java.util.concurrent.ConcurrentSkipListMap Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NavigableSet;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.SortedMap;
import java.util.Spliterator;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Predicate;
import java.util.concurrent.atomic.LongAdder;
/**
* A scalable concurrent {@link ConcurrentNavigableMap} implementation.
* The map is sorted according to the {@linkplain Comparable natural
* ordering} of its keys, or by a {@link Comparator} provided at map
* creation time, depending on which constructor is used.
*
* This class implements a concurrent variant of SkipLists
* providing expected average log(n) time cost for the
* {@code containsKey}, {@code get}, {@code put} and
* {@code remove} operations and their variants. Insertion, removal,
* update, and access operations safely execute concurrently by
* multiple threads.
*
*
Iterators and spliterators are
* weakly consistent.
*
*
Ascending key ordered views and their iterators are faster than
* descending ones.
*
*
All {@code Map.Entry} pairs returned by methods in this class
* and its views represent snapshots of mappings at the time they were
* produced. They do not support the {@code Entry.setValue}
* method. (Note however that it is possible to change mappings in the
* associated map using {@code put}, {@code putIfAbsent}, or
* {@code replace}, depending on exactly which effect you need.)
*
*
Beware that bulk operations {@code putAll}, {@code equals},
* {@code toArray}, {@code containsValue}, and {@code clear} are
* not guaranteed to be performed atomically. For example, an
* iterator operating concurrently with a {@code putAll} operation
* might view only some of the added elements.
*
*
This class and its views and iterators implement all of the
* optional methods of the {@link Map} and {@link Iterator}
* interfaces. Like most other concurrent collections, this class does
* not permit the use of {@code null} keys or values because some
* null return values cannot be reliably distinguished from the absence of
* elements.
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @author Doug Lea
* @param the type of keys maintained by this map
* @param the type of mapped values
* @since 1.6
*/
public class ConcurrentSkipListMap extends AbstractMap
implements ConcurrentNavigableMap, Cloneable, Serializable {
/*
* This class implements a tree-like two-dimensionally linked skip
* list in which the index levels are represented in separate
* nodes from the base nodes holding data. There are two reasons
* for taking this approach instead of the usual array-based
* structure: 1) Array based implementations seem to encounter
* more complexity and overhead 2) We can use cheaper algorithms
* for the heavily-traversed index lists than can be used for the
* base lists. Here's a picture of some of the basics for a
* possible list with 2 levels of index:
*
* Head nodes Index nodes
* +-+ right +-+ +-+
* |2|---------------->| |--------------------->| |->null
* +-+ +-+ +-+
* | down | |
* v v v
* +-+ +-+ +-+ +-+ +-+ +-+
* |1|----------->| |->| |------>| |----------->| |------>| |->null
* +-+ +-+ +-+ +-+ +-+ +-+
* v | | | | |
* Nodes next v v v v v
* +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
* | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
* +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
*
* The base lists use a variant of the HM linked ordered set
* algorithm. See Tim Harris, "A pragmatic implementation of
* non-blocking linked lists"
* http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
* Michael "High Performance Dynamic Lock-Free Hash Tables and
* List-Based Sets"
* http://www.research.ibm.com/people/m/michael/pubs.htm. The
* basic idea in these lists is to mark the "next" pointers of
* deleted nodes when deleting to avoid conflicts with concurrent
* insertions, and when traversing to keep track of triples
* (predecessor, node, successor) in order to detect when and how
* to unlink these deleted nodes.
*
* Rather than using mark-bits to mark list deletions (which can
* be slow and space-intensive using AtomicMarkedReference), nodes
* use direct CAS'able next pointers. On deletion, instead of
* marking a pointer, they splice in another node that can be
* thought of as standing for a marked pointer (see method
* unlinkNode). Using plain nodes acts roughly like "boxed"
* implementations of marked pointers, but uses new nodes only
* when nodes are deleted, not for every link. This requires less
* space and supports faster traversal. Even if marked references
* were better supported by JVMs, traversal using this technique
* might still be faster because any search need only read ahead
* one more node than otherwise required (to check for trailing
* marker) rather than unmasking mark bits or whatever on each
* read.
*
* This approach maintains the essential property needed in the HM
* algorithm of changing the next-pointer of a deleted node so
* that any other CAS of it will fail, but implements the idea by
* changing the pointer to point to a different node (with
* otherwise illegal null fields), not by marking it. While it
* would be possible to further squeeze space by defining marker
* nodes not to have key/value fields, it isn't worth the extra
* type-testing overhead. The deletion markers are rarely
* encountered during traversal, are easily detected via null
* checks that are needed anyway, and are normally quickly garbage
* collected. (Note that this technique would not work well in
* systems without garbage collection.)
*
* In addition to using deletion markers, the lists also use
* nullness of value fields to indicate deletion, in a style
* similar to typical lazy-deletion schemes. If a node's value is
* null, then it is considered logically deleted and ignored even
* though it is still reachable.
*
* Here's the sequence of events for a deletion of node n with
* predecessor b and successor f, initially:
*
* +------+ +------+ +------+
* ... | b |------>| n |----->| f | ...
* +------+ +------+ +------+
*
* 1. CAS n's value field from non-null to null.
* Traversals encountering a node with null value ignore it.
* However, ongoing insertions and deletions might still modify
* n's next pointer.
*
* 2. CAS n's next pointer to point to a new marker node.
* From this point on, no other nodes can be appended to n.
* which avoids deletion errors in CAS-based linked lists.
*
* +------+ +------+ +------+ +------+
* ... | b |------>| n |----->|marker|------>| f | ...
* +------+ +------+ +------+ +------+
*
* 3. CAS b's next pointer over both n and its marker.
* From this point on, no new traversals will encounter n,
* and it can eventually be GCed.
* +------+ +------+
* ... | b |----------------------------------->| f | ...
* +------+ +------+
*
* A failure at step 1 leads to simple retry due to a lost race
* with another operation. Steps 2-3 can fail because some other
* thread noticed during a traversal a node with null value and
* helped out by marking and/or unlinking. This helping-out
* ensures that no thread can become stuck waiting for progress of
* the deleting thread.
*
* Skip lists add indexing to this scheme, so that the base-level
* traversals start close to the locations being found, inserted
* or deleted -- usually base level traversals only traverse a few
* nodes. This doesn't change the basic algorithm except for the
* need to make sure base traversals start at predecessors (here,
* b) that are not (structurally) deleted, otherwise retrying
* after processing the deletion.
*
* Index levels are maintained using CAS to link and unlink
* successors ("right" fields). Races are allowed in index-list
* operations that can (rarely) fail to link in a new index node.
* (We can't do this of course for data nodes.) However, even
* when this happens, the index lists correctly guide search.
* This can impact performance, but since skip lists are
* probabilistic anyway, the net result is that under contention,
* the effective "p" value may be lower than its nominal value.
*
* Index insertion and deletion sometimes require a separate
* traversal pass occurring after the base-level action, to add or
* remove index nodes. This adds to single-threaded overhead, but
* improves contended multithreaded performance by narrowing
* interference windows, and allows deletion to ensure that all
* index nodes will be made unreachable upon return from a public
* remove operation, thus avoiding unwanted garbage retention.
*
* Indexing uses skip list parameters that maintain good search
* performance while using sparser-than-usual indices: The
* hardwired parameters k=1, p=0.5 (see method doPut) mean that
* about one-quarter of the nodes have indices. Of those that do,
* half have one level, a quarter have two, and so on (see Pugh's
* Skip List Cookbook, sec 3.4), up to a maximum of 62 levels
* (appropriate for up to 2^63 elements). The expected total
* space requirement for a map is slightly less than for the
* current implementation of java.util.TreeMap.
*
* Changing the level of the index (i.e, the height of the
* tree-like structure) also uses CAS. Creation of an index with
* height greater than the current level adds a level to the head
* index by CAS'ing on a new top-most head. To maintain good
* performance after a lot of removals, deletion methods
* heuristically try to reduce the height if the topmost levels
* appear to be empty. This may encounter races in which it is
* possible (but rare) to reduce and "lose" a level just as it is
* about to contain an index (that will then never be
* encountered). This does no structural harm, and in practice
* appears to be a better option than allowing unrestrained growth
* of levels.
*
* This class provides concurrent-reader-style memory consistency,
* ensuring that read-only methods report status and/or values no
* staler than those holding at method entry. This is done by
* performing all publication and structural updates using
* (volatile) CAS, placing an acquireFence in a few access
* methods, and ensuring that linked objects are transitively
* acquired via dependent reads (normally once) unless performing
* a volatile-mode CAS operation (that also acts as an acquire and
* release). This form of fence-hoisting is similar to RCU and
* related techniques (see McKenney's online book
* https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
* It minimizes overhead that may otherwise occur when using so
* many volatile-mode reads. Using explicit acquireFences is
* logistically easier than targeting particular fields to be read
* in acquire mode: fences are just hoisted up as far as possible,
* to the entry points or loop headers of a few methods. A
* potential disadvantage is that these few remaining fences are
* not easily optimized away by compilers under exclusively
* single-thread use. It requires some care to avoid volatile
* mode reads of other fields. (Note that the memory semantics of
* a reference dependently read in plain mode exactly once are
* equivalent to those for atomic opaque mode.) Iterators and
* other traversals encounter each node and value exactly once.
* Other operations locate an element (or position to insert an
* element) via a sequence of dereferences. This search is broken
* into two parts. Method findPredecessor (and its specialized
* embeddings) searches index nodes only, returning a base-level
* predecessor of the key. Callers carry out the base-level
* search, restarting if encountering a marker preventing link
* modification. In some cases, it is possible to encounter a
* node multiple times while descending levels. For mutative
* operations, the reported value is validated using CAS (else
* retrying), preserving linearizability with respect to each
* other. Others may return any (non-null) value holding in the
* course of the method call. (Search-based methods also include
* some useless-looking explicit null checks designed to allow
* more fields to be nulled out upon removal, to reduce floating
* garbage, but which is not currently done, pending discovery of
* a way to do this with less impact on other operations.)
*
* To produce random values without interference across threads,
* we use within-JDK thread local random support (via the
* "secondary seed", to avoid interference with user-level
* ThreadLocalRandom.)
*
* For explanation of algorithms sharing at least a couple of
* features with this one, see Mikhail Fomitchev's thesis
* (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
* (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
* thesis (http://www.cs.chalmers.se/~phs/).
*
* Notation guide for local variables
* Node: b, n, f, p for predecessor, node, successor, aux
* Index: q, r, d for index node, right, down.
* Head: h
* Keys: k, key
* Values: v, value
* Comparisons: c
*/
private static final long serialVersionUID = -8627078645895051609L;
/**
* The comparator used to maintain order in this map, or null if
* using natural ordering. (Non-private to simplify access in
* nested classes.)
* @serial
*/
@SuppressWarnings("serial") // Conditionally serializable
final Comparator super K> comparator;
/** Lazily initialized topmost index of the skiplist. */
private transient Index head;
/** Lazily initialized element count */
private transient LongAdder adder;
/** Lazily initialized key set */
private transient KeySet keySet;
/** Lazily initialized values collection */
private transient Values values;
/** Lazily initialized entry set */
private transient EntrySet entrySet;
/** Lazily initialized descending map */
private transient SubMap descendingMap;
/**
* Nodes hold keys and values, and are singly linked in sorted
* order, possibly with some intervening marker nodes. The list is
* headed by a header node accessible as head.node. Headers and
* marker nodes have null keys. The val field (but currently not
* the key field) is nulled out upon deletion.
*/
static final class Node {
final K key; // currently, never detached
V val;
Node next;
Node(K key, V value, Node next) {
this.key = key;
this.val = value;
this.next = next;
}
}
/**
* Index nodes represent the levels of the skip list.
*/
static final class Index {
final Node node; // currently, never detached
final Index down;
Index right;
Index(Node node, Index down, Index right) {
this.node = node;
this.down = down;
this.right = right;
}
}
/* ---------------- Utilities -------------- */
/**
* Compares using comparator or natural ordering if null.
* Called only by methods that have performed required type checks.
*/
@SuppressWarnings({"unchecked", "rawtypes"})
static int cpr(Comparator c, Object x, Object y) {
return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
}
/**
* Returns the header for base node list, or null if uninitialized
*/
final Node baseHead() {
Index h;
VarHandle.acquireFence();
return ((h = head) == null) ? null : h.node;
}
/**
* Tries to unlink deleted node n from predecessor b (if both
* exist), by first splicing in a marker if not already present.
* Upon return, node n is sure to be unlinked from b, possibly
* via the actions of some other thread.
*
* @param b if nonnull, predecessor
* @param n if nonnull, node known to be deleted
*/
static void unlinkNode(Node b, Node n) {
if (b != null && n != null) {
Node f, p;
for (;;) {
if ((f = n.next) != null && f.key == null) {
p = f.next; // already marked
break;
}
else if (NEXT.compareAndSet(n, f,
new Node(null, null, f))) {
p = f; // add marker
break;
}
}
NEXT.compareAndSet(b, n, p);
}
}
/**
* Adds to element count, initializing adder if necessary
*
* @param c count to add
*/
private void addCount(long c) {
LongAdder a;
do {} while ((a = adder) == null &&
!ADDER.compareAndSet(this, null, a = new LongAdder()));
a.add(c);
}
/**
* Returns element count, initializing adder if necessary.
*/
final long getAdderCount() {
LongAdder a; long c;
do {} while ((a = adder) == null &&
!ADDER.compareAndSet(this, null, a = new LongAdder()));
return ((c = a.sum()) <= 0L) ? 0L : c; // ignore transient negatives
}
/* ---------------- Traversal -------------- */
/**
* Returns an index node with key strictly less than given key.
* Also unlinks indexes to deleted nodes found along the way.
* Callers rely on this side-effect of clearing indices to deleted
* nodes.
*
* @param key if nonnull the key
* @return a predecessor node of key, or null if uninitialized or null key
*/
private Node findPredecessor(Object key, Comparator super K> cmp) {
Index q;
VarHandle.acquireFence();
if ((q = head) == null || key == null)
return null;
else {
for (Index r, d;;) {
while ((r = q.right) != null) {
Node p; K k;
if ((p = r.node) == null || (k = p.key) == null ||
p.val == null) // unlink index to deleted node
RIGHT.compareAndSet(q, r, r.right);
else if (cpr(cmp, key, k) > 0)
q = r;
else
break;
}
if ((d = q.down) != null)
q = d;
else
return q.node;
}
}
}
/**
* Returns node holding key or null if no such, clearing out any
* deleted nodes seen along the way. Repeatedly traverses at
* base-level looking for key starting at predecessor returned
* from findPredecessor, processing base-level deletions as
* encountered. Restarts occur, at traversal step encountering
* node n, if n's key field is null, indicating it is a marker, so
* its predecessor is deleted before continuing, which we help do
* by re-finding a valid predecessor. The traversal loops in
* doPut, doRemove, and findNear all include the same checks.
*
* @param key the key
* @return node holding key, or null if no such
*/
private Node findNode(Object key) {
if (key == null)
throw new NullPointerException(); // don't postpone errors
Comparator super K> cmp = comparator;
Node b;
outer: while ((b = findPredecessor(key, cmp)) != null) {
for (;;) {
Node n; K k; V v; int c;
if ((n = b.next) == null)
break outer; // empty
else if ((k = n.key) == null)
break; // b is deleted
else if ((v = n.val) == null)
unlinkNode(b, n); // n is deleted
else if ((c = cpr(cmp, key, k)) > 0)
b = n;
else if (c == 0)
return n;
else
break outer;
}
}
return null;
}
/**
* Gets value for key. Same idea as findNode, except skips over
* deletions and markers, and returns first encountered value to
* avoid possibly inconsistent rereads.
*
* @param key the key
* @return the value, or null if absent
*/
private V doGet(Object key) {
Index q;
VarHandle.acquireFence();
if (key == null)
throw new NullPointerException();
Comparator super K> cmp = comparator;
V result = null;
if ((q = head) != null) {
outer: for (Index r, d;;) {
while ((r = q.right) != null) {
Node p; K k; V v; int c;
if ((p = r.node) == null || (k = p.key) == null ||
(v = p.val) == null)
RIGHT.compareAndSet(q, r, r.right);
else if ((c = cpr(cmp, key, k)) > 0)
q = r;
else if (c == 0) {
result = v;
break outer;
}
else
break;
}
if ((d = q.down) != null)
q = d;
else {
Node b, n;
if ((b = q.node) != null) {
while ((n = b.next) != null) {
V v; int c;
K k = n.key;
if ((v = n.val) == null || k == null ||
(c = cpr(cmp, key, k)) > 0)
b = n;
else {
if (c == 0)
result = v;
break;
}
}
}
break;
}
}
}
return result;
}
/* ---------------- Insertion -------------- */
/**
* Main insertion method. Adds element if not present, or
* replaces value if present and onlyIfAbsent is false.
*
* @param key the key
* @param value the value that must be associated with key
* @param onlyIfAbsent if should not insert if already present
* @return the old value, or null if newly inserted
*/
private V doPut(K key, V value, boolean onlyIfAbsent) {
if (key == null)
throw new NullPointerException();
Comparator super K> cmp = comparator;
for (;;) {
Index h; Node b;
VarHandle.acquireFence();
int levels = 0; // number of levels descended
if ((h = head) == null) { // try to initialize
Node base = new Node(null, null, null);
h = new Index(base, null, null);
b = (HEAD.compareAndSet(this, null, h)) ? base : null;
}
else {
for (Index q = h, r, d;;) { // count while descending
while ((r = q.right) != null) {
Node p; K k;
if ((p = r.node) == null || (k = p.key) == null ||
p.val == null)
RIGHT.compareAndSet(q, r, r.right);
else if (cpr(cmp, key, k) > 0)
q = r;
else
break;
}
if ((d = q.down) != null) {
++levels;
q = d;
}
else {
b = q.node;
break;
}
}
}
if (b != null) {
Node z = null; // new node, if inserted
for (;;) { // find insertion point
Node n, p; K k; V v; int c;
if ((n = b.next) == null) {
if (b.key == null) // if empty, type check key now
cpr(cmp, key, key);
c = -1;
}
else if ((k = n.key) == null)
break; // can't append; restart
else if ((v = n.val) == null) {
unlinkNode(b, n);
c = 1;
}
else if ((c = cpr(cmp, key, k)) > 0)
b = n;
else if (c == 0 &&
(onlyIfAbsent || VAL.compareAndSet(n, v, value)))
return v;
if (c < 0 &&
NEXT.compareAndSet(b, n,
p = new Node(key, value, n))) {
z = p;
break;
}
}
if (z != null) {
int lr = ThreadLocalRandom.nextSecondarySeed();
if ((lr & 0x3) == 0) { // add indices with 1/4 prob
int hr = ThreadLocalRandom.nextSecondarySeed();
long rnd = ((long)hr << 32) | ((long)lr & 0xffffffffL);
int skips = levels; // levels to descend before add
Index x = null;
for (;;) { // create at most 62 indices
x = new Index(z, x, null);
if (rnd >= 0L || --skips < 0)
break;
else
rnd <<= 1;
}
if (addIndices(h, skips, x, cmp) && skips < 0 &&
head == h) { // try to add new level
Index hx = new Index(z, x, null);
Index nh = new Index(h.node, h, hx);
HEAD.compareAndSet(this, h, nh);
}
if (z.val == null) // deleted while adding indices
findPredecessor(key, cmp); // clean
}
addCount(1L);
return null;
}
}
}
}
/**
* Add indices after an insertion. Descends iteratively to the
* highest level of insertion, then recursively, to chain index
* nodes to lower ones. Returns null on (staleness) failure,
* disabling higher-level insertions. Recursion depths are
* exponentially less probable.
*
* @param q starting index for current level
* @param skips levels to skip before inserting
* @param x index for this insertion
* @param cmp comparator
*/
static boolean addIndices(Index q, int skips, Index x,
Comparator super K> cmp) {
Node z; K key;
if (x != null && (z = x.node) != null && (key = z.key) != null &&
q != null) { // hoist checks
boolean retrying = false;
for (;;) { // find splice point
Index r, d; int c;
if ((r = q.right) != null) {
Node p; K k;
if ((p = r.node) == null || (k = p.key) == null ||
p.val == null) {
RIGHT.compareAndSet(q, r, r.right);
c = 0;
}
else if ((c = cpr(cmp, key, k)) > 0)
q = r;
else if (c == 0)
break; // stale
}
else
c = -1;
if (c < 0) {
if ((d = q.down) != null && skips > 0) {
--skips;
q = d;
}
else if (d != null && !retrying &&
!addIndices(d, 0, x.down, cmp))
break;
else {
x.right = r;
if (RIGHT.compareAndSet(q, r, x))
return true;
else
retrying = true; // re-find splice point
}
}
}
}
return false;
}
/* ---------------- Deletion -------------- */
/**
* Main deletion method. Locates node, nulls value, appends a
* deletion marker, unlinks predecessor, removes associated index
* nodes, and possibly reduces head index level.
*
* @param key the key
* @param value if non-null, the value that must be
* associated with key
* @return the node, or null if not found
*/
final V doRemove(Object key, Object value) {
if (key == null)
throw new NullPointerException();
Comparator super K> cmp = comparator;
V result = null;
Node b;
outer: while ((b = findPredecessor(key, cmp)) != null &&
result == null) {
for (;;) {
Node n; K k; V v; int c;
if ((n = b.next) == null)
break outer;
else if ((k = n.key) == null)
break;
else if ((v = n.val) == null)
unlinkNode(b, n);
else if ((c = cpr(cmp, key, k)) > 0)
b = n;
else if (c < 0)
break outer;
else if (value != null && !value.equals(v))
break outer;
else if (VAL.compareAndSet(n, v, null)) {
result = v;
unlinkNode(b, n);
break; // loop to clean up
}
}
}
if (result != null) {
tryReduceLevel();
addCount(-1L);
}
return result;
}
/**
* Possibly reduce head level if it has no nodes. This method can
* (rarely) make mistakes, in which case levels can disappear even
* though they are about to contain index nodes. This impacts
* performance, not correctness. To minimize mistakes as well as
* to reduce hysteresis, the level is reduced by one only if the
* topmost three levels look empty. Also, if the removed level
* looks non-empty after CAS, we try to change it back quick
* before anyone notices our mistake! (This trick works pretty
* well because this method will practically never make mistakes
* unless current thread stalls immediately before first CAS, in
* which case it is very unlikely to stall again immediately
* afterwards, so will recover.)
*
* We put up with all this rather than just let levels grow
* because otherwise, even a small map that has undergone a large
* number of insertions and removals will have a lot of levels,
* slowing down access more than would an occasional unwanted
* reduction.
*/
private void tryReduceLevel() {
Index h, d, e;
if ((h = head) != null && h.right == null &&
(d = h.down) != null && d.right == null &&
(e = d.down) != null && e.right == null &&
HEAD.compareAndSet(this, h, d) &&
h.right != null) // recheck
HEAD.compareAndSet(this, d, h); // try to backout
}
/* ---------------- Finding and removing first element -------------- */
/**
* Gets first valid node, unlinking deleted nodes if encountered.
* @return first node or null if empty
*/
final Node findFirst() {
Node b, n;
if ((b = baseHead()) != null) {
while ((n = b.next) != null) {
if (n.val == null)
unlinkNode(b, n);
else
return n;
}
}
return null;
}
/**
* Entry snapshot version of findFirst
*/
final AbstractMap.SimpleImmutableEntry findFirstEntry() {
Node b, n; V v;
if ((b = baseHead()) != null) {
while ((n = b.next) != null) {
if ((v = n.val) == null)
unlinkNode(b, n);
else
return new AbstractMap.SimpleImmutableEntry(n.key, v);
}
}
return null;
}
/**
* Removes first entry; returns its snapshot.
* @return null if empty, else snapshot of first entry
*/
private AbstractMap.SimpleImmutableEntry doRemoveFirstEntry() {
Node b, n; V v;
if ((b = baseHead()) != null) {
while ((n = b.next) != null) {
if ((v = n.val) == null || VAL.compareAndSet(n, v, null)) {
K k = n.key;
unlinkNode(b, n);
if (v != null) {
tryReduceLevel();
findPredecessor(k, comparator); // clean index
addCount(-1L);
return new AbstractMap.SimpleImmutableEntry(k, v);
}
}
}
}
return null;
}
/* ---------------- Finding and removing last element -------------- */
/**
* Specialized version of find to get last valid node.
* @return last node or null if empty
*/
final Node findLast() {
outer: for (;;) {
Index q; Node b;
VarHandle.acquireFence();
if ((q = head) == null)
break;
for (Index r, d;;) {
while ((r = q.right) != null) {
Node p;
if ((p = r.node) == null || p.val == null)
RIGHT.compareAndSet(q, r, r.right);
else
q = r;
}
if ((d = q.down) != null)
q = d;
else {
b = q.node;
break;
}
}
if (b != null) {
for (;;) {
Node n;
if ((n = b.next) == null) {
if (b.key == null) // empty
break outer;
else
return b;
}
else if (n.key == null)
break;
else if (n.val == null)
unlinkNode(b, n);
else
b = n;
}
}
}
return null;
}
/**
* Entry version of findLast
* @return Entry for last node or null if empty
*/
final AbstractMap.SimpleImmutableEntry findLastEntry() {
for (;;) {
Node n; V v;
if ((n = findLast()) == null)
return null;
if ((v = n.val) != null)
return new AbstractMap.SimpleImmutableEntry(n.key, v);
}
}
/**
* Removes last entry; returns its snapshot.
* Specialized variant of doRemove.
* @return null if empty, else snapshot of last entry
*/
private Map.Entry doRemoveLastEntry() {
outer: for (;;) {
Index q; Node b;
VarHandle.acquireFence();
if ((q = head) == null)
break;
for (;;) {
Index d, r; Node p;
while ((r = q.right) != null) {
if ((p = r.node) == null || p.val == null)
RIGHT.compareAndSet(q, r, r.right);
else if (p.next != null)
q = r; // continue only if a successor
else
break;
}
if ((d = q.down) != null)
q = d;
else {
b = q.node;
break;
}
}
if (b != null) {
for (;;) {
Node n; K k; V v;
if ((n = b.next) == null) {
if (b.key == null) // empty
break outer;
else
break; // retry
}
else if ((k = n.key) == null)
break;
else if ((v = n.val) == null)
unlinkNode(b, n);
else if (n.next != null)
b = n;
else if (VAL.compareAndSet(n, v, null)) {
unlinkNode(b, n);
tryReduceLevel();
findPredecessor(k, comparator); // clean index
addCount(-1L);
return new AbstractMap.SimpleImmutableEntry(k, v);
}
}
}
}
return null;
}
/* ---------------- Relational operations -------------- */
// Control values OR'ed as arguments to findNear
private static final int EQ = 1;
private static final int LT = 2;
private static final int GT = 0; // Actually checked as !LT
/**
* Utility for ceiling, floor, lower, higher methods.
* @param key the key
* @param rel the relation -- OR'ed combination of EQ, LT, GT
* @return nearest node fitting relation, or null if no such
*/
final Node findNear(K key, int rel, Comparator super K> cmp) {
if (key == null)
throw new NullPointerException();
Node result;
outer: for (Node b;;) {
if ((b = findPredecessor(key, cmp)) == null) {
result = null;
break; // empty
}
for (;;) {
Node n; K k; int c;
if ((n = b.next) == null) {
result = ((rel & LT) != 0 && b.key != null) ? b : null;
break outer;
}
else if ((k = n.key) == null)
break;
else if (n.val == null)
unlinkNode(b, n);
else if (((c = cpr(cmp, key, k)) == 0 && (rel & EQ) != 0) ||
(c < 0 && (rel & LT) == 0)) {
result = n;
break outer;
}
else if (c <= 0 && (rel & LT) != 0) {
result = (b.key != null) ? b : null;
break outer;
}
else
b = n;
}
}
return result;
}
/**
* Variant of findNear returning SimpleImmutableEntry
* @param key the key
* @param rel the relation -- OR'ed combination of EQ, LT, GT
* @return Entry fitting relation, or null if no such
*/
final AbstractMap.SimpleImmutableEntry findNearEntry(K key, int rel,
Comparator super K> cmp) {
for (;;) {
Node n; V v;
if ((n = findNear(key, rel, cmp)) == null)
return null;
if ((v = n.val) != null)
return new AbstractMap.SimpleImmutableEntry(n.key, v);
}
}
/* ---------------- Constructors -------------- */
/**
* Constructs a new, empty map, sorted according to the
* {@linkplain Comparable natural ordering} of the keys.
*/
public ConcurrentSkipListMap() {
this.comparator = null;
}
/**
* Constructs a new, empty map, sorted according to the specified
* comparator.
*
* @param comparator the comparator that will be used to order this map.
* If {@code null}, the {@linkplain Comparable natural
* ordering} of the keys will be used.
*/
public ConcurrentSkipListMap(Comparator super K> comparator) {
this.comparator = comparator;
}
/**
* Constructs a new map containing the same mappings as the given map,
* sorted according to the {@linkplain Comparable natural ordering} of
* the keys.
*
* @param m the map whose mappings are to be placed in this map
* @throws ClassCastException if the keys in {@code m} are not
* {@link Comparable}, or are not mutually comparable
* @throws NullPointerException if the specified map or any of its keys
* or values are null
*/
public ConcurrentSkipListMap(Map extends K, ? extends V> m) {
this.comparator = null;
putAll(m);
}
/**
* Constructs a new map containing the same mappings and using the
* same ordering as the specified sorted map.
*
* @param m the sorted map whose mappings are to be placed in this
* map, and whose comparator is to be used to sort this map
* @throws NullPointerException if the specified sorted map or any of
* its keys or values are null
*/
public ConcurrentSkipListMap(SortedMap m) {
this.comparator = m.comparator();
buildFromSorted(m); // initializes transients
}
/**
* Returns a shallow copy of this {@code ConcurrentSkipListMap}
* instance. (The keys and values themselves are not cloned.)
*
* @return a shallow copy of this map
*/
public ConcurrentSkipListMap clone() {
try {
@SuppressWarnings("unchecked")
ConcurrentSkipListMap clone =
(ConcurrentSkipListMap) super.clone();
clone.keySet = null;
clone.entrySet = null;
clone.values = null;
clone.descendingMap = null;
clone.adder = null;
clone.buildFromSorted(this);
return clone;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
}
/**
* Streamlined bulk insertion to initialize from elements of
* given sorted map. Call only from constructor or clone
* method.
*/
private void buildFromSorted(SortedMap map) {
if (map == null)
throw new NullPointerException();
Iterator extends Map.Entry extends K, ? extends V>> it =
map.entrySet().iterator();
/*
* Add equally spaced indices at log intervals, using the bits
* of count during insertion. The maximum possible resulting
* level is less than the number of bits in a long (64). The
* preds array tracks the current rightmost node at each
* level.
*/
@SuppressWarnings("unchecked")
Index[] preds = (Index[])new Index,?>[64];
Node bp = new Node(null, null, null);
Index h = preds[0] = new Index(bp, null, null);
long count = 0;
while (it.hasNext()) {
Map.Entry extends K, ? extends V> e = it.next();
K k = e.getKey();
V v = e.getValue();
if (k == null || v == null)
throw new NullPointerException();
Node z = new Node(k, v, null);
bp = bp.next = z;
if ((++count & 3L) == 0L) {
long m = count >>> 2;
int i = 0;
Index idx = null, q;
do {
idx = new Index(z, idx, null);
if ((q = preds[i]) == null)
preds[i] = h = new Index(h.node, h, idx);
else
preds[i] = q.right = idx;
} while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
}
}
if (count != 0L) {
VarHandle.releaseFence(); // emulate volatile stores
addCount(count);
head = h;
VarHandle.fullFence();
}
}
/* ---------------- Serialization -------------- */
/**
* Saves this map to a stream (that is, serializes it).
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
* @serialData The key (Object) and value (Object) for each
* key-value mapping represented by the map, followed by
* {@code null}. The key-value mappings are emitted in key-order
* (as determined by the Comparator, or by the keys' natural
* ordering if no Comparator).
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out the Comparator and any hidden stuff
s.defaultWriteObject();
// Write out keys and values (alternating)
Node b, n; V v;
if ((b = baseHead()) != null) {
while ((n = b.next) != null) {
if ((v = n.val) != null) {
s.writeObject(n.key);
s.writeObject(v);
}
b = n;
}
}
s.writeObject(null);
}
/**
* Reconstitutes this map from a stream (that is, deserializes it).
* @param s the stream
* @throws ClassNotFoundException if the class of a serialized object
* could not be found
* @throws java.io.IOException if an I/O error occurs
*/
@SuppressWarnings("unchecked")
private void readObject(final java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in the Comparator and any hidden stuff
s.defaultReadObject();
// Same idea as buildFromSorted
@SuppressWarnings("unchecked")
Index[] preds = (Index[])new Index,?>[64];
Node bp = new Node(null, null, null);
Index h = preds[0] = new Index(bp, null, null);
Comparator super K> cmp = comparator;
K prevKey = null;
long count = 0;
for (;;) {
K k = (K)s.readObject();
if (k == null)
break;
V v = (V)s.readObject();
if (v == null)
throw new NullPointerException();
if (prevKey != null && cpr(cmp, prevKey, k) > 0)
throw new IllegalStateException("out of order");
prevKey = k;
Node z = new Node(k, v, null);
bp = bp.next = z;
if ((++count & 3L) == 0L) {
long m = count >>> 2;
int i = 0;
Index idx = null, q;
do {
idx = new Index(z, idx, null);
if ((q = preds[i]) == null)
preds[i] = h = new Index(h.node, h, idx);
else
preds[i] = q.right = idx;
} while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
}
}
if (count != 0L) {
VarHandle.releaseFence();
addCount(count);
head = h;
VarHandle.fullFence();
}
}
/* ------ Map API methods ------ */
/**
* Returns {@code true} if this map contains a mapping for the specified
* key.
*
* @param key key whose presence in this map is to be tested
* @return {@code true} if this map contains a mapping for the specified key
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key is null
*/
public boolean containsKey(Object key) {
return doGet(key) != null;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key} compares
* equal to {@code k} according to the map's ordering, then this
* method returns {@code v}; otherwise it returns {@code null}.
* (There can be at most one such mapping.)
*
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key is null
*/
public V get(Object key) {
return doGet(key);
}
/**
* Returns the value to which the specified key is mapped,
* or the given defaultValue if this map contains no mapping for the key.
*
* @param key the key
* @param defaultValue the value to return if this map contains
* no mapping for the given key
* @return the mapping for the key, if present; else the defaultValue
* @throws NullPointerException if the specified key is null
* @since 1.8
*/
public V getOrDefault(Object key, V defaultValue) {
V v;
return (v = doGet(key)) == null ? defaultValue : v;
}
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with the specified key, or
* {@code null} if there was no mapping for the key
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key or value is null
*/
public V put(K key, V value) {
if (value == null)
throw new NullPointerException();
return doPut(key, value, false);
}
/**
* Removes the mapping for the specified key from this map if present.
*
* @param key key for which mapping should be removed
* @return the previous value associated with the specified key, or
* {@code null} if there was no mapping for the key
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key is null
*/
public V remove(Object key) {
return doRemove(key, null);
}
/**
* Returns {@code true} if this map maps one or more keys to the
* specified value. This operation requires time linear in the
* map size. Additionally, it is possible for the map to change
* during execution of this method, in which case the returned
* result may be inaccurate.
*
* @param value value whose presence in this map is to be tested
* @return {@code true} if a mapping to {@code value} exists;
* {@code false} otherwise
* @throws NullPointerException if the specified value is null
*/
public boolean containsValue(Object value) {
if (value == null)
throw new NullPointerException();
Node b, n; V v;
if ((b = baseHead()) != null) {
while ((n = b.next) != null) {
if ((v = n.val) != null && value.equals(v))
return true;
else
b = n;
}
}
return false;
}
/**
* {@inheritDoc}
*/
public int size() {
long c;
return ((baseHead() == null) ? 0 :
((c = getAdderCount()) >= Integer.MAX_VALUE) ?
Integer.MAX_VALUE : (int) c);
}
/**
* {@inheritDoc}
*/
public boolean isEmpty() {
return findFirst() == null;
}
/**
* Removes all of the mappings from this map.
*/
public void clear() {
Index h, r, d; Node b;
VarHandle.acquireFence();
while ((h = head) != null) {
if ((r = h.right) != null) // remove indices
RIGHT.compareAndSet(h, r, null);
else if ((d = h.down) != null) // remove levels
HEAD.compareAndSet(this, h, d);
else {
long count = 0L;
if ((b = h.node) != null) { // remove nodes
Node n; V v;
while ((n = b.next) != null) {
if ((v = n.val) != null &&
VAL.compareAndSet(n, v, null)) {
--count;
v = null;
}
if (v == null)
unlinkNode(b, n);
}
}
if (count != 0L)
addCount(count);
else
break;
}
}
}
/**
* If the specified key is not already associated with a value,
* attempts to compute its value using the given mapping function
* and enters it into this map unless {@code null}. The function
* is NOT guaranteed to be applied once atomically only
* if the value is not present.
*
* @param key key with which the specified value is to be associated
* @param mappingFunction the function to compute a value
* @return the current (existing or computed) value associated with
* the specified key, or null if the computed value is null
* @throws NullPointerException if the specified key is null
* or the mappingFunction is null
* @since 1.8
*/
public V computeIfAbsent(K key,
Function super K, ? extends V> mappingFunction) {
if (key == null || mappingFunction == null)
throw new NullPointerException();
V v, p, r;
if ((v = doGet(key)) == null &&
(r = mappingFunction.apply(key)) != null)
v = (p = doPut(key, r, true)) == null ? r : p;
return v;
}
/**
* If the value for the specified key is present, attempts to
* compute a new mapping given the key and its current mapped
* value. The function is NOT guaranteed to be applied
* once atomically.
*
* @param key key with which a value may be associated
* @param remappingFunction the function to compute a value
* @return the new value associated with the specified key, or null if none
* @throws NullPointerException if the specified key is null
* or the remappingFunction is null
* @since 1.8
*/
public V computeIfPresent(K key,
BiFunction super K, ? super V, ? extends V> remappingFunction) {
if (key == null || remappingFunction == null)
throw new NullPointerException();
Node n; V v;
while ((n = findNode(key)) != null) {
if ((v = n.val) != null) {
V r = remappingFunction.apply(key, v);
if (r != null) {
if (VAL.compareAndSet(n, v, r))
return r;
}
else if (doRemove(key, v) != null)
break;
}
}
return null;
}
/**
* Attempts to compute a mapping for the specified key and its
* current mapped value (or {@code null} if there is no current
* mapping). The function is NOT guaranteed to be applied
* once atomically.
*
* @param key key with which the specified value is to be associated
* @param remappingFunction the function to compute a value
* @return the new value associated with the specified key, or null if none
* @throws NullPointerException if the specified key is null
* or the remappingFunction is null
* @since 1.8
*/
public V compute(K key,
BiFunction super K, ? super V, ? extends V> remappingFunction) {
if (key == null || remappingFunction == null)
throw new NullPointerException();
for (;;) {
Node n; V v; V r;
if ((n = findNode(key)) == null) {
if ((r = remappingFunction.apply(key, null)) == null)
break;
if (doPut(key, r, true) == null)
return r;
}
else if ((v = n.val) != null) {
if ((r = remappingFunction.apply(key, v)) != null) {
if (VAL.compareAndSet(n, v, r))
return r;
}
else if (doRemove(key, v) != null)
break;
}
}
return null;
}
/**
* If the specified key is not already associated with a value,
* associates it with the given value. Otherwise, replaces the
* value with the results of the given remapping function, or
* removes if {@code null}. The function is NOT
* guaranteed to be applied once atomically.
*
* @param key key with which the specified value is to be associated
* @param value the value to use if absent
* @param remappingFunction the function to recompute a value if present
* @return the new value associated with the specified key, or null if none
* @throws NullPointerException if the specified key or value is null
* or the remappingFunction is null
* @since 1.8
*/
public V merge(K key, V value,
BiFunction super V, ? super V, ? extends V> remappingFunction) {
if (key == null || value == null || remappingFunction == null)
throw new NullPointerException();
for (;;) {
Node n; V v; V r;
if ((n = findNode(key)) == null) {
if (doPut(key, value, true) == null)
return value;
}
else if ((v = n.val) != null) {
if ((r = remappingFunction.apply(v, value)) != null) {
if (VAL.compareAndSet(n, v, r))
return r;
}
else if (doRemove(key, v) != null)
return null;
}
}
}
/* ---------------- View methods -------------- */
/*
* Note: Lazy initialization works for views because view classes
* are stateless/immutable so it doesn't matter wrt correctness if
* more than one is created (which will only rarely happen). Even
* so, the following idiom conservatively ensures that the method
* returns the one it created if it does so, not one created by
* another racing thread.
*/
/**
* Returns a {@link NavigableSet} view of the keys contained in this map.
*
* The set's iterator returns the keys in ascending order.
* The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
* {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
* {@link Spliterator#ORDERED}, with an encounter order that is ascending
* key order.
*
*
The {@linkplain Spliterator#getComparator() spliterator's comparator}
* is {@code null} if the {@linkplain #comparator() map's comparator}
* is {@code null}.
* Otherwise, the spliterator's comparator is the same as or imposes the
* same total ordering as the map's comparator.
*
*
The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. The set supports element
* removal, which removes the corresponding mapping from the map,
* via the {@code Iterator.remove}, {@code Set.remove},
* {@code removeAll}, {@code retainAll}, and {@code clear}
* operations. It does not support the {@code add} or {@code addAll}
* operations.
*
*
The view's iterators and spliterators are
* weakly consistent.
*
*
This method is equivalent to method {@code navigableKeySet}.
*
* @return a navigable set view of the keys in this map
*/
public NavigableSet keySet() {
KeySet ks;
if ((ks = keySet) != null) return ks;
return keySet = new KeySet<>(this);
}
public NavigableSet navigableKeySet() {
KeySet ks;
if ((ks = keySet) != null) return ks;
return keySet = new KeySet<>(this);
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection's iterator returns the values in ascending order
* of the corresponding keys. The collections's spliterator additionally
* reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
* {@link Spliterator#ORDERED}, with an encounter order that is ascending
* order of the corresponding keys.
*
*
The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the {@code Iterator.remove},
* {@code Collection.remove}, {@code removeAll},
* {@code retainAll} and {@code clear} operations. It does not
* support the {@code add} or {@code addAll} operations.
*
*
The view's iterators and spliterators are
* weakly consistent.
*/
public Collection values() {
Values vs;
if ((vs = values) != null) return vs;
return values = new Values<>(this);
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
*
* The set's iterator returns the entries in ascending key order. The
* set's spliterator additionally reports {@link Spliterator#CONCURRENT},
* {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
* {@link Spliterator#ORDERED}, with an encounter order that is ascending
* key order.
*
*
The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. The set supports element
* removal, which removes the corresponding mapping from the map,
* via the {@code Iterator.remove}, {@code Set.remove},
* {@code removeAll}, {@code retainAll} and {@code clear}
* operations. It does not support the {@code add} or
* {@code addAll} operations.
*
*
The view's iterators and spliterators are
* weakly consistent.
*
*
The {@code Map.Entry} elements traversed by the {@code iterator}
* or {@code spliterator} do not support the {@code setValue}
* operation.
*
* @return a set view of the mappings contained in this map,
* sorted in ascending key order
*/
public Set> entrySet() {
EntrySet es;
if ((es = entrySet) != null) return es;
return entrySet = new EntrySet(this);
}
public ConcurrentNavigableMap descendingMap() {
ConcurrentNavigableMap dm;
if ((dm = descendingMap) != null) return dm;
return descendingMap =
new SubMap(this, null, false, null, false, true);
}
public NavigableSet descendingKeySet() {
return descendingMap().navigableKeySet();
}
/* ---------------- AbstractMap Overrides -------------- */
/**
* Compares the specified object with this map for equality.
* Returns {@code true} if the given object is also a map and the
* two maps represent the same mappings. More formally, two maps
* {@code m1} and {@code m2} represent the same mappings if
* {@code m1.entrySet().equals(m2.entrySet())}. This
* operation may return misleading results if either map is
* concurrently modified during execution of this method.
*
* @param o object to be compared for equality with this map
* @return {@code true} if the specified object is equal to this map
*/
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof Map))
return false;
Map,?> m = (Map,?>) o;
try {
Comparator super K> cmp = comparator;
// See JDK-8223553 for Iterator type wildcard rationale
Iterator extends Map.Entry,?>> it = m.entrySet().iterator();
if (m instanceof SortedMap &&
((SortedMap,?>)m).comparator() == cmp) {
Node b, n;
if ((b = baseHead()) != null) {
while ((n = b.next) != null) {
K k; V v;
if ((v = n.val) != null && (k = n.key) != null) {
if (!it.hasNext())
return false;
Map.Entry,?> e = it.next();
Object mk = e.getKey();
Object mv = e.getValue();
if (mk == null || mv == null)
return false;
try {
if (cpr(cmp, k, mk) != 0)
return false;
} catch (ClassCastException cce) {
return false;
}
if (!mv.equals(v))
return false;
}
b = n;
}
}
return !it.hasNext();
}
else {
while (it.hasNext()) {
V v;
Map.Entry,?> e = it.next();
Object mk = e.getKey();
Object mv = e.getValue();
if (mk == null || mv == null ||
(v = get(mk)) == null || !v.equals(mv))
return false;
}
Node b, n;
if ((b = baseHead()) != null) {
K k; V v; Object mv;
while ((n = b.next) != null) {
if ((v = n.val) != null && (k = n.key) != null &&
((mv = m.get(k)) == null || !mv.equals(v)))
return false;
b = n;
}
}
return true;
}
} catch (ClassCastException | NullPointerException unused) {
return false;
}
}
/* ------ ConcurrentMap API methods ------ */
/**
* {@inheritDoc}
*
* @return the previous value associated with the specified key,
* or {@code null} if there was no mapping for the key
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key or value is null
*/
public V putIfAbsent(K key, V value) {
if (value == null)
throw new NullPointerException();
return doPut(key, value, true);
}
/**
* {@inheritDoc}
*
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key is null
*/
public boolean remove(Object key, Object value) {
if (key == null)
throw new NullPointerException();
return value != null && doRemove(key, value) != null;
}
/**
* {@inheritDoc}
*
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if any of the arguments are null
*/
public boolean replace(K key, V oldValue, V newValue) {
if (key == null || oldValue == null || newValue == null)
throw new NullPointerException();
for (;;) {
Node n; V v;
if ((n = findNode(key)) == null)
return false;
if ((v = n.val) != null) {
if (!oldValue.equals(v))
return false;
if (VAL.compareAndSet(n, v, newValue))
return true;
}
}
}
/**
* {@inheritDoc}
*
* @return the previous value associated with the specified key,
* or {@code null} if there was no mapping for the key
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key or value is null
*/
public V replace(K key, V value) {
if (key == null || value == null)
throw new NullPointerException();
for (;;) {
Node n; V v;
if ((n = findNode(key)) == null)
return null;
if ((v = n.val) != null && VAL.compareAndSet(n, v, value))
return v;
}
}
/* ------ SortedMap API methods ------ */
public Comparator super K> comparator() {
return comparator;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public K firstKey() {
Node n = findFirst();
if (n == null)
throw new NoSuchElementException();
return n.key;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public K lastKey() {
Node n = findLast();
if (n == null)
throw new NoSuchElementException();
return n.key;
}
/**
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if {@code fromKey} or {@code toKey} is null
* @throws IllegalArgumentException {@inheritDoc}
*/
public ConcurrentNavigableMap subMap(K fromKey,
boolean fromInclusive,
K toKey,
boolean toInclusive) {
if (fromKey == null || toKey == null)
throw new NullPointerException();
return new SubMap
(this, fromKey, fromInclusive, toKey, toInclusive, false);
}
/**
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if {@code toKey} is null
* @throws IllegalArgumentException {@inheritDoc}
*/
public ConcurrentNavigableMap headMap(K toKey,
boolean inclusive) {
if (toKey == null)
throw new NullPointerException();
return new SubMap
(this, null, false, toKey, inclusive, false);
}
/**
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if {@code fromKey} is null
* @throws IllegalArgumentException {@inheritDoc}
*/
public ConcurrentNavigableMap tailMap(K fromKey,
boolean inclusive) {
if (fromKey == null)
throw new NullPointerException();
return new SubMap
(this, fromKey, inclusive, null, false, false);
}
/**
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if {@code fromKey} or {@code toKey} is null
* @throws IllegalArgumentException {@inheritDoc}
*/
public ConcurrentNavigableMap subMap(K fromKey, K toKey) {
return subMap(fromKey, true, toKey, false);
}
/**
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if {@code toKey} is null
* @throws IllegalArgumentException {@inheritDoc}
*/
public ConcurrentNavigableMap headMap(K toKey) {
return headMap(toKey, false);
}
/**
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if {@code fromKey} is null
* @throws IllegalArgumentException {@inheritDoc}
*/
public ConcurrentNavigableMap tailMap(K fromKey) {
return tailMap(fromKey, true);
}
/* ---------------- Relational operations -------------- */
/**
* Returns a key-value mapping associated with the greatest key
* strictly less than the given key, or {@code null} if there is
* no such key. The returned entry does not support the
* {@code Entry.setValue} method.
*
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if the specified key is null
*/
public Map.Entry lowerEntry(K key) {
return findNearEntry(key, LT, comparator);
}
/**
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if the specified key is null
*/
public K lowerKey(K key) {
Node n = findNear(key, LT, comparator);
return (n == null) ? null : n.key;
}
/**
* Returns a key-value mapping associated with the greatest key
* less than or equal to the given key, or {@code null} if there
* is no such key. The returned entry does not support
* the {@code Entry.setValue} method.
*
* @param key the key
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if the specified key is null
*/
public Map.Entry floorEntry(K key) {
return findNearEntry(key, LT|EQ, comparator);
}
/**
* @param key the key
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if the specified key is null
*/
public K floorKey(K key) {
Node n = findNear(key, LT|EQ, comparator);
return (n == null) ? null : n.key;
}
/**
* Returns a key-value mapping associated with the least key
* greater than or equal to the given key, or {@code null} if
* there is no such entry. The returned entry does not
* support the {@code Entry.setValue} method.
*
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if the specified key is null
*/
public Map.Entry ceilingEntry(K key) {
return findNearEntry(key, GT|EQ, comparator);
}
/**
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if the specified key is null
*/
public K ceilingKey(K key) {
Node n = findNear(key, GT|EQ, comparator);
return (n == null) ? null : n.key;
}
/**
* Returns a key-value mapping associated with the least key
* strictly greater than the given key, or {@code null} if there
* is no such key. The returned entry does not support
* the {@code Entry.setValue} method.
*
* @param key the key
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if the specified key is null
*/
public Map.Entry higherEntry(K key) {
return findNearEntry(key, GT, comparator);
}
/**
* @param key the key
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException if the specified key is null
*/
public K higherKey(K key) {
Node n = findNear(key, GT, comparator);
return (n == null) ? null : n.key;
}
/**
* Returns a key-value mapping associated with the least
* key in this map, or {@code null} if the map is empty.
* The returned entry does not support
* the {@code Entry.setValue} method.
*/
public Map.Entry firstEntry() {
return findFirstEntry();
}
/**
* Returns a key-value mapping associated with the greatest
* key in this map, or {@code null} if the map is empty.
* The returned entry does not support
* the {@code Entry.setValue} method.
*/
public Map.Entry lastEntry() {
return findLastEntry();
}
/**
* Removes and returns a key-value mapping associated with
* the least key in this map, or {@code null} if the map is empty.
* The returned entry does not support
* the {@code Entry.setValue} method.
*/
public Map.Entry pollFirstEntry() {
return doRemoveFirstEntry();
}
/**
* Removes and returns a key-value mapping associated with
* the greatest key in this map, or {@code null} if the map is empty.
* The returned entry does not support
* the {@code Entry.setValue} method.
*/
public Map.Entry pollLastEntry() {
return doRemoveLastEntry();
}
/* ---------------- Iterators -------------- */
/**
* Base of iterator classes
*/
abstract class Iter implements Iterator {
/** the last node returned by next() */
Node lastReturned;
/** the next node to return from next(); */
Node next;
/** Cache of next value field to maintain weak consistency */
V nextValue;
/** Initializes ascending iterator for entire range. */
Iter() {
advance(baseHead());
}
public final boolean hasNext() {
return next != null;
}
/** Advances next to higher entry. */
final void advance(Node b) {
Node n = null;
V v = null;
if ((lastReturned = b) != null) {
while ((n = b.next) != null && (v = n.val) == null)
b = n;
}
nextValue = v;
next = n;
}
public final void remove() {
Node n; K k;
if ((n = lastReturned) == null || (k = n.key) == null)
throw new IllegalStateException();
// It would not be worth all of the overhead to directly
// unlink from here. Using remove is fast enough.
ConcurrentSkipListMap.this.remove(k);
lastReturned = null;
}
}
final class ValueIterator extends Iter {
public V next() {
V v;
if ((v = nextValue) == null)
throw new NoSuchElementException();
advance(next);
return v;
}
}
final class KeyIterator extends Iter {
public K next() {
Node n;
if ((n = next) == null)
throw new NoSuchElementException();
K k = n.key;
advance(n);
return k;
}
}
final class EntryIterator extends Iter> {
public Map.Entry next() {
Node n;
if ((n = next) == null)
throw new NoSuchElementException();
K k = n.key;
V v = nextValue;
advance(n);
return new AbstractMap.SimpleImmutableEntry(k, v);
}
}
/* ---------------- View Classes -------------- */
/*
* View classes are static, delegating to a ConcurrentNavigableMap
* to allow use by SubMaps, which outweighs the ugliness of
* needing type-tests for Iterator methods.
*/
static final List toList(Collection c) {
// Using size() here would be a pessimization.
ArrayList list = new ArrayList();
for (E e : c)
list.add(e);
return list;
}
static final class KeySet
extends AbstractSet implements NavigableSet {
final ConcurrentNavigableMap m;
KeySet(ConcurrentNavigableMap map) { m = map; }
public int size() { return m.size(); }
public boolean isEmpty() { return m.isEmpty(); }
public boolean contains(Object o) { return m.containsKey(o); }
public boolean remove(Object o) { return m.remove(o) != null; }
public void clear() { m.clear(); }
public K lower(K e) { return m.lowerKey(e); }
public K floor(K e) { return m.floorKey(e); }
public K ceiling(K e) { return m.ceilingKey(e); }
public K higher(K e) { return m.higherKey(e); }
public Comparator super K> comparator() { return m.comparator(); }
public K first() { return m.firstKey(); }
public K last() { return m.lastKey(); }
public K pollFirst() {
Map.Entry e = m.pollFirstEntry();
return (e == null) ? null : e.getKey();
}
public K pollLast() {
Map.Entry e = m.pollLastEntry();
return (e == null) ? null : e.getKey();
}
public Iterator iterator() {
return (m instanceof ConcurrentSkipListMap)
? ((ConcurrentSkipListMap)m).new KeyIterator()
: ((SubMap)m).new SubMapKeyIterator();
}
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof Set))
return false;
Collection> c = (Collection>) o;
try {
return containsAll(c) && c.containsAll(this);
} catch (ClassCastException | NullPointerException unused) {
return false;
}
}
public Object[] toArray() { return toList(this).toArray(); }
public T[] toArray(T[] a) { return toList(this).toArray(a); }
public Iterator descendingIterator() {
return descendingSet().iterator();
}
public NavigableSet subSet(K fromElement,
boolean fromInclusive,
K toElement,
boolean toInclusive) {
return new KeySet<>(m.subMap(fromElement, fromInclusive,
toElement, toInclusive));
}
public NavigableSet headSet(K toElement, boolean inclusive) {
return new KeySet<>(m.headMap(toElement, inclusive));
}
public NavigableSet tailSet(K fromElement, boolean inclusive) {
return new KeySet<>(m.tailMap(fromElement, inclusive));
}
public NavigableSet subSet(K fromElement, K toElement) {
return subSet(fromElement, true, toElement, false);
}
public NavigableSet headSet(K toElement) {
return headSet(toElement, false);
}
public NavigableSet tailSet(K fromElement) {
return tailSet(fromElement, true);
}
public NavigableSet descendingSet() {
return new KeySet<>(m.descendingMap());
}
public Spliterator spliterator() {
return (m instanceof ConcurrentSkipListMap)
? ((ConcurrentSkipListMap)m).keySpliterator()
: ((SubMap)m).new SubMapKeyIterator();
}
}
static final class Values extends AbstractCollection {
final ConcurrentNavigableMap m;
Values(ConcurrentNavigableMap map) {
m = map;
}
public Iterator iterator() {
return (m instanceof ConcurrentSkipListMap)
? ((ConcurrentSkipListMap)m).new ValueIterator()
: ((SubMap)m).new SubMapValueIterator();
}
public int size() { return m.size(); }
public boolean isEmpty() { return m.isEmpty(); }
public boolean contains(Object o) { return m.containsValue(o); }
public void clear() { m.clear(); }
public Object[] toArray() { return toList(this).toArray(); }
public T[] toArray(T[] a) { return toList(this).toArray(a); }
public Spliterator spliterator() {
return (m instanceof ConcurrentSkipListMap)
? ((ConcurrentSkipListMap)m).valueSpliterator()
: ((SubMap)m).new SubMapValueIterator();
}
public boolean removeIf(Predicate super V> filter) {
if (filter == null) throw new NullPointerException();
if (m instanceof ConcurrentSkipListMap)
return ((ConcurrentSkipListMap)m).removeValueIf(filter);
// else use iterator
Iterator> it =
((SubMap)m).new SubMapEntryIterator();
boolean removed = false;
while (it.hasNext()) {
Map.Entry e = it.next();
V v = e.getValue();
if (filter.test(v) && m.remove(e.getKey(), v))
removed = true;
}
return removed;
}
}
static final class EntrySet extends AbstractSet> {
final ConcurrentNavigableMap m;
EntrySet(ConcurrentNavigableMap map) {
m = map;
}
public Iterator> iterator() {
return (m instanceof ConcurrentSkipListMap)
? ((ConcurrentSkipListMap)m).new EntryIterator()
: ((SubMap)m).new SubMapEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> e = (Map.Entry,?>)o;
V v = m.get(e.getKey());
return v != null && v.equals(e.getValue());
}
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> e = (Map.Entry,?>)o;
return m.remove(e.getKey(),
e.getValue());
}
public boolean isEmpty() {
return m.isEmpty();
}
public int size() {
return m.size();
}
public void clear() {
m.clear();
}
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof Set))
return false;
Collection> c = (Collection>) o;
try {
return containsAll(c) && c.containsAll(this);
} catch (ClassCastException | NullPointerException unused) {
return false;
}
}
public Object[] toArray() { return toList(this).toArray(); }
public T[] toArray(T[] a) { return toList(this).toArray(a); }
public Spliterator> spliterator() {
return (m instanceof ConcurrentSkipListMap)
? ((ConcurrentSkipListMap)m).entrySpliterator()
: ((SubMap)m).new SubMapEntryIterator();
}
public boolean removeIf(Predicate super Entry> filter) {
if (filter == null) throw new NullPointerException();
if (m instanceof ConcurrentSkipListMap)
return ((ConcurrentSkipListMap)m).removeEntryIf(filter);
// else use iterator
Iterator> it =
((SubMap)m).new SubMapEntryIterator();
boolean removed = false;
while (it.hasNext()) {
Map.Entry e = it.next();
if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
removed = true;
}
return removed;
}
}
/**
* Submaps returned by {@link ConcurrentSkipListMap} submap operations
* represent a subrange of mappings of their underlying maps.
* Instances of this class support all methods of their underlying
* maps, differing in that mappings outside their range are ignored,
* and attempts to add mappings outside their ranges result in {@link
* IllegalArgumentException}. Instances of this class are constructed
* only using the {@code subMap}, {@code headMap}, and {@code tailMap}
* methods of their underlying maps.
*
* @serial include
*/
static final class SubMap extends AbstractMap
implements ConcurrentNavigableMap, Serializable {
private static final long serialVersionUID = -7647078645895051609L;
/** Underlying map */
final ConcurrentSkipListMap m;
/** lower bound key, or null if from start */
@SuppressWarnings("serial") // Conditionally serializable
private final K lo;
/** upper bound key, or null if to end */
@SuppressWarnings("serial") // Conditionally serializable
private final K hi;
/** inclusion flag for lo */
private final boolean loInclusive;
/** inclusion flag for hi */
private final boolean hiInclusive;
/** direction */
final boolean isDescending;
// Lazily initialized view holders
private transient KeySet