All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.util.ArrayList Maven / Gradle / Ivy

There is a newer version: 17.alpha.0.57
Show newest version
/*
 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
import jdk.internal.access.SharedSecrets;
import jdk.internal.util.ArraysSupport;

/**
 * Resizable-array implementation of the {@code List} interface.  Implements
 * all optional list operations, and permits all elements, including
 * {@code null}.  In addition to implementing the {@code List} interface,
 * this class provides methods to manipulate the size of the array that is
 * used internally to store the list.  (This class is roughly equivalent to
 * {@code Vector}, except that it is unsynchronized.)
 *
 * 

The {@code size}, {@code isEmpty}, {@code get}, {@code set}, * {@code iterator}, and {@code listIterator} operations run in constant * time. The {@code add} operation runs in amortized constant time, * that is, adding n elements requires O(n) time. All of the other operations * run in linear time (roughly speaking). The constant factor is low compared * to that for the {@code LinkedList} implementation. * *

Each {@code ArrayList} instance has a capacity. The capacity is * the size of the array used to store the elements in the list. It is always * at least as large as the list size. As elements are added to an ArrayList, * its capacity grows automatically. The details of the growth policy are not * specified beyond the fact that adding an element has constant amortized * time cost. * *

An application can increase the capacity of an {@code ArrayList} instance * before adding a large number of elements using the {@code ensureCapacity} * operation. This may reduce the amount of incremental reallocation. * *

Note that this implementation is not synchronized. * If multiple threads access an {@code ArrayList} instance concurrently, * and at least one of the threads modifies the list structurally, it * must be synchronized externally. (A structural modification is * any operation that adds or deletes one or more elements, or explicitly * resizes the backing array; merely setting the value of an element is not * a structural modification.) This is typically accomplished by * synchronizing on some object that naturally encapsulates the list. * * If no such object exists, the list should be "wrapped" using the * {@link Collections#synchronizedList Collections.synchronizedList} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the list:

 *   List list = Collections.synchronizedList(new ArrayList(...));
* *

* The iterators returned by this class's {@link #iterator() iterator} and * {@link #listIterator(int) listIterator} methods are fail-fast: * if the list is structurally modified at any time after the iterator is * created, in any way except through the iterator's own * {@link ListIterator#remove() remove} or * {@link ListIterator#add(Object) add} methods, the iterator will throw a * {@link ConcurrentModificationException}. Thus, in the face of * concurrent modification, the iterator fails quickly and cleanly, rather * than risking arbitrary, non-deterministic behavior at an undetermined * time in the future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class is a member of the * * Java Collections Framework. * * @param the type of elements in this list * * @author Josh Bloch * @author Neal Gafter * @see Collection * @see List * @see LinkedList * @see Vector * @since 1.2 */ public class ArrayList extends AbstractList implements List, RandomAccess, Cloneable, java.io.Serializable { @java.io.Serial private static final long serialVersionUID = 8683452581122892189L; /** * Default initial capacity. */ private static final int DEFAULT_CAPACITY = 10; /** * Shared empty array instance used for empty instances. */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * The array buffer into which the elements of the ArrayList are stored. * The capacity of the ArrayList is the length of this array buffer. Any * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA * will be expanded to DEFAULT_CAPACITY when the first element is added. */ transient Object[] elementData; // non-private to simplify nested class access /** * The size of the ArrayList (the number of elements it contains). * * @serial */ private int size; /** * Constructs an empty list with the specified initial capacity. * * @param initialCapacity the initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity * is negative */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /** * Constructs an empty list with an initial capacity of ten. */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public ArrayList(Collection c) { Object[] a = c.toArray(); if ((size = a.length) != 0) { if (c.getClass() == ArrayList.class) { elementData = a; } else { elementData = Arrays.copyOf(a, size, Object[].class); } } else { // replace with empty array. elementData = EMPTY_ELEMENTDATA; } } /** * Trims the capacity of this {@code ArrayList} instance to be the * list's current size. An application can use this operation to minimize * the storage of an {@code ArrayList} instance. */ public void trimToSize() { modCount++; if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } /** * Increases the capacity of this {@code ArrayList} instance, if * necessary, to ensure that it can hold at least the number of elements * specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */ public void ensureCapacity(int minCapacity) { if (minCapacity > elementData.length && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA && minCapacity <= DEFAULT_CAPACITY)) { modCount++; grow(minCapacity); } } /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity * @throws OutOfMemoryError if minCapacity is less than zero */ private Object[] grow(int minCapacity) { int oldCapacity = elementData.length; if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { int newCapacity = ArraysSupport.newLength(oldCapacity, minCapacity - oldCapacity, /* minimum growth */ oldCapacity >> 1 /* preferred growth */); return elementData = Arrays.copyOf(elementData, newCapacity); } else { return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)]; } } private Object[] grow() { return grow(size + 1); } /** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { return size; } /** * Returns {@code true} if this list contains no elements. * * @return {@code true} if this list contains no elements */ public boolean isEmpty() { return size == 0; } /** * Returns {@code true} if this list contains the specified element. * More formally, returns {@code true} if and only if this list contains * at least one element {@code e} such that * {@code Objects.equals(o, e)}. * * @param o element whose presence in this list is to be tested * @return {@code true} if this list contains the specified element */ public boolean contains(Object o) { return indexOf(o) >= 0; } /** * Returns the index of the first occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the lowest index {@code i} such that * {@code Objects.equals(o, get(i))}, * or -1 if there is no such index. */ public int indexOf(Object o) { return indexOfRange(o, 0, size); } int indexOfRange(Object o, int start, int end) { Object[] es = elementData; if (o == null) { for (int i = start; i < end; i++) { if (es[i] == null) { return i; } } } else { for (int i = start; i < end; i++) { if (o.equals(es[i])) { return i; } } } return -1; } /** * Returns the index of the last occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the highest index {@code i} such that * {@code Objects.equals(o, get(i))}, * or -1 if there is no such index. */ public int lastIndexOf(Object o) { return lastIndexOfRange(o, 0, size); } int lastIndexOfRange(Object o, int start, int end) { Object[] es = elementData; if (o == null) { for (int i = end - 1; i >= start; i--) { if (es[i] == null) { return i; } } } else { for (int i = end - 1; i >= start; i--) { if (o.equals(es[i])) { return i; } } } return -1; } /** * Returns a shallow copy of this {@code ArrayList} instance. (The * elements themselves are not copied.) * * @return a clone of this {@code ArrayList} instance */ public Object clone() { try { ArrayList v = (ArrayList) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } /** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this list. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this list in * proper sequence */ public Object[] toArray() { return Arrays.copyOf(elementData, size); } /** * Returns an array containing all of the elements in this list in proper * sequence (from first to last element); the runtime type of the returned * array is that of the specified array. If the list fits in the * specified array, it is returned therein. Otherwise, a new array is * allocated with the runtime type of the specified array and the size of * this list. * *

If the list fits in the specified array with room to spare * (i.e., the array has more elements than the list), the element in * the array immediately following the end of the collection is set to * {@code null}. (This is useful in determining the length of the * list only if the caller knows that the list does not contain * any null elements.) * * @param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public T[] toArray(T[] a) { if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } @SuppressWarnings("unchecked") static E elementAt(Object[] es, int index) { return (E) es[index]; } /** * Returns the element at the specified position in this list. * * @param index index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E get(int index) { Objects.checkIndex(index, size); return elementData(index); } /** * Replaces the element at the specified position in this list with * the specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */ public E set(int index, E element) { Objects.checkIndex(index, size); E oldValue = elementData(index); elementData[index] = element; return oldValue; } /** * This helper method split out from add(E) to keep method * bytecode size under 35 (the -XX:MaxInlineSize default value), * which helps when add(E) is called in a C1-compiled loop. */ private void add(E e, Object[] elementData, int s) { if (s == elementData.length) elementData = grow(); elementData[s] = e; size = s + 1; } /** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return {@code true} (as specified by {@link Collection#add}) */ public boolean add(E e) { modCount++; add(e, elementData, size); return true; } /** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */ public void add(int index, E element) { rangeCheckForAdd(index); modCount++; final int s; Object[] elementData; if ((s = size) == (elementData = this.elementData).length) elementData = grow(); System.arraycopy(elementData, index, elementData, index + 1, s - index); elementData[index] = element; size = s + 1; } /** * Removes the element at the specified position in this list. * Shifts any subsequent elements to the left (subtracts one from their * indices). * * @param index the index of the element to be removed * @return the element that was removed from the list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E remove(int index) { Objects.checkIndex(index, size); final Object[] es = elementData; @SuppressWarnings("unchecked") E oldValue = (E) es[index]; fastRemove(es, index); return oldValue; } /** * {@inheritDoc} */ public boolean equals(Object o) { if (o == this) { return true; } if (!(o instanceof List)) { return false; } final int expectedModCount = modCount; // ArrayList can be subclassed and given arbitrary behavior, but we can // still deal with the common case where o is ArrayList precisely boolean equal = (o.getClass() == ArrayList.class) ? equalsArrayList((ArrayList) o) : equalsRange((List) o, 0, size); checkForComodification(expectedModCount); return equal; } boolean equalsRange(List other, int from, int to) { final Object[] es = elementData; if (to > es.length) { throw new ConcurrentModificationException(); } var oit = other.iterator(); for (; from < to; from++) { if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) { return false; } } return !oit.hasNext(); } private boolean equalsArrayList(ArrayList other) { final int otherModCount = other.modCount; final int s = size; boolean equal; if (equal = (s == other.size)) { final Object[] otherEs = other.elementData; final Object[] es = elementData; if (s > es.length || s > otherEs.length) { throw new ConcurrentModificationException(); } for (int i = 0; i < s; i++) { if (!Objects.equals(es[i], otherEs[i])) { equal = false; break; } } } other.checkForComodification(otherModCount); return equal; } private void checkForComodification(final int expectedModCount) { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * {@inheritDoc} */ public int hashCode() { int expectedModCount = modCount; int hash = hashCodeRange(0, size); checkForComodification(expectedModCount); return hash; } int hashCodeRange(int from, int to) { final Object[] es = elementData; if (to > es.length) { throw new ConcurrentModificationException(); } int hashCode = 1; for (int i = from; i < to; i++) { Object e = es[i]; hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode()); } return hashCode; } /** * Removes the first occurrence of the specified element from this list, * if it is present. If the list does not contain the element, it is * unchanged. More formally, removes the element with the lowest index * {@code i} such that * {@code Objects.equals(o, get(i))} * (if such an element exists). Returns {@code true} if this list * contained the specified element (or equivalently, if this list * changed as a result of the call). * * @param o element to be removed from this list, if present * @return {@code true} if this list contained the specified element */ public boolean remove(Object o) { final Object[] es = elementData; final int size = this.size; int i = 0; found: { if (o == null) { for (; i < size; i++) if (es[i] == null) break found; } else { for (; i < size; i++) if (o.equals(es[i])) break found; } return false; } fastRemove(es, i); return true; } /** * Private remove method that skips bounds checking and does not * return the value removed. */ private void fastRemove(Object[] es, int i) { modCount++; final int newSize; if ((newSize = size - 1) > i) System.arraycopy(es, i + 1, es, i, newSize - i); es[size = newSize] = null; } /** * Removes all of the elements from this list. The list will * be empty after this call returns. */ public void clear() { modCount++; final Object[] es = elementData; for (int to = size, i = size = 0; i < to; i++) es[i] = null; } /** * Appends all of the elements in the specified collection to the end of * this list, in the order that they are returned by the * specified collection's Iterator. The behavior of this operation is * undefined if the specified collection is modified while the operation * is in progress. (This implies that the behavior of this call is * undefined if the specified collection is this list, and this * list is nonempty.) * * @param c collection containing elements to be added to this list * @return {@code true} if this list changed as a result of the call * @throws NullPointerException if the specified collection is null */ public boolean addAll(Collection c) { Object[] a = c.toArray(); modCount++; int numNew = a.length; if (numNew == 0) return false; Object[] elementData; final int s; if (numNew > (elementData = this.elementData).length - (s = size)) elementData = grow(s + numNew); System.arraycopy(a, 0, elementData, s, numNew); size = s + numNew; return true; } /** * Inserts all of the elements in the specified collection into this * list, starting at the specified position. Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices). The new elements will appear * in the list in the order that they are returned by the * specified collection's iterator. * * @param index index at which to insert the first element from the * specified collection * @param c collection containing elements to be added to this list * @return {@code true} if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */ public boolean addAll(int index, Collection c) { rangeCheckForAdd(index); Object[] a = c.toArray(); modCount++; int numNew = a.length; if (numNew == 0) return false; Object[] elementData; final int s; if (numNew > (elementData = this.elementData).length - (s = size)) elementData = grow(s + numNew); int numMoved = s - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size = s + numNew; return true; } /** * Removes from this list all of the elements whose index is between * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. * Shifts any succeeding elements to the left (reduces their index). * This call shortens the list by {@code (toIndex - fromIndex)} elements. * (If {@code toIndex==fromIndex}, this operation has no effect.) * * @throws IndexOutOfBoundsException if {@code fromIndex} or * {@code toIndex} is out of range * ({@code fromIndex < 0 || * toIndex > size() || * toIndex < fromIndex}) */ protected void removeRange(int fromIndex, int toIndex) { if (fromIndex > toIndex) { throw new IndexOutOfBoundsException( outOfBoundsMsg(fromIndex, toIndex)); } modCount++; shiftTailOverGap(elementData, fromIndex, toIndex); } /** Erases the gap from lo to hi, by sliding down following elements. */ private void shiftTailOverGap(Object[] es, int lo, int hi) { System.arraycopy(es, hi, es, lo, size - hi); for (int to = size, i = (size -= hi - lo); i < to; i++) es[i] = null; } /** * A version of rangeCheck used by add and addAll. */ private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } /** * A version used in checking (fromIndex > toIndex) condition */ private static String outOfBoundsMsg(int fromIndex, int toIndex) { return "From Index: " + fromIndex + " > To Index: " + toIndex; } /** * Removes from this list all of its elements that are contained in the * specified collection. * * @param c collection containing elements to be removed from this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (optional) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (optional), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean removeAll(Collection c) { return batchRemove(c, false, 0, size); } /** * Retains only the elements in this list that are contained in the * specified collection. In other words, removes from this list all * of its elements that are not contained in the specified collection. * * @param c collection containing elements to be retained in this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (optional) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (optional), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean retainAll(Collection c) { return batchRemove(c, true, 0, size); } boolean batchRemove(Collection c, boolean complement, final int from, final int end) { Objects.requireNonNull(c); final Object[] es = elementData; int r; // Optimize for initial run of survivors for (r = from;; r++) { if (r == end) return false; if (c.contains(es[r]) != complement) break; } int w = r++; try { for (Object e; r < end; r++) if (c.contains(e = es[r]) == complement) es[w++] = e; } catch (Throwable ex) { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. System.arraycopy(es, r, es, w, end - r); w += end - r; throw ex; } finally { modCount += end - w; shiftTailOverGap(es, w, end); } return true; } /** * Saves the state of the {@code ArrayList} instance to a stream * (that is, serializes it). * * @param s the stream * @throws java.io.IOException if an I/O error occurs * @serialData The length of the array backing the {@code ArrayList} * instance is emitted (int), followed by all of its elements * (each an {@code Object}) in the proper order. */ @java.io.Serial private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioral compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i=0; i

The returned list iterator is fail-fast. * * @throws IndexOutOfBoundsException {@inheritDoc} */ public ListIterator listIterator(int index) { rangeCheckForAdd(index); return new ListItr(index); } /** * Returns a list iterator over the elements in this list (in proper * sequence). * *

The returned list iterator is fail-fast. * * @see #listIterator(int) */ public ListIterator listIterator() { return new ListItr(0); } /** * Returns an iterator over the elements in this list in proper sequence. * *

The returned iterator is fail-fast. * * @return an iterator over the elements in this list in proper sequence */ public Iterator iterator() { return new Itr(); } /** * An optimized version of AbstractList.Itr */ private class Itr implements Iterator { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; // prevent creating a synthetic constructor Itr() {} public boolean hasNext() { return cursor != size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } @Override public void forEachRemaining(Consumer action) { Objects.requireNonNull(action); final int size = ArrayList.this.size; int i = cursor; if (i < size) { final Object[] es = elementData; if (i >= es.length) throw new ConcurrentModificationException(); for (; i < size && modCount == expectedModCount; i++) action.accept(elementAt(es, i)); // update once at end to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * An optimized version of AbstractList.ListItr */ private class ListItr extends Itr implements ListIterator { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * Returns a view of the portion of this list between the specified * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If * {@code fromIndex} and {@code toIndex} are equal, the returned list is * empty.) The returned list is backed by this list, so non-structural * changes in the returned list are reflected in this list, and vice-versa. * The returned list supports all of the optional list operations. * *

This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays). Any operation that expects * a list can be used as a range operation by passing a subList view * instead of a whole list. For example, the following idiom * removes a range of elements from a list: *

     *      list.subList(from, to).clear();
     * 
* Similar idioms may be constructed for {@link #indexOf(Object)} and * {@link #lastIndexOf(Object)}, and all of the algorithms in the * {@link Collections} class can be applied to a subList. * *

The semantics of the list returned by this method become undefined if * the backing list (i.e., this list) is structurally modified in * any way other than via the returned list. (Structural modifications are * those that change the size of this list, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * * @throws IndexOutOfBoundsException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public List subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList<>(this, fromIndex, toIndex); } private static class SubList extends AbstractList implements RandomAccess { private final ArrayList root; private final SubList parent; private final int offset; private int size; /** * Constructs a sublist of an arbitrary ArrayList. */ public SubList(ArrayList root, int fromIndex, int toIndex) { this.root = root; this.parent = null; this.offset = fromIndex; this.size = toIndex - fromIndex; this.modCount = root.modCount; } /** * Constructs a sublist of another SubList. */ private SubList(SubList parent, int fromIndex, int toIndex) { this.root = parent.root; this.parent = parent; this.offset = parent.offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = parent.modCount; } public E set(int index, E element) { Objects.checkIndex(index, size); checkForComodification(); E oldValue = root.elementData(offset + index); root.elementData[offset + index] = element; return oldValue; } public E get(int index) { Objects.checkIndex(index, size); checkForComodification(); return root.elementData(offset + index); } public int size() { checkForComodification(); return size; } public void add(int index, E element) { rangeCheckForAdd(index); checkForComodification(); root.add(offset + index, element); updateSizeAndModCount(1); } public E remove(int index) { Objects.checkIndex(index, size); checkForComodification(); E result = root.remove(offset + index); updateSizeAndModCount(-1); return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); root.removeRange(offset + fromIndex, offset + toIndex); updateSizeAndModCount(fromIndex - toIndex); } public boolean addAll(Collection c) { return addAll(this.size, c); } public boolean addAll(int index, Collection c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); root.addAll(offset + index, c); updateSizeAndModCount(cSize); return true; } public void replaceAll(UnaryOperator operator) { root.replaceAllRange(operator, offset, offset + size); } public boolean removeAll(Collection c) { return batchRemove(c, false); } public boolean retainAll(Collection c) { return batchRemove(c, true); } private boolean batchRemove(Collection c, boolean complement) { checkForComodification(); int oldSize = root.size; boolean modified = root.batchRemove(c, complement, offset, offset + size); if (modified) updateSizeAndModCount(root.size - oldSize); return modified; } public boolean removeIf(Predicate filter) { checkForComodification(); int oldSize = root.size; boolean modified = root.removeIf(filter, offset, offset + size); if (modified) updateSizeAndModCount(root.size - oldSize); return modified; } public Object[] toArray() { checkForComodification(); return Arrays.copyOfRange(root.elementData, offset, offset + size); } @SuppressWarnings("unchecked") public T[] toArray(T[] a) { checkForComodification(); if (a.length < size) return (T[]) Arrays.copyOfRange( root.elementData, offset, offset + size, a.getClass()); System.arraycopy(root.elementData, offset, a, 0, size); if (a.length > size) a[size] = null; return a; } public boolean equals(Object o) { if (o == this) { return true; } if (!(o instanceof List)) { return false; } boolean equal = root.equalsRange((List)o, offset, offset + size); checkForComodification(); return equal; } public int hashCode() { int hash = root.hashCodeRange(offset, offset + size); checkForComodification(); return hash; } public int indexOf(Object o) { int index = root.indexOfRange(o, offset, offset + size); checkForComodification(); return index >= 0 ? index - offset : -1; } public int lastIndexOf(Object o) { int index = root.lastIndexOfRange(o, offset, offset + size); checkForComodification(); return index >= 0 ? index - offset : -1; } public boolean contains(Object o) { return indexOf(o) >= 0; } public Iterator iterator() { return listIterator(); } public ListIterator listIterator(int index) { checkForComodification(); rangeCheckForAdd(index); return new ListIterator() { int cursor = index; int lastRet = -1; int expectedModCount = SubList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = root.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = root.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } public void forEachRemaining(Consumer action) { Objects.requireNonNull(action); final int size = SubList.this.size; int i = cursor; if (i < size) { final Object[] es = root.elementData; if (offset + i >= es.length) throw new ConcurrentModificationException(); for (; i < size && root.modCount == expectedModCount; i++) action.accept(elementAt(es, offset + i)); // update once at end to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = SubList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { root.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = SubList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (root.modCount != expectedModCount) throw new ConcurrentModificationException(); } }; } public List subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList<>(this, fromIndex, toIndex); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; } private void checkForComodification() { if (root.modCount != modCount) throw new ConcurrentModificationException(); } private void updateSizeAndModCount(int sizeChange) { SubList slist = this; do { slist.size += sizeChange; slist.modCount = root.modCount; slist = slist.parent; } while (slist != null); } public Spliterator spliterator() { checkForComodification(); // ArrayListSpliterator not used here due to late-binding return new Spliterator() { private int index = offset; // current index, modified on advance/split private int fence = -1; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) if ((hi = fence) < 0) { expectedModCount = modCount; hi = fence = offset + size; } return hi; } public ArrayList.ArrayListSpliterator trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; // ArrayListSpliterator can be used here as the source is already bound return (lo >= mid) ? null : // divide range in half unless too small root.new ArrayListSpliterator(lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumer action) { Objects.requireNonNull(action); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)root.elementData[i]; action.accept(e); if (root.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer action) { Objects.requireNonNull(action); int i, hi, mc; // hoist accesses and checks from loop ArrayList lst = root; Object[] a; if ((a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = modCount; hi = offset + size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return getFence() - index; } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } }; } } /** * @throws NullPointerException {@inheritDoc} */ @Override public void forEach(Consumer action) { Objects.requireNonNull(action); final int expectedModCount = modCount; final Object[] es = elementData; final int size = this.size; for (int i = 0; modCount == expectedModCount && i < size; i++) action.accept(elementAt(es, i)); if (modCount != expectedModCount) throw new ConcurrentModificationException(); } /** * Creates a late-binding * and fail-fast {@link Spliterator} over the elements in this * list. * *

The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * Overriding implementations should document the reporting of additional * characteristic values. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator spliterator() { return new ArrayListSpliterator(0, -1, 0); } /** Index-based split-by-two, lazily initialized Spliterator */ final class ArrayListSpliterator implements Spliterator { /* * If ArrayLists were immutable, or structurally immutable (no * adds, removes, etc), we could implement their spliterators * with Arrays.spliterator. Instead we detect as much * interference during traversal as practical without * sacrificing much performance. We rely primarily on * modCounts. These are not guaranteed to detect concurrency * violations, and are sometimes overly conservative about * within-thread interference, but detect enough problems to * be worthwhile in practice. To carry this out, we (1) lazily * initialize fence and expectedModCount until the latest * point that we need to commit to the state we are checking * against; thus improving precision. (This doesn't apply to * SubLists, that create spliterators with current non-lazy * values). (2) We perform only a single * ConcurrentModificationException check at the end of forEach * (the most performance-sensitive method). When using forEach * (as opposed to iterators), we can normally only detect * interference after actions, not before. Further * CME-triggering checks apply to all other possible * violations of assumptions for example null or too-small * elementData array given its size(), that could only have * occurred due to interference. This allows the inner loop * of forEach to run without any further checks, and * simplifies lambda-resolution. While this does entail a * number of checks, note that in the common case of * list.stream().forEach(a), no checks or other computation * occur anywhere other than inside forEach itself. The other * less-often-used methods cannot take advantage of most of * these streamlinings. */ private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Creates new spliterator covering the given range. */ ArrayListSpliterator(int origin, int fence, int expectedModCount) { this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) if ((hi = fence) < 0) { expectedModCount = modCount; hi = fence = size; } return hi; } public ArrayListSpliterator trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator(lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumer action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)elementData[i]; action.accept(e); if (modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer action) { int i, hi, mc; // hoist accesses and checks from loop Object[] a; if (action == null) throw new NullPointerException(); if ((a = elementData) != null) { if ((hi = fence) < 0) { mc = modCount; hi = size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return getFence() - index; } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } // A tiny bit set implementation private static long[] nBits(int n) { return new long[((n - 1) >> 6) + 1]; } private static void setBit(long[] bits, int i) { bits[i >> 6] |= 1L << i; } private static boolean isClear(long[] bits, int i) { return (bits[i >> 6] & (1L << i)) == 0; } /** * @throws NullPointerException {@inheritDoc} */ @Override public boolean removeIf(Predicate filter) { return removeIf(filter, 0, size); } /** * Removes all elements satisfying the given predicate, from index * i (inclusive) to index end (exclusive). */ boolean removeIf(Predicate filter, int i, final int end) { Objects.requireNonNull(filter); int expectedModCount = modCount; final Object[] es = elementData; // Optimize for initial run of survivors for (; i < end && !filter.test(elementAt(es, i)); i++) ; // Tolerate predicates that reentrantly access the collection for // read (but writers still get CME), so traverse once to find // elements to delete, a second pass to physically expunge. if (i < end) { final int beg = i; final long[] deathRow = nBits(end - beg); deathRow[0] = 1L; // set bit 0 for (i = beg + 1; i < end; i++) if (filter.test(elementAt(es, i))) setBit(deathRow, i - beg); if (modCount != expectedModCount) throw new ConcurrentModificationException(); modCount++; int w = beg; for (i = beg; i < end; i++) if (isClear(deathRow, i - beg)) es[w++] = es[i]; shiftTailOverGap(es, w, end); return true; } else { if (modCount != expectedModCount) throw new ConcurrentModificationException(); return false; } } @Override public void replaceAll(UnaryOperator operator) { replaceAllRange(operator, 0, size); // TODO(8203662): remove increment of modCount from ... modCount++; } private void replaceAllRange(UnaryOperator operator, int i, int end) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final Object[] es = elementData; for (; modCount == expectedModCount && i < end; i++) es[i] = operator.apply(elementAt(es, i)); if (modCount != expectedModCount) throw new ConcurrentModificationException(); } @Override @SuppressWarnings("unchecked") public void sort(Comparator c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) throw new ConcurrentModificationException(); modCount++; } void checkInvariants() { // assert size >= 0; // assert size == elementData.length || elementData[size] == null; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy