java.util.Hashtable Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 1994, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.io.*;
import java.util.function.BiConsumer;
import java.util.function.Function;
import java.util.function.BiFunction;
import jdk.internal.access.SharedSecrets;
/**
* This class implements a hash table, which maps keys to values. Any
* non-{@code null} object can be used as a key or as a value.
*
* To successfully store and retrieve objects from a hashtable, the
* objects used as keys must implement the {@code hashCode}
* method and the {@code equals} method.
*
* An instance of {@code Hashtable} has two parameters that affect its
* performance: initial capacity and load factor. The
* capacity is the number of buckets in the hash table, and the
* initial capacity is simply the capacity at the time the hash table
* is created. Note that the hash table is open: in the case of a "hash
* collision", a single bucket stores multiple entries, which must be searched
* sequentially. The load factor is a measure of how full the hash
* table is allowed to get before its capacity is automatically increased.
* The initial capacity and load factor parameters are merely hints to
* the implementation. The exact details as to when and whether the rehash
* method is invoked are implementation-dependent.
*
* Generally, the default load factor (.75) offers a good tradeoff between
* time and space costs. Higher values decrease the space overhead but
* increase the time cost to look up an entry (which is reflected in most
* {@code Hashtable} operations, including {@code get} and {@code put}).
*
* The initial capacity controls a tradeoff between wasted space and the
* need for {@code rehash} operations, which are time-consuming.
* No {@code rehash} operations will ever occur if the initial
* capacity is greater than the maximum number of entries the
* {@code Hashtable} will contain divided by its load factor. However,
* setting the initial capacity too high can waste space.
*
* If many entries are to be made into a {@code Hashtable},
* creating it with a sufficiently large capacity may allow the
* entries to be inserted more efficiently than letting it perform
* automatic rehashing as needed to grow the table.
*
* This example creates a hashtable of numbers. It uses the names of
* the numbers as keys:
*
{@code
* Hashtable numbers
* = new Hashtable();
* numbers.put("one", 1);
* numbers.put("two", 2);
* numbers.put("three", 3);}
*
* To retrieve a number, use the following code:
*
{@code
* Integer n = numbers.get("two");
* if (n != null) {
* System.out.println("two = " + n);
* }}
*
* The iterators returned by the {@code iterator} method of the collections
* returned by all of this class's "collection view methods" are
* fail-fast: if the Hashtable is structurally modified at any time
* after the iterator is created, in any way except through the iterator's own
* {@code remove} method, the iterator will throw a {@link
* ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the future.
* The Enumerations returned by Hashtable's {@link #keys keys} and
* {@link #elements elements} methods are not fail-fast; if the
* Hashtable is structurally modified at any time after the enumeration is
* created then the results of enumerating are undefined.
*
*
Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw {@code ConcurrentModificationException} on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: the fail-fast behavior of iterators
* should be used only to detect bugs.
*
*
As of the Java 2 platform v1.2, this class was retrofitted to
* implement the {@link Map} interface, making it a member of the
*
*
* Java Collections Framework. Unlike the new collection
* implementations, {@code Hashtable} is synchronized. If a
* thread-safe implementation is not needed, it is recommended to use
* {@link HashMap} in place of {@code Hashtable}. If a thread-safe
* highly-concurrent implementation is desired, then it is recommended
* to use {@link java.util.concurrent.ConcurrentHashMap} in place of
* {@code Hashtable}.
*
* @param the type of keys maintained by this map
* @param the type of mapped values
*
* @author Arthur van Hoff
* @author Josh Bloch
* @author Neal Gafter
* @see Object#equals(java.lang.Object)
* @see Object#hashCode()
* @see Hashtable#rehash()
* @see Collection
* @see Map
* @see HashMap
* @see TreeMap
* @since 1.0
*/
public class Hashtable
extends Dictionary
implements Map, Cloneable, java.io.Serializable {
/**
* The hash table data.
*/
private transient Entry,?>[] table;
/**
* The total number of entries in the hash table.
*/
private transient int count;
/**
* The table is rehashed when its size exceeds this threshold. (The
* value of this field is (int)(capacity * loadFactor).)
*
* @serial
*/
private int threshold;
/**
* The load factor for the hashtable.
*
* @serial
*/
private float loadFactor;
/**
* The number of times this Hashtable has been structurally modified
* Structural modifications are those that change the number of entries in
* the Hashtable or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the Hashtable fail-fast. (See ConcurrentModificationException).
*/
private transient int modCount = 0;
/** use serialVersionUID from JDK 1.0.2 for interoperability */
@java.io.Serial
private static final long serialVersionUID = 1421746759512286392L;
/**
* Constructs a new, empty hashtable with the specified initial
* capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hashtable.
* @param loadFactor the load factor of the hashtable.
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive.
*/
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
/**
* Constructs a new, empty hashtable with the specified initial capacity
* and default load factor (0.75).
*
* @param initialCapacity the initial capacity of the hashtable.
* @throws IllegalArgumentException if the initial capacity is less
* than zero.
*/
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
/**
* Constructs a new, empty hashtable with a default initial capacity (11)
* and load factor (0.75).
*/
public Hashtable() {
this(11, 0.75f);
}
/**
* Constructs a new hashtable with the same mappings as the given
* Map. The hashtable is created with an initial capacity sufficient to
* hold the mappings in the given Map and a default load factor (0.75).
*
* @param t the map whose mappings are to be placed in this map.
* @throws NullPointerException if the specified map is null.
* @since 1.2
*/
public Hashtable(Map extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
}
/**
* A constructor chained from {@link Properties} keeps Hashtable fields
* uninitialized since they are not used.
*
* @param dummy a dummy parameter
*/
Hashtable(Void dummy) {}
/**
* Returns the number of keys in this hashtable.
*
* @return the number of keys in this hashtable.
*/
public synchronized int size() {
return count;
}
/**
* Tests if this hashtable maps no keys to values.
*
* @return {@code true} if this hashtable maps no keys to values;
* {@code false} otherwise.
*/
public synchronized boolean isEmpty() {
return count == 0;
}
/**
* Returns an enumeration of the keys in this hashtable.
* Use the Enumeration methods on the returned object to fetch the keys
* sequentially. If the hashtable is structurally modified while enumerating
* over the keys then the results of enumerating are undefined.
*
* @return an enumeration of the keys in this hashtable.
* @see Enumeration
* @see #elements()
* @see #keySet()
* @see Map
*/
public synchronized Enumeration keys() {
return this.getEnumeration(KEYS);
}
/**
* Returns an enumeration of the values in this hashtable.
* Use the Enumeration methods on the returned object to fetch the elements
* sequentially. If the hashtable is structurally modified while enumerating
* over the values then the results of enumerating are undefined.
*
* @return an enumeration of the values in this hashtable.
* @see java.util.Enumeration
* @see #keys()
* @see #values()
* @see Map
*/
public synchronized Enumeration elements() {
return this.getEnumeration(VALUES);
}
/**
* Tests if some key maps into the specified value in this hashtable.
* This operation is more expensive than the {@link #containsKey
* containsKey} method.
*
* Note that this method is identical in functionality to
* {@link #containsValue containsValue}, (which is part of the
* {@link Map} interface in the collections framework).
*
* @param value a value to search for
* @return {@code true} if and only if some key maps to the
* {@code value} argument in this hashtable as
* determined by the {@code equals} method;
* {@code false} otherwise.
* @throws NullPointerException if the value is {@code null}
*/
public synchronized boolean contains(Object value) {
if (value == null) {
throw new NullPointerException();
}
Entry,?> tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry,?> e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
}
/**
* Returns true if this hashtable maps one or more keys to this value.
*
*
Note that this method is identical in functionality to {@link
* #contains contains} (which predates the {@link Map} interface).
*
* @param value value whose presence in this hashtable is to be tested
* @return {@code true} if this map maps one or more keys to the
* specified value
* @throws NullPointerException if the value is {@code null}
* @since 1.2
*/
public boolean containsValue(Object value) {
return contains(value);
}
/**
* Tests if the specified object is a key in this hashtable.
*
* @param key possible key
* @return {@code true} if and only if the specified object
* is a key in this hashtable, as determined by the
* {@code equals} method; {@code false} otherwise.
* @throws NullPointerException if the key is {@code null}
* @see #contains(Object)
*/
public synchronized boolean containsKey(Object key) {
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry,?> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
*
More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key.equals(k))},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @param key the key whose associated value is to be returned
* @return the value to which the specified key is mapped, or
* {@code null} if this map contains no mapping for the key
* @throws NullPointerException if the specified key is null
* @see #put(Object, Object)
*/
@SuppressWarnings("unchecked")
public synchronized V get(Object key) {
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry,?> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return (V)e.value;
}
}
return null;
}
/**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* Increases the capacity of and internally reorganizes this
* hashtable, in order to accommodate and access its entries more
* efficiently. This method is called automatically when the
* number of keys in the hashtable exceeds this hashtable's capacity
* and load factor.
*/
@SuppressWarnings("unchecked")
protected void rehash() {
int oldCapacity = table.length;
Entry,?>[] oldMap = table;
// overflow-conscious code
int newCapacity = (oldCapacity << 1) + 1;
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry,?>[] newMap = new Entry,?>[newCapacity];
modCount++;
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry old = (Entry)oldMap[i] ; old != null ; ) {
Entry e = old;
old = old.next;
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = (Entry)newMap[index];
newMap[index] = e;
}
}
}
private void addEntry(int hash, K key, V value, int index) {
Entry,?> tab[] = table;
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();
tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
@SuppressWarnings("unchecked")
Entry e = (Entry) tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
modCount++;
}
/**
* Maps the specified {@code key} to the specified
* {@code value} in this hashtable. Neither the key nor the
* value can be {@code null}.
*
* The value can be retrieved by calling the {@code get} method
* with a key that is equal to the original key.
*
* @param key the hashtable key
* @param value the value
* @return the previous value of the specified key in this hashtable,
* or {@code null} if it did not have one
* @throws NullPointerException if the key or value is
* {@code null}
* @see Object#equals(Object)
* @see #get(Object)
*/
public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {
throw new NullPointerException();
}
// Makes sure the key is not already in the hashtable.
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry entry = (Entry)tab[index];
for(; entry != null ; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}
addEntry(hash, key, value, index);
return null;
}
/**
* Removes the key (and its corresponding value) from this
* hashtable. This method does nothing if the key is not in the hashtable.
*
* @param key the key that needs to be removed
* @return the value to which the key had been mapped in this hashtable,
* or {@code null} if the key did not have a mapping
* @throws NullPointerException if the key is {@code null}
*/
public synchronized V remove(Object key) {
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for(Entry prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
modCount++;
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
}
/**
* Copies all of the mappings from the specified map to this hashtable.
* These mappings will replace any mappings that this hashtable had for any
* of the keys currently in the specified map.
*
* @param t mappings to be stored in this map
* @throws NullPointerException if the specified map is null
* @since 1.2
*/
public synchronized void putAll(Map extends K, ? extends V> t) {
for (Map.Entry extends K, ? extends V> e : t.entrySet())
put(e.getKey(), e.getValue());
}
/**
* Clears this hashtable so that it contains no keys.
*/
public synchronized void clear() {
Entry,?> tab[] = table;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
modCount++;
count = 0;
}
/**
* Creates a shallow copy of this hashtable. All the structure of the
* hashtable itself is copied, but the keys and values are not cloned.
* This is a relatively expensive operation.
*
* @return a clone of the hashtable
*/
public synchronized Object clone() {
Hashtable,?> t = cloneHashtable();
t.table = new Entry,?>[table.length];
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry,?>) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
}
/** Calls super.clone() */
final Hashtable,?> cloneHashtable() {
try {
return (Hashtable,?>)super.clone();
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
/**
* Returns a string representation of this {@code Hashtable} object
* in the form of a set of entries, enclosed in braces and separated
* by the ASCII characters " ,
" (comma and space). Each
* entry is rendered as the key, an equals sign {@code =}, and the
* associated element, where the {@code toString} method is used to
* convert the key and element to strings.
*
* @return a string representation of this hashtable
*/
public synchronized String toString() {
int max = size() - 1;
if (max == -1)
return "{}";
StringBuilder sb = new StringBuilder();
Iterator> it = entrySet().iterator();
sb.append('{');
for (int i = 0; ; i++) {
Map.Entry e = it.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key.toString());
sb.append('=');
sb.append(value == this ? "(this Map)" : value.toString());
if (i == max)
return sb.append('}').toString();
sb.append(", ");
}
}
private Enumeration getEnumeration(int type) {
if (count == 0) {
return Collections.emptyEnumeration();
} else {
return new Enumerator<>(type, false);
}
}
private Iterator getIterator(int type) {
if (count == 0) {
return Collections.emptyIterator();
} else {
return new Enumerator<>(type, true);
}
}
// Views
/**
* Each of these fields are initialized to contain an instance of the
* appropriate view the first time this view is requested. The views are
* stateless, so there's no reason to create more than one of each.
*/
private transient volatile Set keySet;
private transient volatile Set> entrySet;
private transient volatile Collection values;
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own {@code remove} operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* {@code Iterator.remove}, {@code Set.remove},
* {@code removeAll}, {@code retainAll}, and {@code clear}
* operations. It does not support the {@code add} or {@code addAll}
* operations.
*
* @since 1.2
*/
public Set keySet() {
if (keySet == null)
keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;
}
private class KeySet extends AbstractSet {
public Iterator iterator() {
return getIterator(KEYS);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
}
public void clear() {
Hashtable.this.clear();
}
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own {@code remove} operation, or through the
* {@code setValue} operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the {@code Iterator.remove},
* {@code Set.remove}, {@code removeAll}, {@code retainAll} and
* {@code clear} operations. It does not support the
* {@code add} or {@code addAll} operations.
*
* @since 1.2
*/
public Set> entrySet() {
if (entrySet==null)
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entrySet;
}
private class EntrySet extends AbstractSet> {
public Iterator> iterator() {
return getIterator(ENTRIES);
}
public boolean add(Map.Entry o) {
return super.add(o);
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry, ?> entry))
return false;
Object key = entry.getKey();
Entry,?>[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry,?> e = tab[index]; e != null; e = e.next)
if (e.hash==hash && e.equals(entry))
return true;
return false;
}
public boolean remove(Object o) {
if (!(o instanceof Map.Entry, ?> entry))
return false;
Object key = entry.getKey();
Entry,?>[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for(Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash==hash && e.equals(entry)) {
if (prev != null)
prev.next = e.next;
else
tab[index] = e.next;
e.value = null; // clear for gc.
modCount++;
count--;
return true;
}
}
return false;
}
public int size() {
return count;
}
public void clear() {
Hashtable.this.clear();
}
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own {@code remove} operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the {@code Iterator.remove},
* {@code Collection.remove}, {@code removeAll},
* {@code retainAll} and {@code clear} operations. It does not
* support the {@code add} or {@code addAll} operations.
*
* @since 1.2
*/
public Collection values() {
if (values==null)
values = Collections.synchronizedCollection(new ValueCollection(),
this);
return values;
}
private class ValueCollection extends AbstractCollection {
public Iterator iterator() {
return getIterator(VALUES);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
Hashtable.this.clear();
}
}
// Comparison and hashing
/**
* Compares the specified Object with this Map for equality,
* as per the definition in the Map interface.
*
* @param o object to be compared for equality with this hashtable
* @return true if the specified Object is equal to this Map
* @see Map#equals(Object)
* @since 1.2
*/
public synchronized boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof Map, ?> t))
return false;
if (t.size() != size())
return false;
try {
for (Map.Entry e : entrySet()) {
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(t.get(key) == null && t.containsKey(key)))
return false;
} else {
if (!value.equals(t.get(key)))
return false;
}
}
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
}
return true;
}
/**
* Returns the hash code value for this Map as per the definition in the
* Map interface.
*
* @see Map#hashCode()
* @since 1.2
*/
public synchronized int hashCode() {
/*
* This code detects the recursion caused by computing the hash code
* of a self-referential hash table and prevents the stack overflow
* that would otherwise result. This allows certain 1.1-era
* applets with self-referential hash tables to work. This code
* abuses the loadFactor field to do double-duty as a hashCode
* in progress flag, so as not to worsen the space performance.
* A negative load factor indicates that hash code computation is
* in progress.
*/
int h = 0;
if (count == 0 || loadFactor < 0)
return h; // Returns zero
loadFactor = -loadFactor; // Mark hashCode computation in progress
Entry,?>[] tab = table;
for (Entry,?> entry : tab) {
while (entry != null) {
h += entry.hashCode();
entry = entry.next;
}
}
loadFactor = -loadFactor; // Mark hashCode computation complete
return h;
}
@Override
public synchronized V getOrDefault(Object key, V defaultValue) {
V result = get(key);
return (null == result) ? defaultValue : result;
}
@SuppressWarnings("unchecked")
@Override
public synchronized void forEach(BiConsumer super K, ? super V> action) {
Objects.requireNonNull(action); // explicit check required in case
// table is empty.
final int expectedModCount = modCount;
Entry, ?>[] tab = table;
for (Entry, ?> entry : tab) {
while (entry != null) {
action.accept((K)entry.key, (V)entry.value);
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
@SuppressWarnings("unchecked")
@Override
public synchronized void replaceAll(BiFunction super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function); // explicit check required in case
// table is empty.
final int expectedModCount = modCount;
Entry[] tab = (Entry[])table;
for (Entry entry : tab) {
while (entry != null) {
entry.value = Objects.requireNonNull(
function.apply(entry.key, entry.value));
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
@Override
public synchronized V putIfAbsent(K key, V value) {
Objects.requireNonNull(value);
// Makes sure the key is not already in the hashtable.
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry entry = (Entry)tab[index];
for (; entry != null; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
if (old == null) {
entry.value = value;
}
return old;
}
}
addEntry(hash, key, value, index);
return null;
}
@Override
public synchronized boolean remove(Object key, Object value) {
Objects.requireNonNull(value);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (Entry prev = null; e != null; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) {
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
e.value = null; // clear for gc
modCount++;
count--;
return true;
}
}
return false;
}
@Override
public synchronized boolean replace(K key, V oldValue, V newValue) {
Objects.requireNonNull(oldValue);
Objects.requireNonNull(newValue);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
if (e.value.equals(oldValue)) {
e.value = newValue;
return true;
} else {
return false;
}
}
}
return false;
}
@Override
public synchronized V replace(K key, V value) {
Objects.requireNonNull(value);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V oldValue = e.value;
e.value = value;
return oldValue;
}
}
return null;
}
/**
* {@inheritDoc}
*
* This method will, on a best-effort basis, throw a
* {@link java.util.ConcurrentModificationException} if the mapping
* function modified this map during computation.
*
* @throws ConcurrentModificationException if it is detected that the
* mapping function modified this map
*/
@Override
public synchronized V computeIfAbsent(K key, Function super K, ? extends V> mappingFunction) {
Objects.requireNonNull(mappingFunction);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (; e != null; e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
// Hashtable not accept null value
return e.value;
}
}
int mc = modCount;
V newValue = mappingFunction.apply(key);
if (mc != modCount) { throw new ConcurrentModificationException(); }
if (newValue != null) {
addEntry(hash, key, newValue, index);
}
return newValue;
}
/**
* {@inheritDoc}
*
* This method will, on a best-effort basis, throw a
* {@link java.util.ConcurrentModificationException} if the remapping
* function modified this map during computation.
*
* @throws ConcurrentModificationException if it is detected that the
* remapping function modified this map
*/
@Override
public synchronized V computeIfPresent(K key, BiFunction super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
int mc = modCount;
V newValue = remappingFunction.apply(key, e.value);
if (mc != modCount) {
throw new ConcurrentModificationException();
}
if (newValue == null) {
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
modCount = mc + 1;
count--;
} else {
e.value = newValue;
}
return newValue;
}
}
return null;
}
/**
* {@inheritDoc}
*
* This method will, on a best-effort basis, throw a
* {@link java.util.ConcurrentModificationException} if the remapping
* function modified this map during computation.
*
* @throws ConcurrentModificationException if it is detected that the
* remapping function modified this map
*/
@Override
public synchronized V compute(K key, BiFunction super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && Objects.equals(e.key, key)) {
int mc = modCount;
V newValue = remappingFunction.apply(key, e.value);
if (mc != modCount) {
throw new ConcurrentModificationException();
}
if (newValue == null) {
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
modCount = mc + 1;
count--;
} else {
e.value = newValue;
}
return newValue;
}
}
int mc = modCount;
V newValue = remappingFunction.apply(key, null);
if (mc != modCount) { throw new ConcurrentModificationException(); }
if (newValue != null) {
addEntry(hash, key, newValue, index);
}
return newValue;
}
/**
* {@inheritDoc}
*
* This method will, on a best-effort basis, throw a
* {@link java.util.ConcurrentModificationException} if the remapping
* function modified this map during computation.
*
* @throws ConcurrentModificationException if it is detected that the
* remapping function modified this map
*/
@Override
public synchronized V merge(K key, V value, BiFunction super V, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Entry,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for (Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
int mc = modCount;
V newValue = remappingFunction.apply(e.value, value);
if (mc != modCount) {
throw new ConcurrentModificationException();
}
if (newValue == null) {
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
modCount = mc + 1;
count--;
} else {
e.value = newValue;
}
return newValue;
}
}
if (value != null) {
addEntry(hash, key, value, index);
}
return value;
}
/**
* Save the state of the Hashtable to a stream (i.e., serialize it).
*
* @serialData The capacity of the Hashtable (the length of the
* bucket array) is emitted (int), followed by the
* size of the Hashtable (the number of key-value
* mappings), followed by the key (Object) and value (Object)
* for each key-value mapping represented by the Hashtable
* The key-value mappings are emitted in no particular order.
*/
@java.io.Serial
private void writeObject(java.io.ObjectOutputStream s)
throws IOException {
writeHashtable(s);
}
/**
* Perform serialization of the Hashtable to an ObjectOutputStream.
* The Properties class overrides this method.
*/
void writeHashtable(java.io.ObjectOutputStream s)
throws IOException {
Entry