All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.util.zip.CRC32C Maven / Gradle / Ivy

/*
 * Copyright (c) 2014, 2020, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package java.util.zip;

import java.lang.ref.Reference;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;

import jdk.internal.misc.Unsafe;
import jdk.internal.vm.annotation.IntrinsicCandidate;
import sun.nio.ch.DirectBuffer;

/**
 * A class that can be used to compute the CRC-32C of a data stream.
 *
 * 

* CRC-32C is defined in RFC * 3720: Internet Small Computer Systems Interface (iSCSI). *

* *

* Passing a {@code null} argument to a method in this class will cause a * {@link NullPointerException} to be thrown. *

* * @since 9 */ public final class CRC32C implements Checksum { /* * This CRC-32C implementation uses the 'slicing-by-8' algorithm described * in the paper "A Systematic Approach to Building High Performance * Software-Based CRC Generators" by Michael E. Kounavis and Frank L. Berry, * Intel Research and Development */ /** * CRC-32C Polynomial */ private static final int CRC32C_POLY = 0x1EDC6F41; private static final int REVERSED_CRC32C_POLY = Integer.reverse(CRC32C_POLY); private static final Unsafe UNSAFE = Unsafe.getUnsafe(); // Lookup tables // Lookup table for single byte calculations private static final int[] byteTable; // Lookup tables for bulk operations in 'slicing-by-8' algorithm private static final int[][] byteTables = new int[8][256]; private static final int[] byteTable0 = byteTables[0]; private static final int[] byteTable1 = byteTables[1]; private static final int[] byteTable2 = byteTables[2]; private static final int[] byteTable3 = byteTables[3]; private static final int[] byteTable4 = byteTables[4]; private static final int[] byteTable5 = byteTables[5]; private static final int[] byteTable6 = byteTables[6]; private static final int[] byteTable7 = byteTables[7]; static { // Generate lookup tables // High-order polynomial term stored in LSB of r. for (int index = 0; index < byteTables[0].length; index++) { int r = index; for (int i = 0; i < Byte.SIZE; i++) { if ((r & 1) != 0) { r = (r >>> 1) ^ REVERSED_CRC32C_POLY; } else { r >>>= 1; } } byteTables[0][index] = r; } for (int index = 0; index < byteTables[0].length; index++) { int r = byteTables[0][index]; for (int k = 1; k < byteTables.length; k++) { r = byteTables[0][r & 0xFF] ^ (r >>> 8); byteTables[k][index] = r; } } if (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN) { byteTable = byteTables[0]; } else { // ByteOrder.BIG_ENDIAN byteTable = new int[byteTable0.length]; System.arraycopy(byteTable0, 0, byteTable, 0, byteTable0.length); for (int[] table : byteTables) { for (int index = 0; index < table.length; index++) { table[index] = Integer.reverseBytes(table[index]); } } } } /** * Calculated CRC-32C value */ private int crc = 0xFFFFFFFF; /** * Creates a new CRC32C object. */ public CRC32C() { } /** * Updates the CRC-32C checksum with the specified byte (the low eight bits * of the argument b). */ @Override public void update(int b) { crc = (crc >>> 8) ^ byteTable[(crc ^ (b & 0xFF)) & 0xFF]; } /** * Updates the CRC-32C checksum with the specified array of bytes. * * @throws ArrayIndexOutOfBoundsException * if {@code off} is negative, or {@code len} is negative, or * {@code off+len} is negative or greater than the length of * the array {@code b}. */ @Override public void update(byte[] b, int off, int len) { if (b == null) { throw new NullPointerException(); } if (off < 0 || len < 0 || off > b.length - len) { throw new ArrayIndexOutOfBoundsException(); } crc = updateBytes(crc, b, off, (off + len)); } /** * Updates the CRC-32C checksum with the bytes from the specified buffer. * * The checksum is updated with the remaining bytes in the buffer, starting * at the buffer's position. Upon return, the buffer's position will be * updated to its limit; its limit will not have been changed. */ @Override public void update(ByteBuffer buffer) { int pos = buffer.position(); int limit = buffer.limit(); assert (pos <= limit); int rem = limit - pos; if (rem <= 0) { return; } if (buffer.isDirect()) { try { crc = updateDirectByteBuffer(crc, ((DirectBuffer) buffer).address(), pos, limit); } finally { Reference.reachabilityFence(buffer); } } else if (buffer.hasArray()) { crc = updateBytes(crc, buffer.array(), pos + buffer.arrayOffset(), limit + buffer.arrayOffset()); } else { byte[] b = new byte[Math.min(buffer.remaining(), 4096)]; while (buffer.hasRemaining()) { int length = Math.min(buffer.remaining(), b.length); buffer.get(b, 0, length); update(b, 0, length); } } buffer.position(limit); } /** * Resets CRC-32C to initial value. */ @Override public void reset() { crc = 0xFFFFFFFF; } /** * Returns CRC-32C value. */ @Override public long getValue() { return (~crc) & 0xFFFFFFFFL; } /** * Updates the CRC-32C checksum with the specified array of bytes. */ @IntrinsicCandidate private static int updateBytes(int crc, byte[] b, int off, int end) { // Do only byte reads for arrays so short they can't be aligned // or if bytes are stored with a larger witdh than one byte.,% if (end - off >= 8 && Unsafe.ARRAY_BYTE_INDEX_SCALE == 1) { // align on 8 bytes int alignLength = (8 - ((Unsafe.ARRAY_BYTE_BASE_OFFSET + off) & 0x7)) & 0x7; for (int alignEnd = off + alignLength; off < alignEnd; off++) { crc = (crc >>> 8) ^ byteTable[(crc ^ b[off]) & 0xFF]; } if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) { crc = Integer.reverseBytes(crc); } // slicing-by-8 for (; off < (end - Long.BYTES); off += Long.BYTES) { int firstHalf; int secondHalf; if (Unsafe.ADDRESS_SIZE == 4) { // On 32 bit platforms read two ints instead of a single 64bit long firstHalf = UNSAFE.getInt(b, (long)Unsafe.ARRAY_BYTE_BASE_OFFSET + off); secondHalf = UNSAFE.getInt(b, (long)Unsafe.ARRAY_BYTE_BASE_OFFSET + off + Integer.BYTES); } else { long value = UNSAFE.getLong(b, (long)Unsafe.ARRAY_BYTE_BASE_OFFSET + off); if (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN) { firstHalf = (int) value; secondHalf = (int) (value >>> 32); } else { // ByteOrder.BIG_ENDIAN firstHalf = (int) (value >>> 32); secondHalf = (int) value; } } crc ^= firstHalf; if (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN) { crc = byteTable7[crc & 0xFF] ^ byteTable6[(crc >>> 8) & 0xFF] ^ byteTable5[(crc >>> 16) & 0xFF] ^ byteTable4[crc >>> 24] ^ byteTable3[secondHalf & 0xFF] ^ byteTable2[(secondHalf >>> 8) & 0xFF] ^ byteTable1[(secondHalf >>> 16) & 0xFF] ^ byteTable0[secondHalf >>> 24]; } else { // ByteOrder.BIG_ENDIAN crc = byteTable0[secondHalf & 0xFF] ^ byteTable1[(secondHalf >>> 8) & 0xFF] ^ byteTable2[(secondHalf >>> 16) & 0xFF] ^ byteTable3[secondHalf >>> 24] ^ byteTable4[crc & 0xFF] ^ byteTable5[(crc >>> 8) & 0xFF] ^ byteTable6[(crc >>> 16) & 0xFF] ^ byteTable7[crc >>> 24]; } } if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) { crc = Integer.reverseBytes(crc); } } // Tail for (; off < end; off++) { crc = (crc >>> 8) ^ byteTable[(crc ^ b[off]) & 0xFF]; } return crc; } /** * Updates the CRC-32C checksum reading from the specified address. */ @IntrinsicCandidate private static int updateDirectByteBuffer(int crc, long address, int off, int end) { // Do only byte reads for arrays so short they can't be aligned if (end - off >= 8) { // align on 8 bytes int alignLength = (8 - (int) ((address + off) & 0x7)) & 0x7; for (int alignEnd = off + alignLength; off < alignEnd; off++) { crc = (crc >>> 8) ^ byteTable[(crc ^ UNSAFE.getByte(address + off)) & 0xFF]; } if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) { crc = Integer.reverseBytes(crc); } // slicing-by-8 for (; off <= (end - Long.BYTES); off += Long.BYTES) { // Always reading two ints as reading a long followed by // shifting and casting was slower. int firstHalf = UNSAFE.getInt(address + off); int secondHalf = UNSAFE.getInt(address + off + Integer.BYTES); crc ^= firstHalf; if (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN) { crc = byteTable7[crc & 0xFF] ^ byteTable6[(crc >>> 8) & 0xFF] ^ byteTable5[(crc >>> 16) & 0xFF] ^ byteTable4[crc >>> 24] ^ byteTable3[secondHalf & 0xFF] ^ byteTable2[(secondHalf >>> 8) & 0xFF] ^ byteTable1[(secondHalf >>> 16) & 0xFF] ^ byteTable0[secondHalf >>> 24]; } else { // ByteOrder.BIG_ENDIAN crc = byteTable0[secondHalf & 0xFF] ^ byteTable1[(secondHalf >>> 8) & 0xFF] ^ byteTable2[(secondHalf >>> 16) & 0xFF] ^ byteTable3[secondHalf >>> 24] ^ byteTable4[crc & 0xFF] ^ byteTable5[(crc >>> 8) & 0xFF] ^ byteTable6[(crc >>> 16) & 0xFF] ^ byteTable7[crc >>> 24]; } } if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) { crc = Integer.reverseBytes(crc); } } // Tail for (; off < end; off++) { crc = (crc >>> 8) ^ byteTable[(crc ^ UNSAFE.getByte(address + off)) & 0xFF]; } return crc; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy