java.util.PriorityQueue Maven / Gradle / Ivy
/*
* Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.util.function.Consumer;
import java.util.function.Predicate;
import jdk.internal.access.SharedSecrets;
import jdk.internal.util.ArraysSupport;
/**
* An unbounded priority {@linkplain Queue queue} based on a priority heap.
* The elements of the priority queue are ordered according to their
* {@linkplain Comparable natural ordering}, or by a {@link Comparator}
* provided at queue construction time, depending on which constructor is
* used. A priority queue does not permit {@code null} elements.
* A priority queue relying on natural ordering also does not permit
* insertion of non-comparable objects (doing so may result in
* {@code ClassCastException}).
*
* The head of this queue is the least element
* with respect to the specified ordering. If multiple elements are
* tied for least value, the head is one of those elements -- ties are
* broken arbitrarily. The queue retrieval operations {@code poll},
* {@code remove}, {@code peek}, and {@code element} access the
* element at the head of the queue.
*
*
A priority queue is unbounded, but has an internal
* capacity governing the size of an array used to store the
* elements on the queue. It is always at least as large as the queue
* size. As elements are added to a priority queue, its capacity
* grows automatically. The details of the growth policy are not
* specified.
*
*
This class and its iterator implement all of the
* optional methods of the {@link Collection} and {@link
* Iterator} interfaces. The Iterator provided in method {@link
* #iterator()} and the Spliterator provided in method {@link #spliterator()}
* are not guaranteed to traverse the elements of
* the priority queue in any particular order. If you need ordered
* traversal, consider using {@code Arrays.sort(pq.toArray())}.
*
*
Note that this implementation is not synchronized.
* Multiple threads should not access a {@code PriorityQueue}
* instance concurrently if any of the threads modifies the queue.
* Instead, use the thread-safe {@link
* java.util.concurrent.PriorityBlockingQueue} class.
*
*
Implementation note: this implementation provides
* O(log(n)) time for the enqueuing and dequeuing methods
* ({@code offer}, {@code poll}, {@code remove()} and {@code add});
* linear time for the {@code remove(Object)} and {@code contains(Object)}
* methods; and constant time for the retrieval methods
* ({@code peek}, {@code element}, and {@code size}).
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @since 1.5
* @author Josh Bloch, Doug Lea
* @param the type of elements held in this queue
*/
@SuppressWarnings("unchecked")
public class PriorityQueue extends AbstractQueue
implements java.io.Serializable {
@java.io.Serial
private static final long serialVersionUID = -7720805057305804111L;
private static final int DEFAULT_INITIAL_CAPACITY = 11;
/**
* Priority queue represented as a balanced binary heap: the two
* children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
* priority queue is ordered by comparator, or by the elements'
* natural ordering, if comparator is null: For each node n in the
* heap and each descendant d of n, n <= d. The element with the
* lowest value is in queue[0], assuming the queue is nonempty.
*/
transient Object[] queue; // non-private to simplify nested class access
/**
* The number of elements in the priority queue.
*/
int size;
/**
* The comparator, or null if priority queue uses elements'
* natural ordering.
*/
@SuppressWarnings("serial") // Conditionally serializable
private final Comparator super E> comparator;
/**
* The number of times this priority queue has been
* structurally modified. See AbstractList for gory details.
*/
transient int modCount; // non-private to simplify nested class access
/**
* Creates a {@code PriorityQueue} with the default initial
* capacity (11) that orders its elements according to their
* {@linkplain Comparable natural ordering}.
*/
public PriorityQueue() {
this(DEFAULT_INITIAL_CAPACITY, null);
}
/**
* Creates a {@code PriorityQueue} with the specified initial
* capacity that orders its elements according to their
* {@linkplain Comparable natural ordering}.
*
* @param initialCapacity the initial capacity for this priority queue
* @throws IllegalArgumentException if {@code initialCapacity} is less
* than 1
*/
public PriorityQueue(int initialCapacity) {
this(initialCapacity, null);
}
/**
* Creates a {@code PriorityQueue} with the default initial capacity and
* whose elements are ordered according to the specified comparator.
*
* @param comparator the comparator that will be used to order this
* priority queue. If {@code null}, the {@linkplain Comparable
* natural ordering} of the elements will be used.
* @since 1.8
*/
public PriorityQueue(Comparator super E> comparator) {
this(DEFAULT_INITIAL_CAPACITY, comparator);
}
/**
* Creates a {@code PriorityQueue} with the specified initial capacity
* that orders its elements according to the specified comparator.
*
* @param initialCapacity the initial capacity for this priority queue
* @param comparator the comparator that will be used to order this
* priority queue. If {@code null}, the {@linkplain Comparable
* natural ordering} of the elements will be used.
* @throws IllegalArgumentException if {@code initialCapacity} is
* less than 1
*/
public PriorityQueue(int initialCapacity,
Comparator super E> comparator) {
// Note: This restriction of at least one is not actually needed,
// but continues for 1.5 compatibility
if (initialCapacity < 1)
throw new IllegalArgumentException();
this.queue = new Object[initialCapacity];
this.comparator = comparator;
}
/**
* Creates a {@code PriorityQueue} containing the elements in the
* specified collection. If the specified collection is an instance of
* a {@link SortedSet} or is another {@code PriorityQueue}, this
* priority queue will be ordered according to the same ordering.
* Otherwise, this priority queue will be ordered according to the
* {@linkplain Comparable natural ordering} of its elements.
*
* @param c the collection whose elements are to be placed
* into this priority queue
* @throws ClassCastException if elements of the specified collection
* cannot be compared to one another according to the priority
* queue's ordering
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public PriorityQueue(Collection extends E> c) {
if (c instanceof SortedSet>) {
SortedSet extends E> ss = (SortedSet extends E>) c;
this.comparator = (Comparator super E>) ss.comparator();
initElementsFromCollection(ss);
}
else if (c instanceof PriorityQueue>) {
PriorityQueue extends E> pq = (PriorityQueue extends E>) c;
this.comparator = (Comparator super E>) pq.comparator();
initFromPriorityQueue(pq);
}
else {
this.comparator = null;
initFromCollection(c);
}
}
/**
* Creates a {@code PriorityQueue} containing the elements in the
* specified priority queue. This priority queue will be
* ordered according to the same ordering as the given priority
* queue.
*
* @param c the priority queue whose elements are to be placed
* into this priority queue
* @throws ClassCastException if elements of {@code c} cannot be
* compared to one another according to {@code c}'s
* ordering
* @throws NullPointerException if the specified priority queue or any
* of its elements are null
*/
public PriorityQueue(PriorityQueue extends E> c) {
this.comparator = (Comparator super E>) c.comparator();
initFromPriorityQueue(c);
}
/**
* Creates a {@code PriorityQueue} containing the elements in the
* specified sorted set. This priority queue will be ordered
* according to the same ordering as the given sorted set.
*
* @param c the sorted set whose elements are to be placed
* into this priority queue
* @throws ClassCastException if elements of the specified sorted
* set cannot be compared to one another according to the
* sorted set's ordering
* @throws NullPointerException if the specified sorted set or any
* of its elements are null
*/
public PriorityQueue(SortedSet extends E> c) {
this.comparator = (Comparator super E>) c.comparator();
initElementsFromCollection(c);
}
/** Ensures that queue[0] exists, helping peek() and poll(). */
private static Object[] ensureNonEmpty(Object[] es) {
return (es.length > 0) ? es : new Object[1];
}
private void initFromPriorityQueue(PriorityQueue extends E> c) {
if (c.getClass() == PriorityQueue.class) {
this.queue = ensureNonEmpty(c.toArray());
this.size = c.size();
} else {
initFromCollection(c);
}
}
private void initElementsFromCollection(Collection extends E> c) {
Object[] es = c.toArray();
int len = es.length;
if (c.getClass() != ArrayList.class)
es = Arrays.copyOf(es, len, Object[].class);
if (len == 1 || this.comparator != null)
for (Object e : es)
if (e == null)
throw new NullPointerException();
this.queue = ensureNonEmpty(es);
this.size = len;
}
/**
* Initializes queue array with elements from the given Collection.
*
* @param c the collection
*/
private void initFromCollection(Collection extends E> c) {
initElementsFromCollection(c);
heapify();
}
/**
* Increases the capacity of the array.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
int oldCapacity = queue.length;
// Double size if small; else grow by 50%
int newCapacity = ArraysSupport.newLength(oldCapacity,
minCapacity - oldCapacity, /* minimum growth */
oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
/* preferred growth */);
queue = Arrays.copyOf(queue, newCapacity);
}
/**
* Inserts the specified element into this priority queue.
*
* @return {@code true} (as specified by {@link Collection#add})
* @throws ClassCastException if the specified element cannot be
* compared with elements currently in this priority queue
* according to the priority queue's ordering
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
return offer(e);
}
/**
* Inserts the specified element into this priority queue.
*
* @return {@code true} (as specified by {@link Queue#offer})
* @throws ClassCastException if the specified element cannot be
* compared with elements currently in this priority queue
* according to the priority queue's ordering
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);
siftUp(i, e);
size = i + 1;
return true;
}
public E peek() {
return (E) queue[0];
}
private int indexOf(Object o) {
if (o != null) {
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++)
if (o.equals(es[i]))
return i;
}
return -1;
}
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements. Returns {@code true} if and only if this queue contained
* the specified element (or equivalently, if this queue changed as a
* result of the call).
*
* @param o element to be removed from this queue, if present
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
int i = indexOf(o);
if (i == -1)
return false;
else {
removeAt(i);
return true;
}
}
/**
* Identity-based version for use in Itr.remove.
*
* @param o element to be removed from this queue, if present
*/
void removeEq(Object o) {
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++) {
if (o == es[i]) {
removeAt(i);
break;
}
}
}
/**
* Returns {@code true} if this queue contains the specified element.
* More formally, returns {@code true} if and only if this queue contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this queue
* @return {@code true} if this queue contains the specified element
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* Returns an array containing all of the elements in this queue.
* The elements are in no particular order.
*
* The returned array will be "safe" in that no references to it are
* maintained by this queue. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
*
This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this queue
*/
public Object[] toArray() {
return Arrays.copyOf(queue, size);
}
/**
* Returns an array containing all of the elements in this queue; the
* runtime type of the returned array is that of the specified array.
* The returned array elements are in no particular order.
* If the queue fits in the specified array, it is returned therein.
* Otherwise, a new array is allocated with the runtime type of the
* specified array and the size of this queue.
*
*
If the queue fits in the specified array with room to spare
* (i.e., the array has more elements than the queue), the element in
* the array immediately following the end of the collection is set to
* {@code null}.
*
*
Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
*
Suppose {@code x} is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of {@code String}:
*
*
{@code String[] y = x.toArray(new String[0]);}
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing all of the elements in this queue
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this queue
* @throws NullPointerException if the specified array is null
*/
public T[] toArray(T[] a) {
final int size = this.size;
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(queue, size, a.getClass());
System.arraycopy(queue, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
/**
* Returns an iterator over the elements in this queue. The iterator
* does not return the elements in any particular order.
*
* @return an iterator over the elements in this queue
*/
public Iterator iterator() {
return new Itr();
}
private final class Itr implements Iterator {
/**
* Index (into queue array) of element to be returned by
* subsequent call to next.
*/
private int cursor;
/**
* Index of element returned by most recent call to next,
* unless that element came from the forgetMeNot list.
* Set to -1 if element is deleted by a call to remove.
*/
private int lastRet = -1;
/**
* A queue of elements that were moved from the unvisited portion of
* the heap into the visited portion as a result of "unlucky" element
* removals during the iteration. (Unlucky element removals are those
* that require a siftup instead of a siftdown.) We must visit all of
* the elements in this list to complete the iteration. We do this
* after we've completed the "normal" iteration.
*
* We expect that most iterations, even those involving removals,
* will not need to store elements in this field.
*/
private ArrayDeque forgetMeNot;
/**
* Element returned by the most recent call to next iff that
* element was drawn from the forgetMeNot list.
*/
private E lastRetElt;
/**
* The modCount value that the iterator believes that the backing
* Queue should have. If this expectation is violated, the iterator
* has detected concurrent modification.
*/
private int expectedModCount = modCount;
Itr() {} // prevent access constructor creation
public boolean hasNext() {
return cursor < size ||
(forgetMeNot != null && !forgetMeNot.isEmpty());
}
public E next() {
if (expectedModCount != modCount)
throw new ConcurrentModificationException();
if (cursor < size)
return (E) queue[lastRet = cursor++];
if (forgetMeNot != null) {
lastRet = -1;
lastRetElt = forgetMeNot.poll();
if (lastRetElt != null)
return lastRetElt;
}
throw new NoSuchElementException();
}
public void remove() {
if (expectedModCount != modCount)
throw new ConcurrentModificationException();
if (lastRet != -1) {
E moved = PriorityQueue.this.removeAt(lastRet);
lastRet = -1;
if (moved == null)
cursor--;
else {
if (forgetMeNot == null)
forgetMeNot = new ArrayDeque<>();
forgetMeNot.add(moved);
}
} else if (lastRetElt != null) {
PriorityQueue.this.removeEq(lastRetElt);
lastRetElt = null;
} else {
throw new IllegalStateException();
}
expectedModCount = modCount;
}
}
public int size() {
return size;
}
/**
* Removes all of the elements from this priority queue.
* The queue will be empty after this call returns.
*/
public void clear() {
modCount++;
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++)
es[i] = null;
size = 0;
}
public E poll() {
final Object[] es;
final E result;
if ((result = (E) ((es = queue)[0])) != null) {
modCount++;
final int n;
final E x = (E) es[(n = --size)];
es[n] = null;
if (n > 0) {
final Comparator super E> cmp;
if ((cmp = comparator) == null)
siftDownComparable(0, x, es, n);
else
siftDownUsingComparator(0, x, es, n, cmp);
}
}
return result;
}
/**
* Removes the ith element from queue.
*
* Normally this method leaves the elements at up to i-1,
* inclusive, untouched. Under these circumstances, it returns
* null. Occasionally, in order to maintain the heap invariant,
* it must swap a later element of the list with one earlier than
* i. Under these circumstances, this method returns the element
* that was previously at the end of the list and is now at some
* position before i. This fact is used by iterator.remove so as to
* avoid missing traversing elements.
*/
E removeAt(int i) {
// assert i >= 0 && i < size;
final Object[] es = queue;
modCount++;
int s = --size;
if (s == i) // removed last element
es[i] = null;
else {
E moved = (E) es[s];
es[s] = null;
siftDown(i, moved);
if (es[i] == moved) {
siftUp(i, moved);
if (es[i] != moved)
return moved;
}
}
return null;
}
/**
* Inserts item x at position k, maintaining heap invariant by
* promoting x up the tree until it is greater than or equal to
* its parent, or is the root.
*
* To simplify and speed up coercions and comparisons, the
* Comparable and Comparator versions are separated into different
* methods that are otherwise identical. (Similarly for siftDown.)
*
* @param k the position to fill
* @param x the item to insert
*/
private void siftUp(int k, E x) {
if (comparator != null)
siftUpUsingComparator(k, x, queue, comparator);
else
siftUpComparable(k, x, queue);
}
private static void siftUpComparable(int k, T x, Object[] es) {
Comparable super T> key = (Comparable super T>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = es[parent];
if (key.compareTo((T) e) >= 0)
break;
es[k] = e;
k = parent;
}
es[k] = key;
}
private static void siftUpUsingComparator(
int k, T x, Object[] es, Comparator super T> cmp) {
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = es[parent];
if (cmp.compare(x, (T) e) >= 0)
break;
es[k] = e;
k = parent;
}
es[k] = x;
}
/**
* Inserts item x at position k, maintaining heap invariant by
* demoting x down the tree repeatedly until it is less than or
* equal to its children or is a leaf.
*
* @param k the position to fill
* @param x the item to insert
*/
private void siftDown(int k, E x) {
if (comparator != null)
siftDownUsingComparator(k, x, queue, size, comparator);
else
siftDownComparable(k, x, queue, size);
}
private static void siftDownComparable(int k, T x, Object[] es, int n) {
// assert n > 0;
Comparable super T> key = (Comparable super T>)x;
int half = n >>> 1; // loop while a non-leaf
while (k < half) {
int child = (k << 1) + 1; // assume left child is least
Object c = es[child];
int right = child + 1;
if (right < n &&
((Comparable super T>) c).compareTo((T) es[right]) > 0)
c = es[child = right];
if (key.compareTo((T) c) <= 0)
break;
es[k] = c;
k = child;
}
es[k] = key;
}
private static void siftDownUsingComparator(
int k, T x, Object[] es, int n, Comparator super T> cmp) {
// assert n > 0;
int half = n >>> 1;
while (k < half) {
int child = (k << 1) + 1;
Object c = es[child];
int right = child + 1;
if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
c = es[child = right];
if (cmp.compare(x, (T) c) <= 0)
break;
es[k] = c;
k = child;
}
es[k] = x;
}
/**
* Establishes the heap invariant (described above) in the entire tree,
* assuming nothing about the order of the elements prior to the call.
* This classic algorithm due to Floyd (1964) is known to be O(size).
*/
private void heapify() {
final Object[] es = queue;
int n = size, i = (n >>> 1) - 1;
final Comparator super E> cmp;
if ((cmp = comparator) == null)
for (; i >= 0; i--)
siftDownComparable(i, (E) es[i], es, n);
else
for (; i >= 0; i--)
siftDownUsingComparator(i, (E) es[i], es, n, cmp);
}
/**
* Returns the comparator used to order the elements in this
* queue, or {@code null} if this queue is sorted according to
* the {@linkplain Comparable natural ordering} of its elements.
*
* @return the comparator used to order this queue, or
* {@code null} if this queue is sorted according to the
* natural ordering of its elements
*/
public Comparator super E> comparator() {
return comparator;
}
/**
* Saves this queue to a stream (that is, serializes it).
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
* @serialData The length of the array backing the instance is
* emitted (int), followed by all of its elements
* (each an {@code Object}) in the proper order.
*/
@java.io.Serial
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out element count, and any hidden stuff
s.defaultWriteObject();
// Write out array length, for compatibility with 1.5 version
s.writeInt(Math.max(2, size + 1));
// Write out all elements in the "proper order".
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++)
s.writeObject(es[i]);
}
/**
* Reconstitutes the {@code PriorityQueue} instance from a stream
* (that is, deserializes it).
*
* @param s the stream
* @throws ClassNotFoundException if the class of a serialized object
* could not be found
* @throws java.io.IOException if an I/O error occurs
*/
@java.io.Serial
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in (and discard) array length
s.readInt();
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
final Object[] es = queue = new Object[Math.max(size, 1)];
// Read in all elements.
for (int i = 0, n = size; i < n; i++)
es[i] = s.readObject();
// Elements are guaranteed to be in "proper order", but the
// spec has never explained what that might be.
heapify();
}
/**
* Creates a late-binding
* and fail-fast {@link Spliterator} over the elements in this
* queue. The spliterator does not traverse elements in any particular order
* (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
*
* The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
* Overriding implementations should document the reporting of additional
* characteristic values.
*
* @return a {@code Spliterator} over the elements in this queue
* @since 1.8
*/
public final Spliterator spliterator() {
return new PriorityQueueSpliterator(0, -1, 0);
}
final class PriorityQueueSpliterator implements Spliterator {
private int index; // current index, modified on advance/split
private int fence; // -1 until first use
private int expectedModCount; // initialized when fence set
/** Creates new spliterator covering the given range. */
PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
private int getFence() { // initialize fence to size on first use
int hi;
if ((hi = fence) < 0) {
expectedModCount = modCount;
hi = fence = size;
}
return hi;
}
public PriorityQueueSpliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
}
public void forEachRemaining(Consumer super E> action) {
if (action == null)
throw new NullPointerException();
if (fence < 0) { fence = size; expectedModCount = modCount; }
final Object[] es = queue;
int i, hi; E e;
for (i = index, index = hi = fence; i < hi; i++) {
if ((e = (E) es[i]) == null)
break; // must be CME
action.accept(e);
}
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer super E> action) {
if (action == null)
throw new NullPointerException();
if (fence < 0) { fence = size; expectedModCount = modCount; }
int i;
if ((i = index) < fence) {
index = i + 1;
E e;
if ((e = (E) queue[i]) == null
|| modCount != expectedModCount)
throw new ConcurrentModificationException();
action.accept(e);
return true;
}
return false;
}
public long estimateSize() {
return getFence() - index;
}
public int characteristics() {
return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
}
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean removeIf(Predicate super E> filter) {
Objects.requireNonNull(filter);
return bulkRemove(filter);
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean removeAll(Collection> c) {
Objects.requireNonNull(c);
return bulkRemove(e -> c.contains(e));
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean retainAll(Collection> c) {
Objects.requireNonNull(c);
return bulkRemove(e -> !c.contains(e));
}
// A tiny bit set implementation
private static long[] nBits(int n) {
return new long[((n - 1) >> 6) + 1];
}
private static void setBit(long[] bits, int i) {
bits[i >> 6] |= 1L << i;
}
private static boolean isClear(long[] bits, int i) {
return (bits[i >> 6] & (1L << i)) == 0;
}
/** Implementation of bulk remove methods. */
private boolean bulkRemove(Predicate super E> filter) {
final int expectedModCount = ++modCount;
final Object[] es = queue;
final int end = size;
int i;
// Optimize for initial run of survivors
for (i = 0; i < end && !filter.test((E) es[i]); i++)
;
if (i >= end) {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return false;
}
// Tolerate predicates that reentrantly access the collection for
// read (but writers still get CME), so traverse once to find
// elements to delete, a second pass to physically expunge.
final int beg = i;
final long[] deathRow = nBits(end - beg);
deathRow[0] = 1L; // set bit 0
for (i = beg + 1; i < end; i++)
if (filter.test((E) es[i]))
setBit(deathRow, i - beg);
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
int w = beg;
for (i = beg; i < end; i++)
if (isClear(deathRow, i - beg))
es[w++] = es[i];
for (i = size = w; i < end; i++)
es[i] = null;
heapify();
return true;
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public void forEach(Consumer super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++)
action.accept((E) es[i]);
if (expectedModCount != modCount)
throw new ConcurrentModificationException();
}
}