All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.util.SplittableRandom Maven / Gradle / Ivy

There is a newer version: 17.alpha.0.57
Show newest version
/*
 * Copyright (c) 2013, 2021, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package java.util;

import java.math.BigInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.random.RandomGenerator;
import java.util.random.RandomGenerator.SplittableGenerator;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.Stream;
import jdk.internal.util.random.RandomSupport;
import jdk.internal.util.random.RandomSupport.AbstractSplittableGenerator;
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;

/**
 * A generator of uniform pseudorandom values (with period 264)
 * applicable for use in (among other contexts) isolated parallel
 * computations that may generate subtasks. Class {@code SplittableRandom}
 * supports methods for producing pseudorandom numbers of type {@code int},
 * {@code long}, and {@code double} with similar usages as for class
 * {@link java.util.Random} but differs in the following ways:
 *
 * 
    * *
  • Series of generated values pass the DieHarder suite testing * independence and uniformity properties of random number generators. * (Most recently validated with version * 3.31.1.) These tests validate only the methods for certain * types and ranges, but similar properties are expected to hold, at * least approximately, for others as well. The period * (length of any series of generated values before it repeats) is * 264.
  • * *
  • Method {@link #split} constructs and returns a new * SplittableRandom instance that shares no mutable state with the * current instance. However, with very high probability, the * values collectively generated by the two objects have the same * statistical properties as if the same quantity of values were * generated by a single thread using a single {@code * SplittableRandom} object.
  • * *
  • Instances of SplittableRandom are not thread-safe. * They are designed to be split, not shared, across threads. For * example, a {@link java.util.concurrent.ForkJoinTask * fork/join-style} computation using random numbers might include a * construction of the form {@code new * Subtask(aSplittableRandom.split()).fork()}. * *
  • This class provides additional methods for generating random * streams, that employ the above techniques when used in {@code * stream.parallel()} mode.
  • * *
* *

Instances of {@code SplittableRandom} are not cryptographically * secure. Consider instead using {@link java.security.SecureRandom} * in security-sensitive applications. Additionally, * default-constructed instances do not use a cryptographically random * seed unless the {@linkplain System#getProperty system property} * {@code java.util.secureRandomSeed} is set to {@code true}. * * @author Guy Steele * @author Doug Lea * @since 1.8 */ @RandomGeneratorProperties( name = "SplittableRandom", i = 64, j = 0, k = 0, equidistribution = 1 ) public final class SplittableRandom implements RandomGenerator, SplittableGenerator { /* * Implementation Overview. * * This algorithm was inspired by the "DotMix" algorithm by * Leiserson, Schardl, and Sukha "Deterministic Parallel * Random-Number Generation for Dynamic-Multithreading Platforms", * PPoPP 2012, as well as those in "Parallel random numbers: as * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It * differs mainly in simplifying and cheapening operations. * * The primary update step (method nextSeed()) is to add a * constant ("gamma") to the current (64 bit) seed, forming a * simple sequence. The seed and the gamma values for any two * SplittableRandom instances are highly likely to be different. * * Methods nextLong, nextInt, and derivatives do not return the * sequence (seed) values, but instead a hash-like bit-mix of * their bits, producing more independently distributed sequences. * For nextLong, the mix64 function is based on David Stafford's * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html) * "Mix13" variant of the "64-bit finalizer" function in Austin * Appleby's MurmurHash3 algorithm (see * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32 * function is based on Stafford's Mix04 mix function, but returns * the upper 32 bits cast as int. * * The split operation uses the current generator to form the seed * and gamma for another SplittableRandom. To conservatively * avoid potential correlations between seed and value generation, * gamma selection (method mixGamma) uses different * (Murmurhash3's) mix constants. To avoid potential weaknesses * in bit-mixing transformations, we restrict gammas to odd values * with at least 24 0-1 or 1-0 bit transitions. Rather than * rejecting candidates with too few or too many bits set, method * mixGamma flips some bits (which has the effect of mapping at * most 4 to any given gamma value). This reduces the effective * set of 64bit odd gamma values by about 2%, and serves as an * automated screening for sequence constant selection that is * left as an empirical decision in some other hashing and crypto * algorithms. * * The resulting generator thus transforms a sequence in which * (typically) many bits change on each step, with an inexpensive * mixer with good (but less than cryptographically secure) * avalanching. * * The default (no-argument) constructor, in essence, invokes * split() for a common "defaultGen" SplittableRandom. Unlike * other cases, this split must be performed in a thread-safe * manner, so we use an AtomicLong to represent the seed rather * than use an explicit SplittableRandom. To bootstrap the * defaultGen, we start off using a seed based on current time * unless the java.util.secureRandomSeed property is set. This * serves as a slimmed-down (and insecure) variant of SecureRandom * that also avoids stalls that may occur when using /dev/random. * * It is a relatively simple matter to apply the basic design here * to use 128 bit seeds. However, emulating 128bit arithmetic and * carrying around twice the state add more overhead than appears * warranted for current usages. * * File organization: First the non-public methods that constitute * the main algorithm, then the main public methods, followed by * some custom spliterator classes needed for stream methods. */ /** * The golden ratio scaled to 64bits, used as the initial gamma * value for (unsplit) SplittableRandoms. */ private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L; /** * The seed. Updated only via method nextSeed. */ private long seed; /** * The step value. */ private final long gamma; /** * Internal constructor used by all others except default constructor. */ private SplittableRandom(long seed, long gamma) { this.seed = seed; this.gamma = gamma; this.proxy = new AbstractSplittableGeneratorProxy(); } /** * Computes Stafford variant 13 of 64bit mix function. * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html */ private static long mix64(long z) { z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L; z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL; return z ^ (z >>> 31); } /** * Returns the 32 high bits of Stafford variant 4 mix64 function as int. * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html */ private static int mix32(long z) { z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L; return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32); } /** * Returns the gamma value to use for a new split instance. * Uses the 64bit mix function from MurmurHash3. * https://github.com/aappleby/smhasher/wiki/MurmurHash3 */ private static long mixGamma(long z) { z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L; z = (z ^ (z >>> 33)) | 1L; // force to be odd int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z; } /** * Proxy class to non-public RandomSupportAbstractSplittableGenerator. */ private class AbstractSplittableGeneratorProxy extends AbstractSplittableGenerator { @Override public int nextInt() { return SplittableRandom.this.nextInt(); } @Override public long nextLong() { return SplittableRandom.this.nextLong(); } @Override public java.util.SplittableRandom split(SplittableGenerator source) { return new SplittableRandom(source.nextLong(), mixGamma(source.nextLong())); } } /** * Proxy object to non-public RandomSupportAbstractSplittableGenerator. */ private AbstractSplittableGeneratorProxy proxy; /** * Adds gamma to seed. */ private long nextSeed() { return seed += gamma; } /** * The seed generator for default constructors. */ private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed()); /* ---------------- public methods ---------------- */ /** * Creates a new SplittableRandom instance using the specified * initial seed. SplittableRandom instances created with the same * seed in the same program generate identical sequences of values. * * @param seed the initial seed */ public SplittableRandom(long seed) { this(seed, GOLDEN_GAMMA); } /** * Creates a new SplittableRandom instance that is likely to * generate sequences of values that are statistically independent * of those of any other instances in the current program; and * may, and typically does, vary across program invocations. */ public SplittableRandom() { // emulate defaultGen.split() long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA); this.seed = mix64(s); this.gamma = mixGamma(s + GOLDEN_GAMMA); this.proxy = new AbstractSplittableGeneratorProxy(); } /** * Constructs and returns a new SplittableRandom instance that * shares no mutable state with this instance. However, with very * high probability, the set of values collectively generated by * the two objects has the same statistical properties as if the * same quantity of values were generated by a single thread using * a single SplittableRandom object. Either or both of the two * objects may be further split using the {@code split()} method, * and the same expected statistical properties apply to the * entire set of generators constructed by such recursive * splitting. * * @return the new SplittableRandom instance */ public SplittableRandom split() { return new SplittableRandom(nextLong(), mixGamma(nextSeed())); } /** * {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @since 17 */ public SplittableRandom split(SplittableGenerator source) { return new SplittableRandom(source.nextLong(), mixGamma(source.nextLong())); } @Override public int nextInt() { return mix32(nextSeed()); } @Override public long nextLong() { return mix64(nextSeed()); } /** * {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @since 10 */ @Override public void nextBytes(byte[] bytes) { proxy.nextBytes(bytes); } /** * {@inheritDoc} * @implSpec {@inheritDoc} * @since 17 */ @Override public Stream splits() { return proxy.splits(); } /** * {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @implSpec {@inheritDoc} * @since 17 */ @Override public Stream splits(long streamSize) { return proxy.splits(streamSize, this); } /** * {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @implSpec {@inheritDoc} * @since 17 */ @Override public Stream splits(SplittableGenerator source) { return proxy.splits(Long.MAX_VALUE, source); } /** * {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @implSpec {@inheritDoc} * @since 17 */ @Override public Stream splits(long streamSize, SplittableGenerator source) { return proxy.splits(streamSize, source); } /** * Returns a stream producing the given {@code streamSize} number * of pseudorandom {@code int} values from this generator and/or * one split from it. * * @param streamSize the number of values to generate * @return a stream of pseudorandom {@code int} values * @throws IllegalArgumentException if {@code streamSize} is * less than zero */ @Override public IntStream ints(long streamSize) { return proxy.ints(streamSize); } /** * Returns an effectively unlimited stream of pseudorandom {@code int} * values from this generator and/or one split from it. * * @implNote This method is implemented to be equivalent to {@code * ints(Long.MAX_VALUE)}. * * @return a stream of pseudorandom {@code int} values */ @Override public IntStream ints() { return proxy.ints(); } /** * Returns a stream producing the given {@code streamSize} number * of pseudorandom {@code int} values from this generator and/or one split * from it; each value conforms to the given origin (inclusive) and bound * (exclusive). * * @param streamSize the number of values to generate * @param randomNumberOrigin the origin (inclusive) of each random value * @param randomNumberBound the bound (exclusive) of each random value * @return a stream of pseudorandom {@code int} values, * each with the given origin (inclusive) and bound (exclusive) * @throws IllegalArgumentException if {@code streamSize} is * less than zero, or {@code randomNumberOrigin} * is greater than or equal to {@code randomNumberBound} */ @Override public IntStream ints(long streamSize, int randomNumberOrigin, int randomNumberBound) { return proxy.ints(streamSize, randomNumberOrigin, randomNumberBound); } /** * Returns an effectively unlimited stream of pseudorandom {@code * int} values from this generator and/or one split from it; each value * conforms to the given origin (inclusive) and bound (exclusive). * * @implNote This method is implemented to be equivalent to {@code * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}. * * @param randomNumberOrigin the origin (inclusive) of each random value * @param randomNumberBound the bound (exclusive) of each random value * @return a stream of pseudorandom {@code int} values, * each with the given origin (inclusive) and bound (exclusive) * @throws IllegalArgumentException if {@code randomNumberOrigin} * is greater than or equal to {@code randomNumberBound} */ @Override public IntStream ints(int randomNumberOrigin, int randomNumberBound) { return proxy.ints(randomNumberOrigin, randomNumberBound); } /** * Returns a stream producing the given {@code streamSize} number * of pseudorandom {@code long} values from this generator and/or * one split from it. * * @param streamSize the number of values to generate * @return a stream of pseudorandom {@code long} values * @throws IllegalArgumentException if {@code streamSize} is * less than zero */ @Override public LongStream longs(long streamSize) { return proxy.longs(streamSize); } /** * Returns an effectively unlimited stream of pseudorandom {@code * long} values from this generator and/or one split from it. * * @implNote This method is implemented to be equivalent to {@code * longs(Long.MAX_VALUE)}. * * @return a stream of pseudorandom {@code long} values */ @Override public LongStream longs() { return proxy.longs(); } /** * Returns a stream producing the given {@code streamSize} number of * pseudorandom {@code long} values from this generator and/or one split * from it; each value conforms to the given origin (inclusive) and bound * (exclusive). * * @param streamSize the number of values to generate * @param randomNumberOrigin the origin (inclusive) of each random value * @param randomNumberBound the bound (exclusive) of each random value * @return a stream of pseudorandom {@code long} values, * each with the given origin (inclusive) and bound (exclusive) * @throws IllegalArgumentException if {@code streamSize} is * less than zero, or {@code randomNumberOrigin} * is greater than or equal to {@code randomNumberBound} */ @Override public LongStream longs(long streamSize, long randomNumberOrigin, long randomNumberBound) { return proxy.longs(streamSize, randomNumberOrigin, randomNumberBound); } /** * Returns an effectively unlimited stream of pseudorandom {@code * long} values from this generator and/or one split from it; each value * conforms to the given origin (inclusive) and bound (exclusive). * * @implNote This method is implemented to be equivalent to {@code * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}. * * @param randomNumberOrigin the origin (inclusive) of each random value * @param randomNumberBound the bound (exclusive) of each random value * @return a stream of pseudorandom {@code long} values, * each with the given origin (inclusive) and bound (exclusive) * @throws IllegalArgumentException if {@code randomNumberOrigin} * is greater than or equal to {@code randomNumberBound} */ @Override public LongStream longs(long randomNumberOrigin, long randomNumberBound) { return proxy.longs(randomNumberOrigin, randomNumberBound); } /** * Returns a stream producing the given {@code streamSize} number of * pseudorandom {@code double} values from this generator and/or one split * from it; each value is between zero (inclusive) and one (exclusive). * * @param streamSize the number of values to generate * @return a stream of {@code double} values * @throws IllegalArgumentException if {@code streamSize} is * less than zero */ @Override public DoubleStream doubles(long streamSize) { return proxy.doubles(streamSize); } /** * Returns an effectively unlimited stream of pseudorandom {@code * double} values from this generator and/or one split from it; each value * is between zero (inclusive) and one (exclusive). * * @implNote This method is implemented to be equivalent to {@code * doubles(Long.MAX_VALUE)}. * * @return a stream of pseudorandom {@code double} values */ @Override public DoubleStream doubles() { return proxy.doubles(); } /** * Returns a stream producing the given {@code streamSize} number of * pseudorandom {@code double} values from this generator and/or one split * from it; each value conforms to the given origin (inclusive) and bound * (exclusive). * * @param streamSize the number of values to generate * @param randomNumberOrigin the origin (inclusive) of each random value * @param randomNumberBound the bound (exclusive) of each random value * @return a stream of pseudorandom {@code double} values, * each with the given origin (inclusive) and bound (exclusive) * @throws IllegalArgumentException if {@code streamSize} is * less than zero, or {@code randomNumberOrigin} * is greater than or equal to {@code randomNumberBound} */ @Override public DoubleStream doubles(long streamSize, double randomNumberOrigin, double randomNumberBound) { return proxy.doubles(streamSize, randomNumberOrigin, randomNumberBound); } /** * Returns an effectively unlimited stream of pseudorandom {@code * double} values from this generator and/or one split from it; each value * conforms to the given origin (inclusive) and bound (exclusive). * * @implNote This method is implemented to be equivalent to {@code * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}. * * @param randomNumberOrigin the origin (inclusive) of each random value * @param randomNumberBound the bound (exclusive) of each random value * @return a stream of pseudorandom {@code double} values, * each with the given origin (inclusive) and bound (exclusive) * @throws IllegalArgumentException if {@code randomNumberOrigin} * is greater than or equal to {@code randomNumberBound} */ @Override public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) { return proxy.doubles(randomNumberOrigin, randomNumberBound); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy