All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.util.HashSet Maven / Gradle / Ivy

There is a newer version: 17.alpha.0.57
Show newest version
/*
 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

import java.io.InvalidObjectException;
import jdk.internal.access.SharedSecrets;

/**
 * This class implements the {@code Set} interface, backed by a hash table
 * (actually a {@code HashMap} instance).  It makes no guarantees as to the
 * iteration order of the set; in particular, it does not guarantee that the
 * order will remain constant over time.  This class permits the {@code null}
 * element.
 *
 * 

This class offers constant time performance for the basic operations * ({@code add}, {@code remove}, {@code contains} and {@code size}), * assuming the hash function disperses the elements properly among the * buckets. Iterating over this set requires time proportional to the sum of * the {@code HashSet} instance's size (the number of elements) plus the * "capacity" of the backing {@code HashMap} instance (the number of * buckets). Thus, it's very important not to set the initial capacity too * high (or the load factor too low) if iteration performance is important. * *

Note that this implementation is not synchronized. * If multiple threads access a hash set concurrently, and at least one of * the threads modifies the set, it must be synchronized externally. * This is typically accomplished by synchronizing on some object that * naturally encapsulates the set. * * If no such object exists, the set should be "wrapped" using the * {@link Collections#synchronizedSet Collections.synchronizedSet} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the set:

 *   Set s = Collections.synchronizedSet(new HashSet(...));
* *

The iterators returned by this class's {@code iterator} method are * fail-fast: if the set is modified at any time after the iterator is * created, in any way except through the iterator's own {@code remove} * method, the Iterator throws a {@link ConcurrentModificationException}. * Thus, in the face of concurrent modification, the iterator fails quickly * and cleanly, rather than risking arbitrary, non-deterministic behavior at * an undetermined time in the future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class is a member of the * * Java Collections Framework. * * @param the type of elements maintained by this set * * @author Josh Bloch * @author Neal Gafter * @see Collection * @see Set * @see TreeSet * @see HashMap * @since 1.2 */ public class HashSet extends AbstractSet implements Set, Cloneable, java.io.Serializable { @java.io.Serial static final long serialVersionUID = -5024744406713321676L; private transient HashMap map; // Dummy value to associate with an Object in the backing Map private static final Object PRESENT = new Object(); /** * Constructs a new, empty set; the backing {@code HashMap} instance has * default initial capacity (16) and load factor (0.75). */ public HashSet() { map = new HashMap<>(); } /** * Constructs a new set containing the elements in the specified * collection. The {@code HashMap} is created with default load factor * (0.75) and an initial capacity sufficient to contain the elements in * the specified collection. * * @param c the collection whose elements are to be placed into this set * @throws NullPointerException if the specified collection is null */ public HashSet(Collection c) { map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16)); addAll(c); } /** * Constructs a new, empty set; the backing {@code HashMap} instance has * the specified initial capacity and the specified load factor. * * @param initialCapacity the initial capacity of the hash map * @param loadFactor the load factor of the hash map * @throws IllegalArgumentException if the initial capacity is less * than zero, or if the load factor is nonpositive */ public HashSet(int initialCapacity, float loadFactor) { map = new HashMap<>(initialCapacity, loadFactor); } /** * Constructs a new, empty set; the backing {@code HashMap} instance has * the specified initial capacity and default load factor (0.75). * * @param initialCapacity the initial capacity of the hash table * @throws IllegalArgumentException if the initial capacity is less * than zero */ public HashSet(int initialCapacity) { map = new HashMap<>(initialCapacity); } /** * Constructs a new, empty linked hash set. (This package private * constructor is only used by LinkedHashSet.) The backing * HashMap instance is a LinkedHashMap with the specified initial * capacity and the specified load factor. * * @param initialCapacity the initial capacity of the hash map * @param loadFactor the load factor of the hash map * @param dummy ignored (distinguishes this * constructor from other int, float constructor.) * @throws IllegalArgumentException if the initial capacity is less * than zero, or if the load factor is nonpositive */ HashSet(int initialCapacity, float loadFactor, boolean dummy) { map = new LinkedHashMap<>(initialCapacity, loadFactor); } /** * Returns an iterator over the elements in this set. The elements * are returned in no particular order. * * @return an Iterator over the elements in this set * @see ConcurrentModificationException */ public Iterator iterator() { return map.keySet().iterator(); } /** * Returns the number of elements in this set (its cardinality). * * @return the number of elements in this set (its cardinality) */ public int size() { return map.size(); } /** * Returns {@code true} if this set contains no elements. * * @return {@code true} if this set contains no elements */ public boolean isEmpty() { return map.isEmpty(); } /** * Returns {@code true} if this set contains the specified element. * More formally, returns {@code true} if and only if this set * contains an element {@code e} such that * {@code Objects.equals(o, e)}. * * @param o element whose presence in this set is to be tested * @return {@code true} if this set contains the specified element */ public boolean contains(Object o) { return map.containsKey(o); } /** * Adds the specified element to this set if it is not already present. * More formally, adds the specified element {@code e} to this set if * this set contains no element {@code e2} such that * {@code Objects.equals(e, e2)}. * If this set already contains the element, the call leaves the set * unchanged and returns {@code false}. * * @param e element to be added to this set * @return {@code true} if this set did not already contain the specified * element */ public boolean add(E e) { return map.put(e, PRESENT)==null; } /** * Removes the specified element from this set if it is present. * More formally, removes an element {@code e} such that * {@code Objects.equals(o, e)}, * if this set contains such an element. Returns {@code true} if * this set contained the element (or equivalently, if this set * changed as a result of the call). (This set will not contain the * element once the call returns.) * * @param o object to be removed from this set, if present * @return {@code true} if the set contained the specified element */ public boolean remove(Object o) { return map.remove(o)==PRESENT; } /** * Removes all of the elements from this set. * The set will be empty after this call returns. */ public void clear() { map.clear(); } /** * Returns a shallow copy of this {@code HashSet} instance: the elements * themselves are not cloned. * * @return a shallow copy of this set */ @SuppressWarnings("unchecked") public Object clone() { try { HashSet newSet = (HashSet) super.clone(); newSet.map = (HashMap) map.clone(); return newSet; } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Save the state of this {@code HashSet} instance to a stream (that is, * serialize it). * * @serialData The capacity of the backing {@code HashMap} instance * (int), and its load factor (float) are emitted, followed by * the size of the set (the number of elements it contains) * (int), followed by all of its elements (each an Object) in * no particular order. */ @java.io.Serial private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out HashMap capacity and load factor s.writeInt(map.capacity()); s.writeFloat(map.loadFactor()); // Write out size s.writeInt(map.size()); // Write out all elements in the proper order. for (E e : map.keySet()) s.writeObject(e); } /** * Reconstitute the {@code HashSet} instance from a stream (that is, * deserialize it). */ @java.io.Serial private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read capacity and verify non-negative. int capacity = s.readInt(); if (capacity < 0) { throw new InvalidObjectException("Illegal capacity: " + capacity); } // Read load factor and verify positive and non NaN. float loadFactor = s.readFloat(); if (loadFactor <= 0 || Float.isNaN(loadFactor)) { throw new InvalidObjectException("Illegal load factor: " + loadFactor); } // Read size and verify non-negative. int size = s.readInt(); if (size < 0) { throw new InvalidObjectException("Illegal size: " + size); } // Set the capacity according to the size and load factor ensuring that // the HashMap is at least 25% full but clamping to maximum capacity. capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f), HashMap.MAXIMUM_CAPACITY); // Constructing the backing map will lazily create an array when the first element is // added, so check it before construction. Call HashMap.tableSizeFor to compute the // actual allocation size. Check Map.Entry[].class since it's the nearest public type to // what is actually created. SharedSecrets.getJavaObjectInputStreamAccess() .checkArray(s, Map.Entry[].class, HashMap.tableSizeFor(capacity)); // Create backing HashMap map = (((HashSet)this) instanceof LinkedHashSet ? new LinkedHashMap<>(capacity, loadFactor) : new HashMap<>(capacity, loadFactor)); // Read in all elements in the proper order. for (int i=0; ilate-binding * and fail-fast {@link Spliterator} over the elements in this * set. * *

The {@code Spliterator} reports {@link Spliterator#SIZED} and * {@link Spliterator#DISTINCT}. Overriding implementations should document * the reporting of additional characteristic values. * * @return a {@code Spliterator} over the elements in this set * @since 1.8 */ public Spliterator spliterator() { return new HashMap.KeySpliterator<>(map, 0, -1, 0, 0); } @Override public Object[] toArray() { return map.keysToArray(new Object[map.size()]); } @Override public T[] toArray(T[] a) { return map.keysToArray(map.prepareArray(a)); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy