pad letter 'p' must be followed by valid pad pattern: " + pattern);
}
padNext(pad); // pad and continue parsing
}
// main rules
TemporalField field = FIELD_MAP.get(cur);
if (field != null) {
parseField(cur, count, field);
} else if (cur == 'z') {
if (count > 4) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
} else if (count == 4) {
appendZoneText(TextStyle.FULL);
} else {
appendZoneText(TextStyle.SHORT);
}
} else if (cur == 'V') {
if (count != 2) {
throw new IllegalArgumentException("Pattern letter count must be 2: " + cur);
}
appendZoneId();
} else if (cur == 'v') {
if (count == 1) {
appendGenericZoneText(TextStyle.SHORT);
} else if (count == 4) {
appendGenericZoneText(TextStyle.FULL);
} else {
throw new IllegalArgumentException("Wrong number of pattern letters: " + cur);
}
} else if (cur == 'Z') {
if (count < 4) {
appendOffset("+HHMM", "+0000");
} else if (count == 4) {
appendLocalizedOffset(TextStyle.FULL);
} else if (count == 5) {
appendOffset("+HH:MM:ss","Z");
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
} else if (cur == 'O') {
if (count == 1) {
appendLocalizedOffset(TextStyle.SHORT);
} else if (count == 4) {
appendLocalizedOffset(TextStyle.FULL);
} else {
throw new IllegalArgumentException("Pattern letter count must be 1 or 4: " + cur);
}
} else if (cur == 'X') {
if (count > 5) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendOffset(OffsetIdPrinterParser.PATTERNS[count + (count == 1 ? 0 : 1)], "Z");
} else if (cur == 'x') {
if (count > 5) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
String zero = (count == 1 ? "+00" : (count % 2 == 0 ? "+0000" : "+00:00"));
appendOffset(OffsetIdPrinterParser.PATTERNS[count + (count == 1 ? 0 : 1)], zero);
} else if (cur == 'W') {
// Fields defined by Locale
if (count > 1) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendValue(new WeekBasedFieldPrinterParser(cur, count, count, count));
} else if (cur == 'w') {
// Fields defined by Locale
if (count > 2) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendValue(new WeekBasedFieldPrinterParser(cur, count, count, 2));
} else if (cur == 'Y') {
// Fields defined by Locale
if (count == 2) {
appendValue(new WeekBasedFieldPrinterParser(cur, count, count, 2));
} else {
appendValue(new WeekBasedFieldPrinterParser(cur, count, count, 19));
}
} else if (cur == 'B') {
switch (count) {
case 1 -> appendDayPeriodText(TextStyle.SHORT);
case 4 -> appendDayPeriodText(TextStyle.FULL);
case 5 -> appendDayPeriodText(TextStyle.NARROW);
default -> throw new IllegalArgumentException("Wrong number of pattern letters: " + cur);
}
} else {
throw new IllegalArgumentException("Unknown pattern letter: " + cur);
}
pos--;
} else if (cur == '\'') {
// parse literals
int start = pos++;
for ( ; pos < pattern.length(); pos++) {
if (pattern.charAt(pos) == '\'') {
if (pos + 1 < pattern.length() && pattern.charAt(pos + 1) == '\'') {
pos++;
} else {
break; // end of literal
}
}
}
if (pos >= pattern.length()) {
throw new IllegalArgumentException("Pattern ends with an incomplete string literal: " + pattern);
}
String str = pattern.substring(start + 1, pos);
if (str.isEmpty()) {
appendLiteral('\'');
} else {
appendLiteral(str.replace("''", "'"));
}
} else if (cur == '[') {
optionalStart();
} else if (cur == ']') {
if (active.parent == null) {
throw new IllegalArgumentException("Pattern invalid as it contains ] without previous [");
}
optionalEnd();
} else if (cur == '{' || cur == '}' || cur == '#') {
throw new IllegalArgumentException("Pattern includes reserved character: '" + cur + "'");
} else {
appendLiteral(cur);
}
}
}
@SuppressWarnings("fallthrough")
private void parseField(char cur, int count, TemporalField field) {
boolean standalone = false;
switch (cur) {
case 'u':
case 'y':
if (count == 2) {
appendValueReduced(field, 2, 2, ReducedPrinterParser.BASE_DATE);
} else if (count < 4) {
appendValue(field, count, 19, SignStyle.NORMAL);
} else {
appendValue(field, count, 19, SignStyle.EXCEEDS_PAD);
}
break;
case 'c':
if (count == 1) {
appendValue(new WeekBasedFieldPrinterParser(cur, count, count, count));
break;
} else if (count == 2) {
throw new IllegalArgumentException("Invalid pattern \"cc\"");
}
/*fallthrough*/
case 'L':
case 'q':
standalone = true;
/*fallthrough*/
case 'M':
case 'Q':
case 'E':
case 'e':
switch (count) {
case 1:
case 2:
if (cur == 'e') {
appendValue(new WeekBasedFieldPrinterParser(cur, count, count, count));
} else if (cur == 'E') {
appendText(field, TextStyle.SHORT);
} else {
if (count == 1) {
appendValue(field);
} else {
appendValue(field, 2);
}
}
break;
case 3:
appendText(field, standalone ? TextStyle.SHORT_STANDALONE : TextStyle.SHORT);
break;
case 4:
appendText(field, standalone ? TextStyle.FULL_STANDALONE : TextStyle.FULL);
break;
case 5:
appendText(field, standalone ? TextStyle.NARROW_STANDALONE : TextStyle.NARROW);
break;
default:
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'a':
if (count == 1) {
appendText(field, TextStyle.SHORT);
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'G':
switch (count) {
case 1, 2, 3 -> appendText(field, TextStyle.SHORT);
case 4 -> appendText(field, TextStyle.FULL);
case 5 -> appendText(field, TextStyle.NARROW);
default -> throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'S':
appendFraction(NANO_OF_SECOND, count, count, false);
break;
case 'F':
if (count == 1) {
appendValue(field);
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'd':
case 'h':
case 'H':
case 'k':
case 'K':
case 'm':
case 's':
if (count == 1) {
appendValue(field);
} else if (count == 2) {
appendValue(field, count);
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'D':
if (count == 1) {
appendValue(field);
} else if (count == 2 || count == 3) {
appendValue(field, count, 3, SignStyle.NOT_NEGATIVE);
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'g':
appendValue(field, count, 19, SignStyle.NORMAL);
break;
case 'A':
case 'n':
case 'N':
appendValue(field, count, 19, SignStyle.NOT_NEGATIVE);
break;
default:
if (count == 1) {
appendValue(field);
} else {
appendValue(field, count);
}
break;
}
}
/** Map of letters to fields. */
private static final Map FIELD_MAP = new HashMap<>();
static {
// SDF = SimpleDateFormat
FIELD_MAP.put('G', ChronoField.ERA); // SDF, LDML (different to both for 1/2 chars)
FIELD_MAP.put('y', ChronoField.YEAR_OF_ERA); // SDF, LDML
FIELD_MAP.put('u', ChronoField.YEAR); // LDML (different in SDF)
FIELD_MAP.put('Q', IsoFields.QUARTER_OF_YEAR); // LDML (removed quarter from 310)
FIELD_MAP.put('q', IsoFields.QUARTER_OF_YEAR); // LDML (stand-alone)
FIELD_MAP.put('M', ChronoField.MONTH_OF_YEAR); // SDF, LDML
FIELD_MAP.put('L', ChronoField.MONTH_OF_YEAR); // SDF, LDML (stand-alone)
FIELD_MAP.put('D', ChronoField.DAY_OF_YEAR); // SDF, LDML
FIELD_MAP.put('d', ChronoField.DAY_OF_MONTH); // SDF, LDML
FIELD_MAP.put('F', ChronoField.ALIGNED_DAY_OF_WEEK_IN_MONTH); // SDF, LDML
FIELD_MAP.put('E', ChronoField.DAY_OF_WEEK); // SDF, LDML (different to both for 1/2 chars)
FIELD_MAP.put('c', ChronoField.DAY_OF_WEEK); // LDML (stand-alone)
FIELD_MAP.put('e', ChronoField.DAY_OF_WEEK); // LDML (needs localized week number)
FIELD_MAP.put('a', ChronoField.AMPM_OF_DAY); // SDF, LDML
FIELD_MAP.put('H', ChronoField.HOUR_OF_DAY); // SDF, LDML
FIELD_MAP.put('k', ChronoField.CLOCK_HOUR_OF_DAY); // SDF, LDML
FIELD_MAP.put('K', ChronoField.HOUR_OF_AMPM); // SDF, LDML
FIELD_MAP.put('h', ChronoField.CLOCK_HOUR_OF_AMPM); // SDF, LDML
FIELD_MAP.put('m', ChronoField.MINUTE_OF_HOUR); // SDF, LDML
FIELD_MAP.put('s', ChronoField.SECOND_OF_MINUTE); // SDF, LDML
FIELD_MAP.put('S', ChronoField.NANO_OF_SECOND); // LDML (SDF uses milli-of-second number)
FIELD_MAP.put('A', ChronoField.MILLI_OF_DAY); // LDML
FIELD_MAP.put('n', ChronoField.NANO_OF_SECOND); // 310 (proposed for LDML)
FIELD_MAP.put('N', ChronoField.NANO_OF_DAY); // 310 (proposed for LDML)
FIELD_MAP.put('g', JulianFields.MODIFIED_JULIAN_DAY);
// 310 - z - time-zone names, matches LDML and SimpleDateFormat 1 to 4
// 310 - Z - matches SimpleDateFormat and LDML
// 310 - V - time-zone id, matches LDML
// 310 - v - general timezone names, not matching exactly with LDML because LDML specify to fall back
// to 'VVVV' if general-nonlocation unavailable but here it's not falling back because of lack of data
// 310 - p - prefix for padding
// 310 - X - matches LDML, almost matches SDF for 1, exact match 2&3, extended 4&5
// 310 - x - matches LDML
// 310 - w, W, and Y are localized forms matching LDML
// LDML - B - day periods
// LDML - U - cycle year name, not supported by 310 yet
// LDML - l - deprecated
// LDML - j - not relevant
}
//-----------------------------------------------------------------------
/**
* Causes the next added printer/parser to pad to a fixed width using a space.
*
* This padding will pad to a fixed width using spaces.
*
* During formatting, the decorated element will be output and then padded
* to the specified width. An exception will be thrown during formatting if
* the pad width is exceeded.
*
* During parsing, the padding and decorated element are parsed.
* If parsing is lenient, then the pad width is treated as a maximum.
* The padding is parsed greedily. Thus, if the decorated element starts with
* the pad character, it will not be parsed.
*
* @param padWidth the pad width, 1 or greater
* @return this, for chaining, not null
* @throws IllegalArgumentException if pad width is too small
*/
public DateTimeFormatterBuilder padNext(int padWidth) {
return padNext(padWidth, ' ');
}
/**
* Causes the next added printer/parser to pad to a fixed width.
*
* This padding is intended for padding other than zero-padding.
* Zero-padding should be achieved using the appendValue methods.
*
* During formatting, the decorated element will be output and then padded
* to the specified width. An exception will be thrown during formatting if
* the pad width is exceeded.
*
* During parsing, the padding and decorated element are parsed.
* If parsing is lenient, then the pad width is treated as a maximum.
* If parsing is case insensitive, then the pad character is matched ignoring case.
* The padding is parsed greedily. Thus, if the decorated element starts with
* the pad character, it will not be parsed.
*
* @param padWidth the pad width, 1 or greater
* @param padChar the pad character
* @return this, for chaining, not null
* @throws IllegalArgumentException if pad width is too small
*/
public DateTimeFormatterBuilder padNext(int padWidth, char padChar) {
if (padWidth < 1) {
throw new IllegalArgumentException("The pad width must be at least one but was " + padWidth);
}
active.padNextWidth = padWidth;
active.padNextChar = padChar;
active.valueParserIndex = -1;
return this;
}
//-----------------------------------------------------------------------
/**
* Mark the start of an optional section.
*
* The output of formatting can include optional sections, which may be nested.
* An optional section is started by calling this method and ended by calling
* {@link #optionalEnd()} or by ending the build process.
*
* All elements in the optional section are treated as optional.
* During formatting, the section is only output if data is available in the
* {@code TemporalAccessor} for all the elements in the section.
* During parsing, the whole section may be missing from the parsed string.
*
* For example, consider a builder setup as
* {@code builder.appendValue(HOUR_OF_DAY,2).optionalStart().appendValue(MINUTE_OF_HOUR,2)}.
* The optional section ends automatically at the end of the builder.
* During formatting, the minute will only be output if its value can be obtained from the date-time.
* During parsing, the input will be successfully parsed whether the minute is present or not.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder optionalStart() {
active.valueParserIndex = -1;
active = new DateTimeFormatterBuilder(active, true);
return this;
}
/**
* Ends an optional section.
*
* The output of formatting can include optional sections, which may be nested.
* An optional section is started by calling {@link #optionalStart()} and ended
* using this method (or at the end of the builder).
*
* Calling this method without having previously called {@code optionalStart}
* will throw an exception.
* Calling this method immediately after calling {@code optionalStart} has no effect
* on the formatter other than ending the (empty) optional section.
*
* All elements in the optional section are treated as optional.
* During formatting, the section is only output if data is available in the
* {@code TemporalAccessor} for all the elements in the section.
* During parsing, the whole section may be missing from the parsed string.
*
* For example, consider a builder setup as
* {@code builder.appendValue(HOUR_OF_DAY,2).optionalStart().appendValue(MINUTE_OF_HOUR,2).optionalEnd()}.
* During formatting, the minute will only be output if its value can be obtained from the date-time.
* During parsing, the input will be successfully parsed whether the minute is present or not.
*
* @return this, for chaining, not null
* @throws IllegalStateException if there was no previous call to {@code optionalStart}
*/
public DateTimeFormatterBuilder optionalEnd() {
if (active.parent == null) {
throw new IllegalStateException("Cannot call optionalEnd() as there was no previous call to optionalStart()");
}
if (active.printerParsers.size() > 0) {
CompositePrinterParser cpp = new CompositePrinterParser(active.printerParsers, active.optional);
active = active.parent;
appendInternal(cpp);
} else {
active = active.parent;
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a printer and/or parser to the internal list handling padding.
*
* @param pp the printer-parser to add, not null
* @return the index into the active parsers list
*/
private int appendInternal(DateTimePrinterParser pp) {
Objects.requireNonNull(pp, "pp");
if (active.padNextWidth > 0) {
pp = new PadPrinterParserDecorator(pp, active.padNextWidth, active.padNextChar);
active.padNextWidth = 0;
active.padNextChar = 0;
}
active.printerParsers.add(pp);
active.valueParserIndex = -1;
return active.printerParsers.size() - 1;
}
//-----------------------------------------------------------------------
/**
* Completes this builder by creating the {@code DateTimeFormatter}
* using the default locale.
*
* This will create a formatter with the {@linkplain Locale#getDefault(Locale.Category) default FORMAT locale}.
* Numbers will be printed and parsed using the standard DecimalStyle.
* The resolver style will be {@link ResolverStyle#SMART SMART}.
*
* Calling this method will end any open optional sections by repeatedly
* calling {@link #optionalEnd()} before creating the formatter.
*
* This builder can still be used after creating the formatter if desired,
* although the state may have been changed by calls to {@code optionalEnd}.
*
* @return the created formatter, not null
*/
public DateTimeFormatter toFormatter() {
return toFormatter(Locale.getDefault(Locale.Category.FORMAT));
}
/**
* Completes this builder by creating the {@code DateTimeFormatter}
* using the specified locale.
*
* This will create a formatter with the specified locale.
* Numbers will be printed and parsed using the standard DecimalStyle.
* The resolver style will be {@link ResolverStyle#SMART SMART}.
*
* Calling this method will end any open optional sections by repeatedly
* calling {@link #optionalEnd()} before creating the formatter.
*
* This builder can still be used after creating the formatter if desired,
* although the state may have been changed by calls to {@code optionalEnd}.
*
* @param locale the locale to use for formatting, not null
* @return the created formatter, not null
*/
public DateTimeFormatter toFormatter(Locale locale) {
return toFormatter(locale, ResolverStyle.SMART, null);
}
/**
* Completes this builder by creating the formatter.
* This uses the default locale.
*
* @param resolverStyle the resolver style to use, not null
* @return the created formatter, not null
*/
DateTimeFormatter toFormatter(ResolverStyle resolverStyle, Chronology chrono) {
return toFormatter(Locale.getDefault(Locale.Category.FORMAT), resolverStyle, chrono);
}
/**
* Completes this builder by creating the formatter.
*
* @param locale the locale to use for formatting, not null
* @param chrono the chronology to use, may be null
* @return the created formatter, not null
*/
private DateTimeFormatter toFormatter(Locale locale, ResolverStyle resolverStyle, Chronology chrono) {
Objects.requireNonNull(locale, "locale");
while (active.parent != null) {
optionalEnd();
}
CompositePrinterParser pp = new CompositePrinterParser(printerParsers, false);
return new DateTimeFormatter(pp, locale, DecimalStyle.STANDARD,
resolverStyle, null, chrono, null);
}
//-----------------------------------------------------------------------
/**
* Strategy for formatting/parsing date-time information.
*
* The printer may format any part, or the whole, of the input date-time object.
* Typically, a complete format is constructed from a number of smaller
* units, each outputting a single field.
*
* The parser may parse any piece of text from the input, storing the result
* in the context. Typically, each individual parser will just parse one
* field, such as the day-of-month, storing the value in the context.
* Once the parse is complete, the caller will then resolve the parsed values
* to create the desired object, such as a {@code LocalDate}.
*
* The parse position will be updated during the parse. Parsing will start at
* the specified index and the return value specifies the new parse position
* for the next parser. If an error occurs, the returned index will be negative
* and will have the error position encoded using the complement operator.
*
* @implSpec
* This interface must be implemented with care to ensure other classes operate correctly.
* All implementations that can be instantiated must be final, immutable and thread-safe.
*
* The context is not a thread-safe object and a new instance will be created
* for each format that occurs. The context must not be stored in an instance
* variable or shared with any other threads.
*/
interface DateTimePrinterParser {
/**
* Prints the date-time object to the buffer.
*
* The context holds information to use during the format.
* It also contains the date-time information to be printed.
*
* The buffer must not be mutated beyond the content controlled by the implementation.
*
* @param context the context to format using, not null
* @param buf the buffer to append to, not null
* @return false if unable to query the value from the date-time, true otherwise
* @throws DateTimeException if the date-time cannot be printed successfully
*/
boolean format(DateTimePrintContext context, StringBuilder buf);
/**
* Parses text into date-time information.
*
* The context holds information to use during the parse.
* It is also used to store the parsed date-time information.
*
* @param context the context to use and parse into, not null
* @param text the input text to parse, not null
* @param position the position to start parsing at, from 0 to the text length
* @return the new parse position, where negative means an error with the
* error position encoded using the complement ~ operator
* @throws NullPointerException if the context or text is null
* @throws IndexOutOfBoundsException if the position is invalid
*/
int parse(DateTimeParseContext context, CharSequence text, int position);
}
//-----------------------------------------------------------------------
/**
* Composite printer and parser.
*/
static final class CompositePrinterParser implements DateTimePrinterParser {
private final DateTimePrinterParser[] printerParsers;
private final boolean optional;
CompositePrinterParser(List printerParsers, boolean optional) {
this(printerParsers.toArray(new DateTimePrinterParser[0]), optional);
}
CompositePrinterParser(DateTimePrinterParser[] printerParsers, boolean optional) {
this.printerParsers = printerParsers;
this.optional = optional;
}
/**
* Returns a copy of this printer-parser with the optional flag changed.
*
* @param optional the optional flag to set in the copy
* @return the new printer-parser, not null
*/
public CompositePrinterParser withOptional(boolean optional) {
if (optional == this.optional) {
return this;
}
return new CompositePrinterParser(printerParsers, optional);
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
int length = buf.length();
if (optional) {
context.startOptional();
}
try {
for (DateTimePrinterParser pp : printerParsers) {
if (pp.format(context, buf) == false) {
buf.setLength(length); // reset buffer
return true;
}
}
} finally {
if (optional) {
context.endOptional();
}
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
if (optional) {
context.startOptional();
int pos = position;
for (DateTimePrinterParser pp : printerParsers) {
pos = pp.parse(context, text, pos);
if (pos < 0) {
context.endOptional(false);
return position; // return original position
}
}
context.endOptional(true);
return pos;
} else {
for (DateTimePrinterParser pp : printerParsers) {
position = pp.parse(context, text, position);
if (position < 0) {
break;
}
}
return position;
}
}
@Override
public String toString() {
StringBuilder buf = new StringBuilder();
if (printerParsers != null) {
buf.append(optional ? "[" : "(");
for (DateTimePrinterParser pp : printerParsers) {
buf.append(pp);
}
buf.append(optional ? "]" : ")");
}
return buf.toString();
}
}
//-----------------------------------------------------------------------
/**
* Pads the output to a fixed width.
*/
static final class PadPrinterParserDecorator implements DateTimePrinterParser {
private final DateTimePrinterParser printerParser;
private final int padWidth;
private final char padChar;
/**
* Constructor.
*
* @param printerParser the printer, not null
* @param padWidth the width to pad to, 1 or greater
* @param padChar the pad character
*/
PadPrinterParserDecorator(DateTimePrinterParser printerParser, int padWidth, char padChar) {
// input checked by DateTimeFormatterBuilder
this.printerParser = printerParser;
this.padWidth = padWidth;
this.padChar = padChar;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
int preLen = buf.length();
if (printerParser.format(context, buf) == false) {
return false;
}
int len = buf.length() - preLen;
if (len > padWidth) {
throw new DateTimeException(
"Cannot print as output of " + len + " characters exceeds pad width of " + padWidth);
}
for (int i = 0; i < padWidth - len; i++) {
buf.insert(preLen, padChar);
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// cache context before changed by decorated parser
final boolean strict = context.isStrict();
// parse
if (position > text.length()) {
throw new IndexOutOfBoundsException();
}
if (position == text.length()) {
return ~position; // no more characters in the string
}
int endPos = position + padWidth;
if (endPos > text.length()) {
if (strict) {
return ~position; // not enough characters in the string to meet the parse width
}
endPos = text.length();
}
int pos = position;
while (pos < endPos && context.charEquals(text.charAt(pos), padChar)) {
pos++;
}
text = text.subSequence(0, endPos);
int resultPos = printerParser.parse(context, text, pos);
if (resultPos != endPos && strict) {
return ~(position + pos); // parse of decorated field didn't parse to the end
}
return resultPos;
}
@Override
public String toString() {
return "Pad(" + printerParser + "," + padWidth + (padChar == ' ' ? ")" : ",'" + padChar + "')");
}
}
//-----------------------------------------------------------------------
/**
* Enumeration to apply simple parse settings.
*/
static enum SettingsParser implements DateTimePrinterParser {
SENSITIVE,
INSENSITIVE,
STRICT,
LENIENT;
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
return true; // nothing to do here
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// using ordinals to avoid javac synthetic inner class
switch (ordinal()) {
case 0: context.setCaseSensitive(true); break;
case 1: context.setCaseSensitive(false); break;
case 2: context.setStrict(true); break;
case 3: context.setStrict(false); break;
}
return position;
}
@Override
public String toString() {
// using ordinals to avoid javac synthetic inner class
switch (ordinal()) {
case 0: return "ParseCaseSensitive(true)";
case 1: return "ParseCaseSensitive(false)";
case 2: return "ParseStrict(true)";
case 3: return "ParseStrict(false)";
}
throw new IllegalStateException("Unreachable");
}
}
//-----------------------------------------------------------------------
/**
* Defaults a value into the parse if not currently present.
*/
static class DefaultValueParser implements DateTimePrinterParser {
private final TemporalField field;
private final long value;
DefaultValueParser(TemporalField field, long value) {
this.field = field;
this.value = value;
}
public boolean format(DateTimePrintContext context, StringBuilder buf) {
return true;
}
public int parse(DateTimeParseContext context, CharSequence text, int position) {
if (context.getParsed(field) == null) {
context.setParsedField(field, value, position, position);
}
return position;
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a character literal.
*/
static final class CharLiteralPrinterParser implements DateTimePrinterParser {
private final char literal;
CharLiteralPrinterParser(char literal) {
this.literal = literal;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
buf.append(literal);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position == length) {
return ~position;
}
char ch = text.charAt(position);
if (ch != literal) {
if (context.isCaseSensitive() ||
(Character.toUpperCase(ch) != Character.toUpperCase(literal) &&
Character.toLowerCase(ch) != Character.toLowerCase(literal))) {
return ~position;
}
}
return position + 1;
}
@Override
public String toString() {
if (literal == '\'') {
return "''";
}
return "'" + literal + "'";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a string literal.
*/
static final class StringLiteralPrinterParser implements DateTimePrinterParser {
private final String literal;
StringLiteralPrinterParser(String literal) {
this.literal = literal; // validated by caller
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
buf.append(literal);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position > length || position < 0) {
throw new IndexOutOfBoundsException();
}
if (context.subSequenceEquals(text, position, literal, 0, literal.length()) == false) {
return ~position;
}
return position + literal.length();
}
@Override
public String toString() {
String converted = literal.replace("'", "''");
return "'" + converted + "'";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a numeric date-time field with optional padding.
*/
static class NumberPrinterParser implements DateTimePrinterParser {
/**
* Array of 10 to the power of n.
*/
static final long[] EXCEED_POINTS = new long[] {
0L,
10L,
100L,
1000L,
10000L,
100000L,
1000000L,
10000000L,
100000000L,
1000000000L,
10000000000L,
};
final TemporalField field;
final int minWidth;
final int maxWidth;
private final SignStyle signStyle;
final int subsequentWidth;
/**
* Constructor.
*
* @param field the field to format, not null
* @param minWidth the minimum field width, from 1 to 19
* @param maxWidth the maximum field width, from minWidth to 19
* @param signStyle the positive/negative sign style, not null
*/
NumberPrinterParser(TemporalField field, int minWidth, int maxWidth, SignStyle signStyle) {
// validated by caller
this.field = field;
this.minWidth = minWidth;
this.maxWidth = maxWidth;
this.signStyle = signStyle;
this.subsequentWidth = 0;
}
/**
* Constructor.
*
* @param field the field to format, not null
* @param minWidth the minimum field width, from 1 to 19
* @param maxWidth the maximum field width, from minWidth to 19
* @param signStyle the positive/negative sign style, not null
* @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater,
* -1 if fixed width due to active adjacent parsing
*/
protected NumberPrinterParser(TemporalField field, int minWidth, int maxWidth, SignStyle signStyle, int subsequentWidth) {
// validated by caller
this.field = field;
this.minWidth = minWidth;
this.maxWidth = maxWidth;
this.signStyle = signStyle;
this.subsequentWidth = subsequentWidth;
}
/**
* Returns a new instance with fixed width flag set.
*
* @return a new updated printer-parser, not null
*/
NumberPrinterParser withFixedWidth() {
if (subsequentWidth == -1) {
return this;
}
return new NumberPrinterParser(field, minWidth, maxWidth, signStyle, -1);
}
/**
* Returns a new instance with an updated subsequent width.
*
* @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater
* @return a new updated printer-parser, not null
*/
NumberPrinterParser withSubsequentWidth(int subsequentWidth) {
return new NumberPrinterParser(field, minWidth, maxWidth, signStyle, this.subsequentWidth + subsequentWidth);
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Long valueLong = context.getValue(field);
if (valueLong == null) {
return false;
}
long value = getValue(context, valueLong);
DecimalStyle decimalStyle = context.getDecimalStyle();
String str = (value == Long.MIN_VALUE ? "9223372036854775808" : Long.toString(Math.abs(value)));
if (str.length() > maxWidth) {
throw new DateTimeException("Field " + field +
" cannot be printed as the value " + value +
" exceeds the maximum print width of " + maxWidth);
}
str = decimalStyle.convertNumberToI18N(str);
if (value >= 0) {
switch (signStyle) {
case EXCEEDS_PAD:
if (minWidth < 19 && value >= EXCEED_POINTS[minWidth]) {
buf.append(decimalStyle.getPositiveSign());
}
break;
case ALWAYS:
buf.append(decimalStyle.getPositiveSign());
break;
}
} else {
switch (signStyle) {
case NORMAL:
case EXCEEDS_PAD:
case ALWAYS:
buf.append(decimalStyle.getNegativeSign());
break;
case NOT_NEGATIVE:
throw new DateTimeException("Field " + field +
" cannot be printed as the value " + value +
" cannot be negative according to the SignStyle");
}
}
for (int i = 0; i < minWidth - str.length(); i++) {
buf.append(decimalStyle.getZeroDigit());
}
buf.append(str);
return true;
}
/**
* Gets the value to output.
*
* @param context the context
* @param value the value of the field, not null
* @return the value
*/
long getValue(DateTimePrintContext context, long value) {
return value;
}
/**
* For NumberPrinterParser, the width is fixed depending on the
* minWidth, maxWidth, signStyle and whether subsequent fields are fixed.
* @param context the context
* @return true if the field is fixed width
* @see DateTimeFormatterBuilder#appendValue(java.time.temporal.TemporalField, int)
*/
boolean isFixedWidth(DateTimeParseContext context) {
return subsequentWidth == -1 ||
(subsequentWidth > 0 && minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE);
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position == length) {
return ~position;
}
char sign = text.charAt(position); // IOOBE if invalid position
boolean negative = false;
boolean positive = false;
if (sign == context.getDecimalStyle().getPositiveSign()) {
if (signStyle.parse(true, context.isStrict(), minWidth == maxWidth) == false) {
return ~position;
}
positive = true;
position++;
} else if (sign == context.getDecimalStyle().getNegativeSign()) {
if (signStyle.parse(false, context.isStrict(), minWidth == maxWidth) == false) {
return ~position;
}
negative = true;
position++;
} else {
if (signStyle == SignStyle.ALWAYS && context.isStrict()) {
return ~position;
}
}
int effMinWidth = (context.isStrict() || isFixedWidth(context) ? minWidth : 1);
int minEndPos = position + effMinWidth;
if (minEndPos > length) {
return ~position;
}
int effMaxWidth = (context.isStrict() || isFixedWidth(context) ? maxWidth : 9) + Math.max(subsequentWidth, 0);
long total = 0;
BigInteger totalBig = null;
int pos = position;
for (int pass = 0; pass < 2; pass++) {
int maxEndPos = Math.min(pos + effMaxWidth, length);
while (pos < maxEndPos) {
char ch = text.charAt(pos++);
int digit = context.getDecimalStyle().convertToDigit(ch);
if (digit < 0) {
pos--;
if (pos < minEndPos) {
return ~position; // need at least min width digits
}
break;
}
if ((pos - position) > 18) {
if (totalBig == null) {
totalBig = BigInteger.valueOf(total);
}
totalBig = totalBig.multiply(BigInteger.TEN).add(BigInteger.valueOf(digit));
} else {
total = total * 10 + digit;
}
}
if (subsequentWidth > 0 && pass == 0) {
// re-parse now we know the correct width
int parseLen = pos - position;
effMaxWidth = Math.max(effMinWidth, parseLen - subsequentWidth);
pos = position;
total = 0;
totalBig = null;
} else {
break;
}
}
if (negative) {
if (totalBig != null) {
if (totalBig.equals(BigInteger.ZERO) && context.isStrict()) {
return ~(position - 1); // minus zero not allowed
}
totalBig = totalBig.negate();
} else {
if (total == 0 && context.isStrict()) {
return ~(position - 1); // minus zero not allowed
}
total = -total;
}
} else if (signStyle == SignStyle.EXCEEDS_PAD && context.isStrict()) {
int parseLen = pos - position;
if (positive) {
if (parseLen <= minWidth) {
return ~(position - 1); // '+' only parsed if minWidth exceeded
}
} else {
if (parseLen > minWidth) {
return ~position; // '+' must be parsed if minWidth exceeded
}
}
}
if (totalBig != null) {
if (totalBig.bitLength() > 63) {
// overflow, parse 1 less digit
totalBig = totalBig.divide(BigInteger.TEN);
pos--;
}
return setValue(context, totalBig.longValue(), position, pos);
}
return setValue(context, total, position, pos);
}
/**
* Stores the value.
*
* @param context the context to store into, not null
* @param value the value
* @param errorPos the position of the field being parsed
* @param successPos the position after the field being parsed
* @return the new position
*/
int setValue(DateTimeParseContext context, long value, int errorPos, int successPos) {
return context.setParsedField(field, value, errorPos, successPos);
}
@Override
public String toString() {
if (minWidth == 1 && maxWidth == 19 && signStyle == SignStyle.NORMAL) {
return "Value(" + field + ")";
}
if (minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE) {
return "Value(" + field + "," + minWidth + ")";
}
return "Value(" + field + "," + minWidth + "," + maxWidth + "," + signStyle + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a reduced numeric date-time field.
*/
static final class ReducedPrinterParser extends NumberPrinterParser {
/**
* The base date for reduced value parsing.
*/
static final LocalDate BASE_DATE = LocalDate.of(2000, 1, 1);
private final int baseValue;
private final ChronoLocalDate baseDate;
/**
* Constructor.
*
* @param field the field to format, validated not null
* @param minWidth the minimum field width, from 1 to 10
* @param maxWidth the maximum field width, from 1 to 10
* @param baseValue the base value
* @param baseDate the base date
*/
ReducedPrinterParser(TemporalField field, int minWidth, int maxWidth,
int baseValue, ChronoLocalDate baseDate) {
this(field, minWidth, maxWidth, baseValue, baseDate, 0);
if (minWidth < 1 || minWidth > 10) {
throw new IllegalArgumentException("The minWidth must be from 1 to 10 inclusive but was " + minWidth);
}
if (maxWidth < 1 || maxWidth > 10) {
throw new IllegalArgumentException("The maxWidth must be from 1 to 10 inclusive but was " + minWidth);
}
if (maxWidth < minWidth) {
throw new IllegalArgumentException("Maximum width must exceed or equal the minimum width but " +
maxWidth + " < " + minWidth);
}
if (baseDate == null) {
if (field.range().isValidValue(baseValue) == false) {
throw new IllegalArgumentException("The base value must be within the range of the field");
}
if ((((long) baseValue) + EXCEED_POINTS[maxWidth]) > Integer.MAX_VALUE) {
throw new DateTimeException("Unable to add printer-parser as the range exceeds the capacity of an int");
}
}
}
/**
* Constructor.
* The arguments have already been checked.
*
* @param field the field to format, validated not null
* @param minWidth the minimum field width, from 1 to 10
* @param maxWidth the maximum field width, from 1 to 10
* @param baseValue the base value
* @param baseDate the base date
* @param subsequentWidth the subsequentWidth for this instance
*/
private ReducedPrinterParser(TemporalField field, int minWidth, int maxWidth,
int baseValue, ChronoLocalDate baseDate, int subsequentWidth) {
super(field, minWidth, maxWidth, SignStyle.NOT_NEGATIVE, subsequentWidth);
this.baseValue = baseValue;
this.baseDate = baseDate;
}
@Override
long getValue(DateTimePrintContext context, long value) {
long absValue = Math.abs(value);
int baseValue = this.baseValue;
if (baseDate != null) {
Chronology chrono = Chronology.from(context.getTemporal());
baseValue = chrono.date(baseDate).get(field);
}
if (value >= baseValue && value < baseValue + EXCEED_POINTS[minWidth]) {
// Use the reduced value if it fits in minWidth
return absValue % EXCEED_POINTS[minWidth];
}
// Otherwise truncate to fit in maxWidth
return absValue % EXCEED_POINTS[maxWidth];
}
@Override
int setValue(DateTimeParseContext context, long value, int errorPos, int successPos) {
int baseValue = this.baseValue;
if (baseDate != null) {
Chronology chrono = context.getEffectiveChronology();
baseValue = chrono.date(baseDate).get(field);
// In case the Chronology is changed later, add a callback when/if it changes
final long initialValue = value;
context.addChronoChangedListener(
(_unused) -> {
/* Repeat the set of the field using the current Chronology
* The success/error position is ignored because the value is
* intentionally being overwritten.
*/
setValue(context, initialValue, errorPos, successPos);
});
}
int parseLen = successPos - errorPos;
if (parseLen == minWidth && value >= 0) {
long range = EXCEED_POINTS[minWidth];
long lastPart = baseValue % range;
long basePart = baseValue - lastPart;
if (baseValue > 0) {
value = basePart + value;
} else {
value = basePart - value;
}
if (value < baseValue) {
value += range;
}
}
return context.setParsedField(field, value, errorPos, successPos);
}
/**
* Returns a new instance with fixed width flag set.
*
* @return a new updated printer-parser, not null
*/
@Override
ReducedPrinterParser withFixedWidth() {
if (subsequentWidth == -1) {
return this;
}
return new ReducedPrinterParser(field, minWidth, maxWidth, baseValue, baseDate, -1);
}
/**
* Returns a new instance with an updated subsequent width.
*
* @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater
* @return a new updated printer-parser, not null
*/
@Override
ReducedPrinterParser withSubsequentWidth(int subsequentWidth) {
return new ReducedPrinterParser(field, minWidth, maxWidth, baseValue, baseDate,
this.subsequentWidth + subsequentWidth);
}
/**
* For a ReducedPrinterParser, fixed width is false if the mode is strict,
* otherwise it is set as for NumberPrinterParser.
* @param context the context
* @return if the field is fixed width
* @see DateTimeFormatterBuilder#appendValueReduced(java.time.temporal.TemporalField, int, int, int)
*/
@Override
boolean isFixedWidth(DateTimeParseContext context) {
if (context.isStrict() == false) {
return false;
}
return super.isFixedWidth(context);
}
@Override
public String toString() {
return "ReducedValue(" + field + "," + minWidth + "," + maxWidth +
"," + Objects.requireNonNullElse(baseDate, baseValue) + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a numeric date-time field with optional padding.
*/
static final class FractionPrinterParser extends NumberPrinterParser {
private final boolean decimalPoint;
/**
* Constructor.
*
* @param field the field to output, not null
* @param minWidth the minimum width to output, from 0 to 9
* @param maxWidth the maximum width to output, from 0 to 9
* @param decimalPoint whether to output the localized decimal point symbol
*/
FractionPrinterParser(TemporalField field, int minWidth, int maxWidth, boolean decimalPoint) {
this(field, minWidth, maxWidth, decimalPoint, 0);
Objects.requireNonNull(field, "field");
if (field.range().isFixed() == false) {
throw new IllegalArgumentException("Field must have a fixed set of values: " + field);
}
if (minWidth < 0 || minWidth > 9) {
throw new IllegalArgumentException("Minimum width must be from 0 to 9 inclusive but was " + minWidth);
}
if (maxWidth < 1 || maxWidth > 9) {
throw new IllegalArgumentException("Maximum width must be from 1 to 9 inclusive but was " + maxWidth);
}
if (maxWidth < minWidth) {
throw new IllegalArgumentException("Maximum width must exceed or equal the minimum width but " +
maxWidth + " < " + minWidth);
}
}
/**
* Constructor.
*
* @param field the field to output, not null
* @param minWidth the minimum width to output, from 0 to 9
* @param maxWidth the maximum width to output, from 0 to 9
* @param decimalPoint whether to output the localized decimal point symbol
* @param subsequentWidth the subsequentWidth for this instance
*/
FractionPrinterParser(TemporalField field, int minWidth, int maxWidth, boolean decimalPoint, int subsequentWidth) {
super(field, minWidth, maxWidth, SignStyle.NOT_NEGATIVE, subsequentWidth);
this.decimalPoint = decimalPoint;
}
/**
* Returns a new instance with fixed width flag set.
*
* @return a new updated printer-parser, not null
*/
@Override
FractionPrinterParser withFixedWidth() {
if (subsequentWidth == -1) {
return this;
}
return new FractionPrinterParser(field, minWidth, maxWidth, decimalPoint, -1);
}
/**
* Returns a new instance with an updated subsequent width.
*
* @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater
* @return a new updated printer-parser, not null
*/
@Override
FractionPrinterParser withSubsequentWidth(int subsequentWidth) {
return new FractionPrinterParser(field, minWidth, maxWidth, decimalPoint, this.subsequentWidth + subsequentWidth);
}
/**
* For FractionPrinterPrinterParser, the width is fixed if context is strict,
* minWidth equal to maxWidth and decimalpoint is absent.
* @param context the context
* @return if the field is fixed width
* @see #appendFraction(java.time.temporal.TemporalField, int, int, boolean)
*/
@Override
boolean isFixedWidth(DateTimeParseContext context) {
if (context.isStrict() && minWidth == maxWidth && decimalPoint == false) {
return true;
}
return false;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Long value = context.getValue(field);
if (value == null) {
return false;
}
DecimalStyle decimalStyle = context.getDecimalStyle();
BigDecimal fraction = convertToFraction(value);
if (fraction.scale() == 0) { // scale is zero if value is zero
if (minWidth > 0) {
if (decimalPoint) {
buf.append(decimalStyle.getDecimalSeparator());
}
for (int i = 0; i < minWidth; i++) {
buf.append(decimalStyle.getZeroDigit());
}
}
} else {
int outputScale = Math.min(Math.max(fraction.scale(), minWidth), maxWidth);
fraction = fraction.setScale(outputScale, RoundingMode.FLOOR);
String str = fraction.toPlainString().substring(2);
str = decimalStyle.convertNumberToI18N(str);
if (decimalPoint) {
buf.append(decimalStyle.getDecimalSeparator());
}
buf.append(str);
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int effectiveMin = (context.isStrict() || isFixedWidth(context) ? minWidth : 0);
int effectiveMax = (context.isStrict() || isFixedWidth(context) ? maxWidth : 9);
int length = text.length();
if (position == length) {
// valid if whole field is optional, invalid if minimum width
return (effectiveMin > 0 ? ~position : position);
}
if (decimalPoint) {
if (text.charAt(position) != context.getDecimalStyle().getDecimalSeparator()) {
// valid if whole field is optional, invalid if minimum width
return (effectiveMin > 0 ? ~position : position);
}
position++;
}
int minEndPos = position + effectiveMin;
if (minEndPos > length) {
return ~position; // need at least min width digits
}
int maxEndPos = Math.min(position + effectiveMax, length);
int total = 0; // can use int because we are only parsing up to 9 digits
int pos = position;
while (pos < maxEndPos) {
char ch = text.charAt(pos++);
int digit = context.getDecimalStyle().convertToDigit(ch);
if (digit < 0) {
if (pos <= minEndPos) {
return ~position; // need at least min width digits
}
pos--;
break;
}
total = total * 10 + digit;
}
BigDecimal fraction = new BigDecimal(total).movePointLeft(pos - position);
long value = convertFromFraction(fraction);
return context.setParsedField(field, value, position, pos);
}
/**
* Converts a value for this field to a fraction between 0 and 1.
*
* The fractional value is between 0 (inclusive) and 1 (exclusive).
* It can only be returned if the {@link java.time.temporal.TemporalField#range() value range} is fixed.
* The fraction is obtained by calculation from the field range using 9 decimal
* places and a rounding mode of {@link RoundingMode#FLOOR FLOOR}.
* The calculation is inaccurate if the values do not run continuously from smallest to largest.
*
* For example, the second-of-minute value of 15 would be returned as 0.25,
* assuming the standard definition of 60 seconds in a minute.
*
* @param value the value to convert, must be valid for this rule
* @return the value as a fraction within the range, from 0 to 1, not null
* @throws DateTimeException if the value cannot be converted to a fraction
*/
private BigDecimal convertToFraction(long value) {
ValueRange range = field.range();
range.checkValidValue(value, field);
BigDecimal minBD = BigDecimal.valueOf(range.getMinimum());
BigDecimal rangeBD = BigDecimal.valueOf(range.getMaximum()).subtract(minBD).add(BigDecimal.ONE);
BigDecimal valueBD = BigDecimal.valueOf(value).subtract(minBD);
BigDecimal fraction = valueBD.divide(rangeBD, 9, RoundingMode.FLOOR);
// stripTrailingZeros bug
return fraction.compareTo(BigDecimal.ZERO) == 0 ? BigDecimal.ZERO : fraction.stripTrailingZeros();
}
/**
* Converts a fraction from 0 to 1 for this field to a value.
*
* The fractional value must be between 0 (inclusive) and 1 (exclusive).
* It can only be returned if the {@link java.time.temporal.TemporalField#range() value range} is fixed.
* The value is obtained by calculation from the field range and a rounding
* mode of {@link RoundingMode#FLOOR FLOOR}.
* The calculation is inaccurate if the values do not run continuously from smallest to largest.
*
* For example, the fractional second-of-minute of 0.25 would be converted to 15,
* assuming the standard definition of 60 seconds in a minute.
*
* @param fraction the fraction to convert, not null
* @return the value of the field, valid for this rule
* @throws DateTimeException if the value cannot be converted
*/
private long convertFromFraction(BigDecimal fraction) {
ValueRange range = field.range();
BigDecimal minBD = BigDecimal.valueOf(range.getMinimum());
BigDecimal rangeBD = BigDecimal.valueOf(range.getMaximum()).subtract(minBD).add(BigDecimal.ONE);
BigDecimal valueBD = fraction.multiply(rangeBD).setScale(0, RoundingMode.FLOOR).add(minBD);
return valueBD.longValueExact();
}
@Override
public String toString() {
String decimal = (decimalPoint ? ",DecimalPoint" : "");
return "Fraction(" + field + "," + minWidth + "," + maxWidth + decimal + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses field text.
*/
static final class TextPrinterParser implements DateTimePrinterParser {
private final TemporalField field;
private final TextStyle textStyle;
private final DateTimeTextProvider provider;
/**
* The cached number printer parser.
* Immutable and volatile, so no synchronization needed.
*/
private volatile NumberPrinterParser numberPrinterParser;
/**
* Constructor.
*
* @param field the field to output, not null
* @param textStyle the text style, not null
* @param provider the text provider, not null
*/
TextPrinterParser(TemporalField field, TextStyle textStyle, DateTimeTextProvider provider) {
// validated by caller
this.field = field;
this.textStyle = textStyle;
this.provider = provider;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Long value = context.getValue(field);
if (value == null) {
return false;
}
String text;
Chronology chrono = context.getTemporal().query(TemporalQueries.chronology());
if (chrono == null || chrono == IsoChronology.INSTANCE) {
text = provider.getText(field, value, textStyle, context.getLocale());
} else {
text = provider.getText(chrono, field, value, textStyle, context.getLocale());
}
if (text == null) {
return numberPrinterParser().format(context, buf);
}
buf.append(text);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence parseText, int position) {
int length = parseText.length();
if (position < 0 || position > length) {
throw new IndexOutOfBoundsException();
}
TextStyle style = (context.isStrict() ? textStyle : null);
Chronology chrono = context.getEffectiveChronology();
Iterator> it;
if (chrono == null || chrono == IsoChronology.INSTANCE) {
it = provider.getTextIterator(field, style, context.getLocale());
} else {
it = provider.getTextIterator(chrono, field, style, context.getLocale());
}
if (it != null) {
while (it.hasNext()) {
Entry entry = it.next();
String itText = entry.getKey();
if (context.subSequenceEquals(itText, 0, parseText, position, itText.length())) {
return context.setParsedField(field, entry.getValue(), position, position + itText.length());
}
}
if (field == ERA && !context.isStrict()) {
// parse the possible era name from era.toString()
List eras = chrono.eras();
for (Era era : eras) {
String name = era.toString();
if (context.subSequenceEquals(name, 0, parseText, position, name.length())) {
return context.setParsedField(field, era.getValue(), position, position + name.length());
}
}
}
if (context.isStrict()) {
return ~position;
}
}
return numberPrinterParser().parse(context, parseText, position);
}
/**
* Create and cache a number printer parser.
* @return the number printer parser for this field, not null
*/
private NumberPrinterParser numberPrinterParser() {
if (numberPrinterParser == null) {
numberPrinterParser = new NumberPrinterParser(field, 1, 19, SignStyle.NORMAL);
}
return numberPrinterParser;
}
@Override
public String toString() {
if (textStyle == TextStyle.FULL) {
return "Text(" + field + ")";
}
return "Text(" + field + "," + textStyle + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses an ISO-8601 instant.
*/
static final class InstantPrinterParser implements DateTimePrinterParser {
// days in a 400 year cycle = 146097
// days in a 10,000 year cycle = 146097 * 25
// seconds per day = 86400
private static final long SECONDS_PER_10000_YEARS = 146097L * 25L * 86400L;
private static final long SECONDS_0000_TO_1970 = ((146097L * 5L) - (30L * 365L + 7L)) * 86400L;
private final int fractionalDigits;
InstantPrinterParser(int fractionalDigits) {
this.fractionalDigits = fractionalDigits;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
// use INSTANT_SECONDS, thus this code is not bound by Instant.MAX
Long inSecs = context.getValue(INSTANT_SECONDS);
Long inNanos = null;
if (context.getTemporal().isSupported(NANO_OF_SECOND)) {
inNanos = context.getTemporal().getLong(NANO_OF_SECOND);
}
if (inSecs == null) {
return false;
}
long inSec = inSecs;
int inNano = NANO_OF_SECOND.checkValidIntValue(inNanos != null ? inNanos : 0);
// format mostly using LocalDateTime.toString
if (inSec >= -SECONDS_0000_TO_1970) {
// current era
long zeroSecs = inSec - SECONDS_PER_10000_YEARS + SECONDS_0000_TO_1970;
long hi = Math.floorDiv(zeroSecs, SECONDS_PER_10000_YEARS) + 1;
long lo = Math.floorMod(zeroSecs, SECONDS_PER_10000_YEARS);
LocalDateTime ldt = LocalDateTime.ofEpochSecond(lo - SECONDS_0000_TO_1970, 0, ZoneOffset.UTC);
if (hi > 0) {
buf.append('+').append(hi);
}
buf.append(ldt);
if (ldt.getSecond() == 0) {
buf.append(":00");
}
} else {
// before current era
long zeroSecs = inSec + SECONDS_0000_TO_1970;
long hi = zeroSecs / SECONDS_PER_10000_YEARS;
long lo = zeroSecs % SECONDS_PER_10000_YEARS;
LocalDateTime ldt = LocalDateTime.ofEpochSecond(lo - SECONDS_0000_TO_1970, 0, ZoneOffset.UTC);
int pos = buf.length();
buf.append(ldt);
if (ldt.getSecond() == 0) {
buf.append(":00");
}
if (hi < 0) {
if (ldt.getYear() == -10_000) {
buf.replace(pos, pos + 2, Long.toString(hi - 1));
} else if (lo == 0) {
buf.insert(pos, hi);
} else {
buf.insert(pos + 1, Math.abs(hi));
}
}
}
// add fraction
if ((fractionalDigits < 0 && inNano > 0) || fractionalDigits > 0) {
buf.append('.');
int div = 100_000_000;
for (int i = 0; ((fractionalDigits == -1 && inNano > 0) ||
(fractionalDigits == -2 && (inNano > 0 || (i % 3) != 0)) ||
i < fractionalDigits); i++) {
int digit = inNano / div;
buf.append((char) (digit + '0'));
inNano = inNano - (digit * div);
div = div / 10;
}
}
buf.append('Z');
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// new context to avoid overwriting fields like year/month/day
int minDigits = (fractionalDigits < 0 ? 0 : fractionalDigits);
int maxDigits = (fractionalDigits < 0 ? 9 : fractionalDigits);
CompositePrinterParser parser = new DateTimeFormatterBuilder()
.append(DateTimeFormatter.ISO_LOCAL_DATE).appendLiteral('T')
.appendValue(HOUR_OF_DAY, 2).appendLiteral(':')
.appendValue(MINUTE_OF_HOUR, 2).appendLiteral(':')
.appendValue(SECOND_OF_MINUTE, 2)
.appendFraction(NANO_OF_SECOND, minDigits, maxDigits, true)
.appendOffsetId()
.toFormatter().toPrinterParser(false);
DateTimeParseContext newContext = context.copy();
int pos = parser.parse(newContext, text, position);
if (pos < 0) {
return pos;
}
// parser restricts most fields to 2 digits, so definitely int
// correctly parsed nano is also guaranteed to be valid
long yearParsed = newContext.getParsed(YEAR);
int month = newContext.getParsed(MONTH_OF_YEAR).intValue();
int day = newContext.getParsed(DAY_OF_MONTH).intValue();
int hour = newContext.getParsed(HOUR_OF_DAY).intValue();
int min = newContext.getParsed(MINUTE_OF_HOUR).intValue();
Long secVal = newContext.getParsed(SECOND_OF_MINUTE);
Long nanoVal = newContext.getParsed(NANO_OF_SECOND);
int sec = (secVal != null ? secVal.intValue() : 0);
int nano = (nanoVal != null ? nanoVal.intValue() : 0);
int offset = newContext.getParsed(OFFSET_SECONDS).intValue();
int days = 0;
if (hour == 24 && min == 0 && sec == 0 && nano == 0) {
hour = 0;
days = 1;
} else if (hour == 23 && min == 59 && sec == 60) {
context.setParsedLeapSecond();
sec = 59;
}
int year = (int) yearParsed % 10_000;
long instantSecs;
try {
LocalDateTime ldt = LocalDateTime.of(year, month, day, hour, min, sec, 0).plusDays(days);
instantSecs = ldt.toEpochSecond(ZoneOffset.ofTotalSeconds(offset));
instantSecs += Math.multiplyExact(yearParsed / 10_000L, SECONDS_PER_10000_YEARS);
} catch (RuntimeException ex) {
return ~position;
}
int successPos = pos;
successPos = context.setParsedField(INSTANT_SECONDS, instantSecs, position, successPos);
return context.setParsedField(NANO_OF_SECOND, nano, position, successPos);
}
@Override
public String toString() {
return "Instant()";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses an offset ID.
*/
static final class OffsetIdPrinterParser implements DateTimePrinterParser {
static final String[] PATTERNS = new String[] {
"+HH", "+HHmm", "+HH:mm", "+HHMM", "+HH:MM", "+HHMMss", "+HH:MM:ss", "+HHMMSS", "+HH:MM:SS", "+HHmmss", "+HH:mm:ss",
"+H", "+Hmm", "+H:mm", "+HMM", "+H:MM", "+HMMss", "+H:MM:ss", "+HMMSS", "+H:MM:SS", "+Hmmss", "+H:mm:ss",
}; // order used in pattern builder
static final OffsetIdPrinterParser INSTANCE_ID_Z = new OffsetIdPrinterParser("+HH:MM:ss", "Z");
static final OffsetIdPrinterParser INSTANCE_ID_ZERO = new OffsetIdPrinterParser("+HH:MM:ss", "0");
private final String noOffsetText;
private final int type;
private final int style;
/**
* Constructor.
*
* @param pattern the pattern
* @param noOffsetText the text to use for UTC, not null
*/
OffsetIdPrinterParser(String pattern, String noOffsetText) {
Objects.requireNonNull(pattern, "pattern");
Objects.requireNonNull(noOffsetText, "noOffsetText");
this.type = checkPattern(pattern);
this.style = type % 11;
this.noOffsetText = noOffsetText;
}
private int checkPattern(String pattern) {
for (int i = 0; i < PATTERNS.length; i++) {
if (PATTERNS[i].equals(pattern)) {
return i;
}
}
throw new IllegalArgumentException("Invalid zone offset pattern: " + pattern);
}
private boolean isPaddedHour() {
return type < 11;
}
private boolean isColon() {
return style > 0 && (style % 2) == 0;
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Long offsetSecs = context.getValue(OFFSET_SECONDS);
if (offsetSecs == null) {
return false;
}
int totalSecs = Math.toIntExact(offsetSecs);
if (totalSecs == 0) {
buf.append(noOffsetText);
} else {
int absHours = Math.abs((totalSecs / 3600) % 100); // anything larger than 99 silently dropped
int absMinutes = Math.abs((totalSecs / 60) % 60);
int absSeconds = Math.abs(totalSecs % 60);
int bufPos = buf.length();
int output = absHours;
buf.append(totalSecs < 0 ? "-" : "+");
if (isPaddedHour() || absHours >= 10) {
formatZeroPad(false, absHours, buf);
} else {
buf.append((char) (absHours + '0'));
}
if ((style >= 3 && style <= 8) || (style >= 9 && absSeconds > 0) || (style >= 1 && absMinutes > 0)) {
formatZeroPad(isColon(), absMinutes, buf);
output += absMinutes;
if (style == 7 || style == 8 || (style >= 5 && absSeconds > 0)) {
formatZeroPad(isColon(), absSeconds, buf);
output += absSeconds;
}
}
if (output == 0) {
buf.setLength(bufPos);
buf.append(noOffsetText);
}
}
return true;
}
private void formatZeroPad(boolean colon, int value, StringBuilder buf) {
buf.append(colon ? ":" : "")
.append((char) (value / 10 + '0'))
.append((char) (value % 10 + '0'));
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
int noOffsetLen = noOffsetText.length();
if (noOffsetLen == 0) {
if (position == length) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position);
}
} else {
if (position == length) {
return ~position;
}
if (context.subSequenceEquals(text, position, noOffsetText, 0, noOffsetLen)) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position + noOffsetLen);
}
}
// parse normal plus/minus offset
char sign = text.charAt(position); // IOOBE if invalid position
if (sign == '+' || sign == '-') {
// starts
int negative = (sign == '-' ? -1 : 1);
boolean isColon = isColon();
boolean paddedHour = isPaddedHour();
int[] array = new int[4];
array[0] = position + 1;
int parseType = type;
// select parse type when lenient
if (!context.isStrict()) {
if (paddedHour) {
if (isColon || (parseType == 0 && length > position + 3 && text.charAt(position + 3) == ':')) {
isColon = true; // needed in cases like ("+HH", "+01:01")
parseType = 10;
} else {
parseType = 9;
}
} else {
if (isColon || (parseType == 11 && length > position + 3 && (text.charAt(position + 2) == ':' || text.charAt(position + 3) == ':'))) {
isColon = true;
parseType = 21; // needed in cases like ("+H", "+1:01")
} else {
parseType = 20;
}
}
}
// parse according to the selected pattern
switch (parseType) {
case 0: // +HH
case 11: // +H
parseHour(text, paddedHour, array);
break;
case 1: // +HHmm
case 2: // +HH:mm
case 13: // +H:mm
parseHour(text, paddedHour, array);
parseMinute(text, isColon, false, array);
break;
case 3: // +HHMM
case 4: // +HH:MM
case 15: // +H:MM
parseHour(text, paddedHour, array);
parseMinute(text, isColon, true, array);
break;
case 5: // +HHMMss
case 6: // +HH:MM:ss
case 17: // +H:MM:ss
parseHour(text, paddedHour, array);
parseMinute(text, isColon, true, array);
parseSecond(text, isColon, false, array);
break;
case 7: // +HHMMSS
case 8: // +HH:MM:SS
case 19: // +H:MM:SS
parseHour(text, paddedHour, array);
parseMinute(text, isColon, true, array);
parseSecond(text, isColon, true, array);
break;
case 9: // +HHmmss
case 10: // +HH:mm:ss
case 21: // +H:mm:ss
parseHour(text, paddedHour, array);
parseOptionalMinuteSecond(text, isColon, array);
break;
case 12: // +Hmm
parseVariableWidthDigits(text, 1, 4, array);
break;
case 14: // +HMM
parseVariableWidthDigits(text, 3, 4, array);
break;
case 16: // +HMMss
parseVariableWidthDigits(text, 3, 6, array);
break;
case 18: // +HMMSS
parseVariableWidthDigits(text, 5, 6, array);
break;
case 20: // +Hmmss
parseVariableWidthDigits(text, 1, 6, array);
break;
}
if (array[0] > 0) {
if (array[1] > 23 || array[2] > 59 || array[3] > 59) {
throw new DateTimeException("Value out of range: Hour[0-23], Minute[0-59], Second[0-59]");
}
long offsetSecs = negative * (array[1] * 3600L + array[2] * 60L + array[3]);
return context.setParsedField(OFFSET_SECONDS, offsetSecs, position, array[0]);
}
}
// handle special case of empty no offset text
if (noOffsetLen == 0) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position);
}
return ~position;
}
private void parseHour(CharSequence parseText, boolean paddedHour, int[] array) {
if (paddedHour) {
// parse two digits
if (!parseDigits(parseText, false, 1, array)) {
array[0] = ~array[0];
}
} else {
// parse one or two digits
parseVariableWidthDigits(parseText, 1, 2, array);
}
}
private void parseMinute(CharSequence parseText, boolean isColon, boolean mandatory, int[] array) {
if (!parseDigits(parseText, isColon, 2, array)) {
if (mandatory) {
array[0] = ~array[0];
}
}
}
private void parseSecond(CharSequence parseText, boolean isColon, boolean mandatory, int[] array) {
if (!parseDigits(parseText, isColon, 3, array)) {
if (mandatory) {
array[0] = ~array[0];
}
}
}
private void parseOptionalMinuteSecond(CharSequence parseText, boolean isColon, int[] array) {
if (parseDigits(parseText, isColon, 2, array)) {
parseDigits(parseText, isColon, 3, array);
}
}
private boolean parseDigits(CharSequence parseText, boolean isColon, int arrayIndex, int[] array) {
int pos = array[0];
if (pos < 0) {
return true;
}
if (isColon && arrayIndex != 1) { // ':' will precede only in case of minute/second
if (pos + 1 > parseText.length() || parseText.charAt(pos) != ':') {
return false;
}
pos++;
}
if (pos + 2 > parseText.length()) {
return false;
}
char ch1 = parseText.charAt(pos++);
char ch2 = parseText.charAt(pos++);
if (ch1 < '0' || ch1 > '9' || ch2 < '0' || ch2 > '9') {
return false;
}
int value = (ch1 - 48) * 10 + (ch2 - 48);
if (value < 0 || value > 59) {
return false;
}
array[arrayIndex] = value;
array[0] = pos;
return true;
}
private void parseVariableWidthDigits(CharSequence parseText, int minDigits, int maxDigits, int[] array) {
// scan the text to find the available number of digits up to maxDigits
// so long as the number available is minDigits or more, the input is valid
// then parse the number of available digits
int pos = array[0];
int available = 0;
char[] chars = new char[maxDigits];
for (int i = 0; i < maxDigits; i++) {
if (pos + 1 > parseText.length()) {
break;
}
char ch = parseText.charAt(pos++);
if (ch < '0' || ch > '9') {
pos--;
break;
}
chars[i] = ch;
available++;
}
if (available < minDigits) {
array[0] = ~array[0];
return;
}
switch (available) {
case 1:
array[1] = (chars[0] - 48);
break;
case 2:
array[1] = ((chars[0] - 48) * 10 + (chars[1] - 48));
break;
case 3:
array[1] = (chars[0] - 48);
array[2] = ((chars[1] - 48) * 10 + (chars[2] - 48));
break;
case 4:
array[1] = ((chars[0] - 48) * 10 + (chars[1] - 48));
array[2] = ((chars[2] - 48) * 10 + (chars[3] - 48));
break;
case 5:
array[1] = (chars[0] - 48);
array[2] = ((chars[1] - 48) * 10 + (chars[2] - 48));
array[3] = ((chars[3] - 48) * 10 + (chars[4] - 48));
break;
case 6:
array[1] = ((chars[0] - 48) * 10 + (chars[1] - 48));
array[2] = ((chars[2] - 48) * 10 + (chars[3] - 48));
array[3] = ((chars[4] - 48) * 10 + (chars[5] - 48));
break;
}
array[0] = pos;
}
@Override
public String toString() {
String converted = noOffsetText.replace("'", "''");
return "Offset(" + PATTERNS[type] + ",'" + converted + "')";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses an offset ID.
*/
static final class LocalizedOffsetIdPrinterParser implements DateTimePrinterParser {
private final TextStyle style;
/**
* Constructor.
*
* @param style the style, not null
*/
LocalizedOffsetIdPrinterParser(TextStyle style) {
this.style = style;
}
private static StringBuilder appendHMS(StringBuilder buf, int t) {
return buf.append((char)(t / 10 + '0'))
.append((char)(t % 10 + '0'));
}
@Override
public boolean format(DateTimePrintContext context, StringBuilder buf) {
Long offsetSecs = context.getValue(OFFSET_SECONDS);
if (offsetSecs == null) {
return false;
}
String key = "timezone.gmtZeroFormat";
String gmtText = DateTimeTextProvider.getLocalizedResource(key, context.getLocale());
if (gmtText == null) {
gmtText = "GMT"; // Default to "GMT"
}
buf.append(gmtText);
int totalSecs = Math.toIntExact(offsetSecs);
if (totalSecs != 0) {
int absHours = Math.abs((totalSecs / 3600) % 100); // anything larger than 99 silently dropped
int absMinutes = Math.abs((totalSecs / 60) % 60);
int absSeconds = Math.abs(totalSecs % 60);
buf.append(totalSecs < 0 ? "-" : "+");
if (style == TextStyle.FULL) {
appendHMS(buf, absHours);
buf.append(':');
appendHMS(buf, absMinutes);
if (absSeconds != 0) {
buf.append(':');
appendHMS(buf, absSeconds);
}
} else {
if (absHours >= 10) {
buf.append((char)(absHours / 10 + '0'));
}
buf.append((char)(absHours % 10 + '0'));
if (absMinutes != 0 || absSeconds != 0) {
buf.append(':');
appendHMS(buf, absMinutes);
if (absSeconds != 0) {
buf.append(':');
appendHMS(buf, absSeconds);
}
}
}
}
return true;
}
int getDigit(CharSequence text, int position) {
char c = text.charAt(position);
if (c < '0' || c > '9') {
return -1;
}
return c - '0';
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int pos = position;
int end = text.length();
String key = "timezone.gmtZeroFormat";
String gmtText = DateTimeTextProvider.getLocalizedResource(key, context.getLocale());
if (gmtText == null) {
gmtText = "GMT"; // Default to "GMT"
}
if (!context.subSequenceEquals(text, pos, gmtText, 0, gmtText.length())) {
return ~position;
}
pos += gmtText.length();
// parse normal plus/minus offset
int negative = 0;
if (pos == end) {
return context.setParsedField(OFFSET_SECONDS, 0, position, pos);
}
char sign = text.charAt(pos); // IOOBE if invalid position
if (sign == '+') {
negative = 1;
} else if (sign == '-') {
negative = -1;
} else {
return context.setParsedField(OFFSET_SECONDS, 0, position, pos);
}
pos++;
int h = 0;
int m = 0;
int s = 0;
if (style == TextStyle.FULL) {
int h1 = getDigit(text, pos++);
int h2 = getDigit(text, pos++);
if (h1 < 0 || h2 < 0 || text.charAt(pos++) != ':') {
return ~position;
}
h = h1 * 10 + h2;
int m1 = getDigit(text, pos++);
int m2 = getDigit(text, pos++);
if (m1 < 0 || m2 < 0) {
return ~position;
}
m = m1 * 10 + m2;
if (pos + 2 < end && text.charAt(pos) == ':') {
int s1 = getDigit(text, pos + 1);
int s2 = getDigit(text, pos + 2);
if (s1 >= 0 && s2 >= 0) {
s = s1 * 10 + s2;
pos += 3;
}
}
} else {
h = getDigit(text, pos++);
if (h < 0) {
return ~position;
}
if (pos < end) {
int h2 = getDigit(text, pos);
if (h2 >=0) {
h = h * 10 + h2;
pos++;
}
if (pos + 2 < end && text.charAt(pos) == ':') {
if (pos + 2 < end && text.charAt(pos) == ':') {
int m1 = getDigit(text, pos + 1);
int m2 = getDigit(text, pos + 2);
if (m1 >= 0 && m2 >= 0) {
m = m1 * 10 + m2;
pos += 3;
if (pos + 2 < end && text.charAt(pos) == ':') {
int s1 = getDigit(text, pos + 1);
int s2 = getDigit(text, pos + 2);
if (s1 >= 0 && s2 >= 0) {
s = s1 * 10 + s2;
pos += 3;
}
}
}
}
}
}
}
long offsetSecs = negative * (h * 3600L + m * 60L + s);
return context.setParsedField(OFFSET_SECONDS, offsetSecs, position, pos);
}
@Override
public String toString() {
return "LocalizedOffset(" + style + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a zone ID.
*/
static final class ZoneTextPrinterParser extends ZoneIdPrinterParser {
/** The text style to output. */
private final TextStyle textStyle;
/** The preferred zoneid map */
private Set preferredZones;
/** Display in generic time-zone format. True in case of pattern letter 'v' */
private final boolean isGeneric;
ZoneTextPrinterParser(TextStyle textStyle, Set preferredZones, boolean isGeneric) {
super(TemporalQueries.zone(), "ZoneText(" + textStyle + ")");
this.textStyle = Objects.requireNonNull(textStyle, "textStyle");
this.isGeneric = isGeneric;
if (preferredZones != null && preferredZones.size() != 0) {
this.preferredZones = new HashSet<>();
for (ZoneId id : preferredZones) {
this.preferredZones.add(id.getId());
}
}
}
private static final int STD = 0;
private static final int DST = 1;
private static final int GENERIC = 2;
private static final Map>> cache =
new ConcurrentHashMap<>();
private String getDisplayName(String id, int type, Locale locale) {
if (textStyle == TextStyle.NARROW) {
return null;
}
String[] names;
SoftReference