jdk.internal.math.FloatingDecimal Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of qbicc-rt-java.base Show documentation
Show all versions of qbicc-rt-java.base Show documentation
The Qbicc builder for the java.base JDK module
/* * Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package jdk.internal.math; import java.util.Arrays; import java.util.regex.*; /** * A class for converting between ASCII and decimal representations of a single * or double precision floating point number. Most conversions are provided via * static convenience methods, although a
. * * @param d The double precision value. * @return The value converted to aBinaryToASCIIConverter
* instance may be obtained and reused. */ public class FloatingDecimal{ // // Constants of the implementation; // most are IEEE-754 related. // (There are more really boring constants at the end.) // static final int EXP_SHIFT = DoubleConsts.SIGNIFICAND_WIDTH - 1; static final long FRACT_HOB = ( 1L<String String
. */ public static String toJavaFormatString(double d) { return getBinaryToASCIIConverter(d).toJavaFormatString(); } /** * Converts a single precision floating point value to aString
. * * @param f The single precision value. * @return The value converted to aString
. */ public static String toJavaFormatString(float f) { return getBinaryToASCIIConverter(f).toJavaFormatString(); } /** * Appends a double precision floating point value to anAppendable
. * @param d The double precision value. * @param buf TheAppendable
with the value appended. */ public static void appendTo(double d, Appendable buf) { getBinaryToASCIIConverter(d).appendTo(buf); } /** * Appends a single precision floating point value to anAppendable
. * @param f The single precision value. * @param buf TheAppendable
with the value appended. */ public static void appendTo(float f, Appendable buf) { getBinaryToASCIIConverter(f).appendTo(buf); } /** * Converts aString
to a double precision floating point value. * * @param s TheString
to convert. * @return The double precision value. * @throws NumberFormatException If theString
does not * represent a properly formatted double precision value. */ public static double parseDouble(String s) throws NumberFormatException { return readJavaFormatString(s).doubleValue(); } /** * Converts aString
to a single precision floating point value. * * @param s TheString
to convert. * @return The single precision value. * @throws NumberFormatException If theString
does not * represent a properly formatted single precision value. */ public static float parseFloat(String s) throws NumberFormatException { return readJavaFormatString(s).floatValue(); } /** * A converter which can process single or double precision floating point * values into an ASCIIString
representation. */ public interface BinaryToASCIIConverter { /** * Converts a floating point value into an ASCIIString
. * @return The value converted to aString
. */ String toJavaFormatString(); /** * Appends a floating point value to anAppendable
. * @param buf TheAppendable
to receive the value. */ void appendTo(Appendable buf); /** * Retrieves the decimal exponent most closely corresponding to this value. * @return The decimal exponent. */ int getDecimalExponent(); /** * Retrieves the value as an array of digits. * @param digits The digit array. * @return The number of valid digits copied into the array. */ int getDigits(char[] digits); /** * Indicates the sign of the value. * @return {@code value < 0.0}. */ boolean isNegative(); /** * Indicates whether the value is either infinite or not a number. * * @returntrue
if and only if the value isNaN
* or infinite. */ boolean isExceptional(); /** * Indicates whether the value was rounded up during the binary to ASCII * conversion. * * @returntrue
if and only if the value was rounded up. */ boolean digitsRoundedUp(); /** * Indicates whether the binary to ASCII conversion was exact. * * @returntrue
if any only if the conversion was exact. */ boolean decimalDigitsExact(); } /** * ABinaryToASCIIConverter
which representsNaN
* and infinite values. */ private static class ExceptionalBinaryToASCIIBuffer implements BinaryToASCIIConverter { private final String image; private boolean isNegative; public ExceptionalBinaryToASCIIBuffer(String image, boolean isNegative) { this.image = image; this.isNegative = isNegative; } @Override public String toJavaFormatString() { return image; } @Override public void appendTo(Appendable buf) { if (buf instanceof StringBuilder) { ((StringBuilder) buf).append(image); } else if (buf instanceof StringBuffer) { ((StringBuffer) buf).append(image); } else { assert false; } } @Override public int getDecimalExponent() { throw new IllegalArgumentException("Exceptional value does not have an exponent"); } @Override public int getDigits(char[] digits) { throw new IllegalArgumentException("Exceptional value does not have digits"); } @Override public boolean isNegative() { return isNegative; } @Override public boolean isExceptional() { return true; } @Override public boolean digitsRoundedUp() { throw new IllegalArgumentException("Exceptional value is not rounded"); } @Override public boolean decimalDigitsExact() { throw new IllegalArgumentException("Exceptional value is not exact"); } } private static final String INFINITY_REP = "Infinity"; private static final int INFINITY_LENGTH = INFINITY_REP.length(); private static final String NAN_REP = "NaN"; private static final int NAN_LENGTH = NAN_REP.length(); private static final BinaryToASCIIConverter B2AC_POSITIVE_INFINITY = new ExceptionalBinaryToASCIIBuffer(INFINITY_REP, false); private static final BinaryToASCIIConverter B2AC_NEGATIVE_INFINITY = new ExceptionalBinaryToASCIIBuffer("-" + INFINITY_REP, true); private static final BinaryToASCIIConverter B2AC_NOT_A_NUMBER = new ExceptionalBinaryToASCIIBuffer(NAN_REP, false); private static final BinaryToASCIIConverter B2AC_POSITIVE_ZERO = new BinaryToASCIIBuffer(false, new char[]{'0'}); private static final BinaryToASCIIConverter B2AC_NEGATIVE_ZERO = new BinaryToASCIIBuffer(true, new char[]{'0'}); /** * A buffered implementation ofBinaryToASCIIConverter
. */ static class BinaryToASCIIBuffer implements BinaryToASCIIConverter { private boolean isNegative; private int decExponent; private int firstDigitIndex; private int nDigits; private final char[] digits; private final char[] buffer = new char[26]; // // The fields below provide additional information about the result of // the binary to decimal digits conversion done in dtoa() and roundup() // methods. They are changed if needed by those two methods. // // True if the dtoa() binary to decimal conversion was exact. private boolean exactDecimalConversion = false; // True if the result of the binary to decimal conversion was rounded-up // at the end of the conversion process, i.e. roundUp() method was called. private boolean decimalDigitsRoundedUp = false; /** * Default constructor; used for non-zero values, *BinaryToASCIIBuffer
may be thread-local and reused */ BinaryToASCIIBuffer(){ this.digits = new char[20]; } /** * Creates a specialized value (positive and negative zeros). */ BinaryToASCIIBuffer(boolean isNegative, char[] digits){ this.isNegative = isNegative; this.decExponent = 0; this.digits = digits; this.firstDigitIndex = 0; this.nDigits = digits.length; } @Override public String toJavaFormatString() { int len = getChars(buffer); return new String(buffer, 0, len); } @Override public void appendTo(Appendable buf) { int len = getChars(buffer); if (buf instanceof StringBuilder) { ((StringBuilder) buf).append(buffer, 0, len); } else if (buf instanceof StringBuffer) { ((StringBuffer) buf).append(buffer, 0, len); } else { assert false; } } @Override public int getDecimalExponent() { return decExponent; } @Override public int getDigits(char[] digits) { System.arraycopy(this.digits, firstDigitIndex, digits, 0, this.nDigits); return this.nDigits; } @Override public boolean isNegative() { return isNegative; } @Override public boolean isExceptional() { return false; } @Override public boolean digitsRoundedUp() { return decimalDigitsRoundedUp; } @Override public boolean decimalDigitsExact() { return exactDecimalConversion; } private void setSign(boolean isNegative) { this.isNegative = isNegative; } /** * This is the easy subcase -- * all the significant bits, after scaling, are held in lvalue. * negSign and decExponent tell us what processing and scaling * has already been done. Exceptional cases have already been * stripped out. * In particular: * lvalue is a finite number (not Inf, nor NaN) * lvalue > 0L (not zero, nor negative). * * The only reason that we develop the digits here, rather than * calling on Long.toString() is that we can do it a little faster, * and besides want to treat trailing 0s specially. If Long.toString * changes, we should re-evaluate this strategy! */ private void developLongDigits( int decExponent, long lvalue, int insignificantDigits ){ if ( insignificantDigits != 0 ){ // Discard non-significant low-order bits, while rounding, // up to insignificant value. long pow10 = FDBigInteger.LONG_5_POW[insignificantDigits] << insignificantDigits; // 10^i == 5^i * 2^i; long residue = lvalue % pow10; lvalue /= pow10; decExponent += insignificantDigits; if ( residue >= (pow10>>1) ){ // round up based on the low-order bits we're discarding lvalue++; } } int digitno = digits.length -1; int c; if ( lvalue <= Integer.MAX_VALUE ){ assert lvalue > 0L : lvalue; // lvalue <= 0 // even easier subcase! // can do int arithmetic rather than long! int ivalue = (int)lvalue; c = ivalue%10; ivalue /= 10; while ( c == 0 ){ decExponent++; c = ivalue%10; ivalue /= 10; } while ( ivalue != 0){ digits[digitno--] = (char)(c+'0'); decExponent++; c = ivalue%10; ivalue /= 10; } digits[digitno] = (char)(c+'0'); } else { // same algorithm as above (same bugs, too ) // but using long arithmetic. c = (int)(lvalue%10L); lvalue /= 10L; while ( c == 0 ){ decExponent++; c = (int)(lvalue%10L); lvalue /= 10L; } while ( lvalue != 0L ){ digits[digitno--] = (char)(c+'0'); decExponent++; c = (int)(lvalue%10L); lvalue /= 10; } digits[digitno] = (char)(c+'0'); } this.decExponent = decExponent+1; this.firstDigitIndex = digitno; this.nDigits = this.digits.length - digitno; } private void dtoa( int binExp, long fractBits, int nSignificantBits, boolean isCompatibleFormat) { assert fractBits > 0 ; // fractBits here can't be zero or negative assert (fractBits & FRACT_HOB)!=0 ; // Hi-order bit should be set // Examine number. Determine if it is an easy case, // which we can do pretty trivially using float/long conversion, // or whether we must do real work. final int tailZeros = Long.numberOfTrailingZeros(fractBits); // number of significant bits of fractBits; final int nFractBits = EXP_SHIFT+1-tailZeros; // reset flags to default values as dtoa() does not always set these // flags and a prior call to dtoa() might have set them to incorrect // values with respect to the current state. decimalDigitsRoundedUp = false; exactDecimalConversion = false; // number of significant bits to the right of the point. int nTinyBits = Math.max( 0, nFractBits - binExp - 1 ); if ( binExp <= MAX_SMALL_BIN_EXP && binExp >= MIN_SMALL_BIN_EXP ){ // Look more closely at the number to decide if, // with scaling by 10^nTinyBits, the result will fit in // a long. if ( (nTinyBits < FDBigInteger.LONG_5_POW.length) && ((nFractBits + N_5_BITS[nTinyBits]) < 64 ) ){ // // We can do this: // take the fraction bits, which are normalized. // (a) nTinyBits == 0: Shift left or right appropriately // to align the binary point at the extreme right, i.e. // where a long int point is expected to be. The integer // result is easily converted to a string. // (b) nTinyBits > 0: Shift right by EXP_SHIFT-nFractBits, // which effectively converts to long and scales by // 2^nTinyBits. Then multiply by 5^nTinyBits to // complete the scaling. We know this won't overflow // because we just counted the number of bits necessary // in the result. The integer you get from this can // then be converted to a string pretty easily. // if ( nTinyBits == 0 ) { int insignificant; if ( binExp > nSignificantBits ){ insignificant = insignificantDigitsForPow2(binExp-nSignificantBits-1); } else { insignificant = 0; } if ( binExp >= EXP_SHIFT ){ fractBits <<= (binExp-EXP_SHIFT); } else { fractBits >>>= (EXP_SHIFT-binExp) ; } developLongDigits( 0, fractBits, insignificant ); return; } // // The following causes excess digits to be printed // out in the single-float case. Our manipulation of // halfULP here is apparently not correct. If we // better understand how this works, perhaps we can // use this special case again. But for the time being, // we do not. // else { // fractBits >>>= EXP_SHIFT+1-nFractBits; // fractBits//= long5pow[ nTinyBits ]; // halfULP = long5pow[ nTinyBits ] >> (1+nSignificantBits-nFractBits); // developLongDigits( -nTinyBits, fractBits, insignificantDigits(halfULP) ); // return; // } // } } // // This is the hard case. We are going to compute large positive // integers B and S and integer decExp, s.t. // d = ( B / S )// 10^decExp // 1 <= B / S < 10 // Obvious choices are: // decExp = floor( log10(d) ) // B = d// 2^nTinyBits// 10^max( 0, -decExp ) // S = 10^max( 0, decExp)// 2^nTinyBits // (noting that nTinyBits has already been forced to non-negative) // I am also going to compute a large positive integer // M = (1/2^nSignificantBits)// 2^nTinyBits// 10^max( 0, -decExp ) // i.e. M is (1/2) of the ULP of d, scaled like B. // When we iterate through dividing B/S and picking off the // quotient bits, we will know when to stop when the remainder // is <= M. // // We keep track of powers of 2 and powers of 5. // int decExp = estimateDecExp(fractBits,binExp); int B2, B5; // powers of 2 and powers of 5, respectively, in B int S2, S5; // powers of 2 and powers of 5, respectively, in S int M2, M5; // powers of 2 and powers of 5, respectively, in M B5 = Math.max( 0, -decExp ); B2 = B5 + nTinyBits + binExp; S5 = Math.max( 0, decExp ); S2 = S5 + nTinyBits; M5 = B5; M2 = B2 - nSignificantBits; // // the long integer fractBits contains the (nFractBits) interesting // bits from the mantissa of d ( hidden 1 added if necessary) followed // by (EXP_SHIFT+1-nFractBits) zeros. In the interest of compactness, // I will shift out those zeros before turning fractBits into a // FDBigInteger. The resulting whole number will be // d * 2^(nFractBits-1-binExp). // fractBits >>>= tailZeros; B2 -= nFractBits-1; int common2factor = Math.min( B2, S2 ); B2 -= common2factor; S2 -= common2factor; M2 -= common2factor; // // HACK!! For exact powers of two, the next smallest number // is only half as far away as we think (because the meaning of // ULP changes at power-of-two bounds) for this reason, we // hack M2. Hope this works. // if ( nFractBits == 1 ) { M2 -= 1; } if ( M2 < 0 ){ // oops. // since we cannot scale M down far enough, // we must scale the other values up. B2 -= M2; S2 -= M2; M2 = 0; } // // Construct, Scale, iterate. // Some day, we'll write a stopping test that takes // account of the asymmetry of the spacing of floating-point // numbers below perfect powers of 2 // 26 Sept 96 is not that day. // So we use a symmetric test. // int ndigit = 0; boolean low, high; long lowDigitDifference; int q; // // Detect the special cases where all the numbers we are about // to compute will fit in int or long integers. // In these cases, we will avoid doing FDBigInteger arithmetic. // We use the same algorithms, except that we "normalize" // our FDBigIntegers before iterating. This is to make division easier, // as it makes our fist guess (quotient of high-order words) // more accurate! // // Some day, we'll write a stopping test that takes // account of the asymmetry of the spacing of floating-point // numbers below perfect powers of 2 // 26 Sept 96 is not that day. // So we use a symmetric test. // // binary digits needed to represent B, approx. int Bbits = nFractBits + B2 + (( B5 < N_5_BITS.length )? N_5_BITS[B5] : ( B5*3 )); // binary digits needed to represent 10*S, approx. int tenSbits = S2+1 + (( (S5+1) < N_5_BITS.length )? N_5_BITS[(S5+1)] : ( (S5+1)*3 )); if ( Bbits < 64 && tenSbits < 64){ if ( Bbits < 32 && tenSbits < 32){ // wa-hoo! They're all ints! int b = ((int)fractBits * FDBigInteger.SMALL_5_POW[B5] ) << B2; int s = FDBigInteger.SMALL_5_POW[S5] << S2; int m = FDBigInteger.SMALL_5_POW[M5] << M2; int tens = s * 10; // // Unroll the first iteration. If our decExp estimate // was too high, our first quotient will be zero. In this // case, we discard it and decrement decExp. // ndigit = 0; q = b / s; b = 10 * ( b % s ); m *= 10; low = (b < m ); high = (b+m > tens ); assert q < 10 : q; // excessively large digit if ( (q == 0) && ! high ){ // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char)('0' + q); } // // HACK! Java spec sez that we always have at least // one digit after the . in either F- or E-form output. // Thus we will need more than one digit if we're using // E-form // if ( !isCompatibleFormat ||decExp < -3 || decExp >= 8 ){ high = low = false; } while( ! low && ! high ){ q = b / s; b = 10 * ( b % s ); m *= 10; assert q < 10 : q; // excessively large digit if ( m > 0L ){ low = (b < m ); high = (b+m > tens ); } else { // hack -- m might overflow! // in this case, it is certainly > b, // which won't // and b+m > tens, too, since that has overflowed // either! low = true; high = true; } digits[ndigit++] = (char)('0' + q); } lowDigitDifference = (b<<1) - tens; exactDecimalConversion = (b == 0); } else { // still good! they're all longs! long b = (fractBits * FDBigInteger.LONG_5_POW[B5] ) << B2; long s = FDBigInteger.LONG_5_POW[S5] << S2; long m = FDBigInteger.LONG_5_POW[M5] << M2; long tens = s * 10L; // // Unroll the first iteration. If our decExp estimate // was too high, our first quotient will be zero. In this // case, we discard it and decrement decExp. // ndigit = 0; q = (int) ( b / s ); b = 10L * ( b % s ); m *= 10L; low = (b < m ); high = (b+m > tens ); assert q < 10 : q; // excessively large digit if ( (q == 0) && ! high ){ // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char)('0' + q); } // // HACK! Java spec sez that we always have at least // one digit after the . in either F- or E-form output. // Thus we will need more than one digit if we're using // E-form // if ( !isCompatibleFormat || decExp < -3 || decExp >= 8 ){ high = low = false; } while( ! low && ! high ){ q = (int) ( b / s ); b = 10 * ( b % s ); m *= 10; assert q < 10 : q; // excessively large digit if ( m > 0L ){ low = (b < m ); high = (b+m > tens ); } else { // hack -- m might overflow! // in this case, it is certainly > b, // which won't // and b+m > tens, too, since that has overflowed // either! low = true; high = true; } digits[ndigit++] = (char)('0' + q); } lowDigitDifference = (b<<1) - tens; exactDecimalConversion = (b == 0); } } else { // // We really must do FDBigInteger arithmetic. // Fist, construct our FDBigInteger initial values. // FDBigInteger Sval = FDBigInteger.valueOfPow52(S5, S2); int shiftBias = Sval.getNormalizationBias(); Sval = Sval.leftShift(shiftBias); // normalize so that division works better FDBigInteger Bval = FDBigInteger.valueOfMulPow52(fractBits, B5, B2 + shiftBias); FDBigInteger Mval = FDBigInteger.valueOfPow52(M5 + 1, M2 + shiftBias + 1); FDBigInteger tenSval = FDBigInteger.valueOfPow52(S5 + 1, S2 + shiftBias + 1); //Sval.mult( 10 ); // // Unroll the first iteration. If our decExp estimate // was too high, our first quotient will be zero. In this // case, we discard it and decrement decExp. // ndigit = 0; q = Bval.quoRemIteration( Sval ); low = (Bval.cmp( Mval ) < 0); high = tenSval.addAndCmp(Bval,Mval)<=0; assert q < 10 : q; // excessively large digit if ( (q == 0) && ! high ){ // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char)('0' + q); } // // HACK! Java spec sez that we always have at least // one digit after the . in either F- or E-form output. // Thus we will need more than one digit if we're using // E-form // if (!isCompatibleFormat || decExp < -3 || decExp >= 8 ){ high = low = false; } while( ! low && ! high ){ q = Bval.quoRemIteration( Sval ); assert q < 10 : q; // excessively large digit Mval = Mval.multBy10(); //Mval = Mval.mult( 10 ); low = (Bval.cmp( Mval ) < 0); high = tenSval.addAndCmp(Bval,Mval)<=0; digits[ndigit++] = (char)('0' + q); } if ( high && low ){ Bval = Bval.leftShift(1); lowDigitDifference = Bval.cmp(tenSval); } else { lowDigitDifference = 0L; // this here only for flow analysis! } exactDecimalConversion = (Bval.cmp( FDBigInteger.ZERO ) == 0); } this.decExponent = decExp+1; this.firstDigitIndex = 0; this.nDigits = ndigit; // // Last digit gets rounded based on stopping condition. // if ( high ){ if ( low ){ if ( lowDigitDifference == 0L ){ // it's a tie! // choose based on which digits we like. if ( (digits[firstDigitIndex+nDigits-1]&1) != 0 ) { roundup(); } } else if ( lowDigitDifference > 0 ){ roundup(); } } else { roundup(); } } } // add one to the least significant digit. // in the unlikely event there is a carry out, deal with it. // assert that this will only happen where there // is only one digit, e.g. (float)1e-44 seems to do it. // private void roundup() { int i = (firstDigitIndex + nDigits - 1); int q = digits[i]; if (q == '9') { while (q == '9' && i > firstDigitIndex) { digits[i] = '0'; q = digits[--i]; } if (q == '9') { // carryout! High-order 1, rest 0s, larger exp. decExponent += 1; digits[firstDigitIndex] = '1'; return; } // else fall through. } digits[i] = (char) (q + 1); decimalDigitsRoundedUp = true; } /** * Estimate decimal exponent. (If it is small-ish, * we could double-check.) * * First, scale the mantissa bits such that 1 <= d2 < 2. * We are then going to estimate * log10(d2) ~=~ (d2-1.5)/1.5 + log(1.5) * and so we can estimate * log10(d) ~=~ log10(d2) + binExp * log10(2) * take the floor and call it decExp. */ static int estimateDecExp(long fractBits, int binExp) { double d2 = Double.longBitsToDouble( EXP_ONE | ( fractBits & DoubleConsts.SIGNIF_BIT_MASK ) ); double d = (d2-1.5D)*0.289529654D + 0.176091259 + (double)binExp * 0.301029995663981; long dBits = Double.doubleToRawLongBits(d); //can't be NaN here so use raw int exponent = (int)((dBits & DoubleConsts.EXP_BIT_MASK) >> EXP_SHIFT) - DoubleConsts.EXP_BIAS; boolean isNegative = (dBits & DoubleConsts.SIGN_BIT_MASK) != 0; // discover sign if(exponent>=0 && exponent<52) { // hot path long mask = DoubleConsts.SIGNIF_BIT_MASK >> exponent; int r = (int)(( (dBits&DoubleConsts.SIGNIF_BIT_MASK) | FRACT_HOB )>>(EXP_SHIFT-exponent)); return isNegative ? (((mask & dBits) == 0L ) ? -r : -r-1 ) : r; } else if (exponent < 0) { return (((dBits&~DoubleConsts.SIGN_BIT_MASK) == 0) ? 0 : ( (isNegative) ? -1 : 0) ); } else { //if (exponent >= 52) return (int)d; } } private static int insignificantDigits(int insignificant) { int i; for ( i = 0; insignificant >= 10L; i++ ) { insignificant /= 10L; } return i; } /** * Calculates ** insignificantDigitsForPow2(v) == insignificantDigits(1L<*/ private static int insignificantDigitsForPow2(int p2) { if (p2 > 1 && p2 < insignificantDigitsNumber.length) { return insignificantDigitsNumber[p2]; } return 0; } /** * If insignificant==(1L << ixd) * i = insignificantDigitsNumber[idx] is the same as: * int i; * for ( i = 0; insignificant >= 10L; i++ ) * insignificant /= 10L; */ private static final int[] insignificantDigitsNumber = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19 }; // approximately ceil( log2( long5pow[i] ) ) private static final int[] N_5_BITS = { 0, 3, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 31, 33, 35, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, }; private int getChars(char[] result) { assert nDigits <= 19 : nDigits; // generous bound on size of nDigits int i = 0; if (isNegative) { result[0] = '-'; i = 1; } if (decExponent > 0 && decExponent < 8) { // print digits.digits. int charLength = Math.min(nDigits, decExponent); System.arraycopy(digits, firstDigitIndex, result, i, charLength); i += charLength; if (charLength < decExponent) { charLength = decExponent - charLength; Arrays.fill(result,i,i+charLength,'0'); i += charLength; result[i++] = '.'; result[i++] = '0'; } else { result[i++] = '.'; if (charLength < nDigits) { int t = nDigits - charLength; System.arraycopy(digits, firstDigitIndex+charLength, result, i, t); i += t; } else { result[i++] = '0'; } } } else if (decExponent <= 0 && decExponent > -3) { result[i++] = '0'; result[i++] = '.'; if (decExponent != 0) { Arrays.fill(result, i, i-decExponent, '0'); i -= decExponent; } System.arraycopy(digits, firstDigitIndex, result, i, nDigits); i += nDigits; } else { result[i++] = digits[firstDigitIndex]; result[i++] = '.'; if (nDigits > 1) { System.arraycopy(digits, firstDigitIndex+1, result, i, nDigits - 1); i += nDigits - 1; } else { result[i++] = '0'; } result[i++] = 'E'; int e; if (decExponent <= 0) { result[i++] = '-'; e = -decExponent + 1; } else { e = decExponent - 1; } // decExponent has 1, 2, or 3, digits if (e <= 9) { result[i++] = (char) (e + '0'); } else if (e <= 99) { result[i++] = (char) (e / 10 + '0'); result[i++] = (char) (e % 10 + '0'); } else { result[i++] = (char) (e / 100 + '0'); e %= 100; result[i++] = (char) (e / 10 + '0'); result[i++] = (char) (e % 10 + '0'); } } return i; } } private static final ThreadLocal threadLocalBinaryToASCIIBuffer = new ThreadLocal () { @Override protected BinaryToASCIIBuffer initialValue() { return new BinaryToASCIIBuffer(); } }; private static BinaryToASCIIBuffer getBinaryToASCIIBuffer() { return threadLocalBinaryToASCIIBuffer.get(); } /** * A converter which can process an ASCII String
representation * of a single or double precision floating point value into a *float
or adouble
. */ interface ASCIIToBinaryConverter { double doubleValue(); float floatValue(); } /** * AASCIIToBinaryConverter
container for adouble
. */ static class PreparedASCIIToBinaryBuffer implements ASCIIToBinaryConverter { private final double doubleVal; private final float floatVal; public PreparedASCIIToBinaryBuffer(double doubleVal, float floatVal) { this.doubleVal = doubleVal; this.floatVal = floatVal; } @Override public double doubleValue() { return doubleVal; } @Override public float floatValue() { return floatVal; } } static final ASCIIToBinaryConverter A2BC_POSITIVE_INFINITY = new PreparedASCIIToBinaryBuffer(Double.POSITIVE_INFINITY, Float.POSITIVE_INFINITY); static final ASCIIToBinaryConverter A2BC_NEGATIVE_INFINITY = new PreparedASCIIToBinaryBuffer(Double.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY); static final ASCIIToBinaryConverter A2BC_NOT_A_NUMBER = new PreparedASCIIToBinaryBuffer(Double.NaN, Float.NaN); static final ASCIIToBinaryConverter A2BC_POSITIVE_ZERO = new PreparedASCIIToBinaryBuffer(0.0d, 0.0f); static final ASCIIToBinaryConverter A2BC_NEGATIVE_ZERO = new PreparedASCIIToBinaryBuffer(-0.0d, -0.0f); /** * A buffered implementation ofASCIIToBinaryConverter
. */ static class ASCIIToBinaryBuffer implements ASCIIToBinaryConverter { boolean isNegative; int decExponent; char digits[]; int nDigits; ASCIIToBinaryBuffer( boolean negSign, int decExponent, char[] digits, int n) { this.isNegative = negSign; this.decExponent = decExponent; this.digits = digits; this.nDigits = n; } /** * Takes a FloatingDecimal, which we presumably just scanned in, * and finds out what its value is, as a double. * * AS A SIDE EFFECT, SET roundDir TO INDICATE PREFERRED * ROUNDING DIRECTION in case the result is really destined * for a single-precision float. */ @Override public double doubleValue() { int kDigits = Math.min(nDigits, MAX_DECIMAL_DIGITS + 1); // // convert the lead kDigits to a long integer. // // (special performance hack: start to do it using int) int iValue = (int) digits[0] - (int) '0'; int iDigits = Math.min(kDigits, INT_DECIMAL_DIGITS); for (int i = 1; i < iDigits; i++) { iValue = iValue * 10 + (int) digits[i] - (int) '0'; } long lValue = (long) iValue; for (int i = iDigits; i < kDigits; i++) { lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0'); } double dValue = (double) lValue; int exp = decExponent - kDigits; // // lValue now contains a long integer with the value of // the first kDigits digits of the number. // dValue contains the (double) of the same. // if (nDigits <= MAX_DECIMAL_DIGITS) { // // possibly an easy case. // We know that the digits can be represented // exactly. And if the exponent isn't too outrageous, // the whole thing can be done with one operation, // thus one rounding error. // Note that all our constructors trim all leading and // trailing zeros, so simple values (including zero) // will always end up here // if (exp == 0 || dValue == 0.0) { return (isNegative) ? -dValue : dValue; // small floating integer } else if (exp >= 0) { if (exp <= MAX_SMALL_TEN) { // // Can get the answer with one operation, // thus one roundoff. // double rValue = dValue * SMALL_10_POW[exp]; return (isNegative) ? -rValue : rValue; } int slop = MAX_DECIMAL_DIGITS - kDigits; if (exp <= MAX_SMALL_TEN + slop) { // // We can multiply dValue by 10^(slop) // and it is still "small" and exact. // Then we can multiply by 10^(exp-slop) // with one rounding. // dValue *= SMALL_10_POW[slop]; double rValue = dValue * SMALL_10_POW[exp - slop]; return (isNegative) ? -rValue : rValue; } // // Else we have a hard case with a positive exp. // } else { if (exp >= -MAX_SMALL_TEN) { // // Can get the answer in one division. // double rValue = dValue / SMALL_10_POW[-exp]; return (isNegative) ? -rValue : rValue; } // // Else we have a hard case with a negative exp. // } } // // Harder cases: // The sum of digits plus exponent is greater than // what we think we can do with one error. // // Start by approximating the right answer by, // naively, scaling by powers of 10. // if (exp > 0) { if (decExponent > MAX_DECIMAL_EXPONENT + 1) { // // Lets face it. This is going to be // Infinity. Cut to the chase. // return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } if ((exp & 15) != 0) { dValue *= SMALL_10_POW[exp & 15]; } if ((exp >>= 4) != 0) { int j; for (j = 0; exp > 1; j++, exp >>= 1) { if ((exp & 1) != 0) { dValue *= BIG_10_POW[j]; } } // // The reason for the weird exp > 1 condition // in the above loop was so that the last multiply // would get unrolled. We handle it here. // It could overflow. // double t = dValue * BIG_10_POW[j]; if (Double.isInfinite(t)) { // // It did overflow. // Look more closely at the result. // If the exponent is just one too large, // then use the maximum finite as our estimate // value. Else call the result infinity // and punt it. // ( I presume this could happen because // rounding forces the result here to be // an ULP or two larger than // Double.MAX_VALUE ). // t = dValue / 2.0; t *= BIG_10_POW[j]; if (Double.isInfinite(t)) { return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } t = Double.MAX_VALUE; } dValue = t; } } else if (exp < 0) { exp = -exp; if (decExponent < MIN_DECIMAL_EXPONENT - 1) { // // Lets face it. This is going to be // zero. Cut to the chase. // return (isNegative) ? -0.0 : 0.0; } if ((exp & 15) != 0) { dValue /= SMALL_10_POW[exp & 15]; } if ((exp >>= 4) != 0) { int j; for (j = 0; exp > 1; j++, exp >>= 1) { if ((exp & 1) != 0) { dValue *= TINY_10_POW[j]; } } // // The reason for the weird exp > 1 condition // in the above loop was so that the last multiply // would get unrolled. We handle it here. // It could underflow. // double t = dValue * TINY_10_POW[j]; if (t == 0.0) { // // It did underflow. // Look more closely at the result. // If the exponent is just one too small, // then use the minimum finite as our estimate // value. Else call the result 0.0 // and punt it. // ( I presume this could happen because // rounding forces the result here to be // an ULP or two less than // Double.MIN_VALUE ). // t = dValue * 2.0; t *= TINY_10_POW[j]; if (t == 0.0) { return (isNegative) ? -0.0 : 0.0; } t = Double.MIN_VALUE; } dValue = t; } } // // dValue is now approximately the result. // The hard part is adjusting it, by comparison // with FDBigInteger arithmetic. // Formulate the EXACT big-number result as // bigD0 * 10^exp // if (nDigits > MAX_NDIGITS) { nDigits = MAX_NDIGITS + 1; digits[MAX_NDIGITS] = '1'; } FDBigInteger bigD0 = new FDBigInteger(lValue, digits, kDigits, nDigits); exp = decExponent - nDigits; long ieeeBits = Double.doubleToRawLongBits(dValue); // IEEE-754 bits of double candidate final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop bigD0 = bigD0.multByPow52(D5, 0); bigD0.makeImmutable(); // prevent bigD0 modification inside correctionLoop FDBigInteger bigD = null; int prevD2 = 0; correctionLoop: while (true) { // here ieeeBits can't be NaN, Infinity or zero int binexp = (int) (ieeeBits >>> EXP_SHIFT); long bigBbits = ieeeBits & DoubleConsts.SIGNIF_BIT_MASK; if (binexp > 0) { bigBbits |= FRACT_HOB; } else { // Normalize denormalized numbers. assert bigBbits != 0L : bigBbits; // doubleToBigInt(0.0) int leadingZeros = Long.numberOfLeadingZeros(bigBbits); int shift = leadingZeros - (63 - EXP_SHIFT); bigBbits <<= shift; binexp = 1 - shift; } binexp -= DoubleConsts.EXP_BIAS; int lowOrderZeros = Long.numberOfTrailingZeros(bigBbits); bigBbits >>>= lowOrderZeros; final int bigIntExp = binexp - EXP_SHIFT + lowOrderZeros; final int bigIntNBits = EXP_SHIFT + 1 - lowOrderZeros; // // Scale bigD, bigB appropriately for // big-integer operations. // Naively, we multiply by powers of ten // and powers of two. What we actually do // is keep track of the powers of 5 and // powers of 2 we would use, then factor out // common divisors before doing the work. // int B2 = B5; // powers of 2 in bigB int D2 = D5; // powers of 2 in bigD int Ulp2; // powers of 2 in halfUlp. if (bigIntExp >= 0) { B2 += bigIntExp; } else { D2 -= bigIntExp; } Ulp2 = B2; // shift bigB and bigD left by a number s. t. // halfUlp is still an integer. int hulpbias; if (binexp <= -DoubleConsts.EXP_BIAS) { // This is going to be a denormalized number // (if not actually zero). // half an ULP is at 2^-(DoubleConsts.EXP_BIAS+EXP_SHIFT+1) hulpbias = binexp + lowOrderZeros + DoubleConsts.EXP_BIAS; } else { hulpbias = 1 + lowOrderZeros; } B2 += hulpbias; D2 += hulpbias; // if there are common factors of 2, we might just as well // factor them out, as they add nothing useful. int common2 = Math.min(B2, Math.min(D2, Ulp2)); B2 -= common2; D2 -= common2; Ulp2 -= common2; // do multiplications by powers of 5 and 2 FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2); if (bigD == null || prevD2 != D2) { bigD = bigD0.leftShift(D2); prevD2 = D2; } // // to recap: // bigB is the scaled-big-int version of our floating-point // candidate. // bigD is the scaled-big-int version of the exact value // as we understand it. // halfUlp is 1/2 an ulp of bigB, except for special cases // of exact powers of 2 // // the plan is to compare bigB with bigD, and if the difference // is less than halfUlp, then we're satisfied. Otherwise, // use the ratio of difference to halfUlp to calculate a fudge // factor to add to the floating value, then go 'round again. // FDBigInteger diff; int cmpResult; boolean overvalue; if ((cmpResult = bigB.cmp(bigD)) > 0) { overvalue = true; // our candidate is too big. diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse if ((bigIntNBits == 1) && (bigIntExp > -DoubleConsts.EXP_BIAS + 1)) { // candidate is a normalized exact power of 2 and // is too big (larger than Double.MIN_NORMAL). We will be subtracting. // For our purposes, ulp is the ulp of the // next smaller range. Ulp2 -= 1; if (Ulp2 < 0) { // rats. Cannot de-scale ulp this far. // must scale diff in other direction. Ulp2 = 0; diff = diff.leftShift(1); } } } else if (cmpResult < 0) { overvalue = false; // our candidate is too small. diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse } else { // the candidate is exactly right! // this happens with surprising frequency break correctionLoop; } cmpResult = diff.cmpPow52(B5, Ulp2); if ((cmpResult) < 0) { // difference is small. // this is close enough break correctionLoop; } else if (cmpResult == 0) { // difference is exactly half an ULP // round to some other value maybe, then finish if ((ieeeBits & 1) != 0) { // half ties to even ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp } break correctionLoop; } else { // difference is non-trivial. // could scale addend by ratio of difference to // halfUlp here, if we bothered to compute that difference. // Most of the time ( I hope ) it is about 1 anyway. ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp if (ieeeBits == 0 || ieeeBits == DoubleConsts.EXP_BIT_MASK) { // 0.0 or Double.POSITIVE_INFINITY break correctionLoop; // oops. Fell off end of range. } continue; // try again. } } if (isNegative) { ieeeBits |= DoubleConsts.SIGN_BIT_MASK; } return Double.longBitsToDouble(ieeeBits); } /** * Takes a FloatingDecimal, which we presumably just scanned in, * and finds out what its value is, as a float. * This is distinct from doubleValue() to avoid the extremely * unlikely case of a double rounding error, wherein the conversion * to double has one rounding error, and the conversion of that double * to a float has another rounding error, IN THE WRONG DIRECTION, * ( because of the preference to a zero low-order bit ). */ @Override public float floatValue() { int kDigits = Math.min(nDigits, SINGLE_MAX_DECIMAL_DIGITS + 1); // // convert the lead kDigits to an integer. // int iValue = (int) digits[0] - (int) '0'; for (int i = 1; i < kDigits; i++) { iValue = iValue * 10 + (int) digits[i] - (int) '0'; } float fValue = (float) iValue; int exp = decExponent - kDigits; // // iValue now contains an integer with the value of // the first kDigits digits of the number. // fValue contains the (float) of the same. // if (nDigits <= SINGLE_MAX_DECIMAL_DIGITS) { // // possibly an easy case. // We know that the digits can be represented // exactly. And if the exponent isn't too outrageous, // the whole thing can be done with one operation, // thus one rounding error. // Note that all our constructors trim all leading and // trailing zeros, so simple values (including zero) // will always end up here. // if (exp == 0 || fValue == 0.0f) { return (isNegative) ? -fValue : fValue; // small floating integer } else if (exp >= 0) { if (exp <= SINGLE_MAX_SMALL_TEN) { // // Can get the answer with one operation, // thus one roundoff. // fValue *= SINGLE_SMALL_10_POW[exp]; return (isNegative) ? -fValue : fValue; } int slop = SINGLE_MAX_DECIMAL_DIGITS - kDigits; if (exp <= SINGLE_MAX_SMALL_TEN + slop) { // // We can multiply fValue by 10^(slop) // and it is still "small" and exact. // Then we can multiply by 10^(exp-slop) // with one rounding. // fValue *= SINGLE_SMALL_10_POW[slop]; fValue *= SINGLE_SMALL_10_POW[exp - slop]; return (isNegative) ? -fValue : fValue; } // // Else we have a hard case with a positive exp. // } else { if (exp >= -SINGLE_MAX_SMALL_TEN) { // // Can get the answer in one division. // fValue /= SINGLE_SMALL_10_POW[-exp]; return (isNegative) ? -fValue : fValue; } // // Else we have a hard case with a negative exp. // } } else if ((decExponent >= nDigits) && (nDigits + decExponent <= MAX_DECIMAL_DIGITS)) { // // In double-precision, this is an exact floating integer. // So we can compute to double, then shorten to float // with one round, and get the right answer. // // First, finish accumulating digits. // Then convert that integer to a double, multiply // by the appropriate power of ten, and convert to float. // long lValue = (long) iValue; for (int i = kDigits; i < nDigits; i++) { lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0'); } double dValue = (double) lValue; exp = decExponent - nDigits; dValue *= SMALL_10_POW[exp]; fValue = (float) dValue; return (isNegative) ? -fValue : fValue; } // // Harder cases: // The sum of digits plus exponent is greater than // what we think we can do with one error. // // Start by approximating the right answer by, // naively, scaling by powers of 10. // Scaling uses doubles to avoid overflow/underflow. // double dValue = fValue; if (exp > 0) { if (decExponent > SINGLE_MAX_DECIMAL_EXPONENT + 1) { // // Lets face it. This is going to be // Infinity. Cut to the chase. // return (isNegative) ? Float.NEGATIVE_INFINITY : Float.POSITIVE_INFINITY; } if ((exp & 15) != 0) { dValue *= SMALL_10_POW[exp & 15]; } if ((exp >>= 4) != 0) { int j; for (j = 0; exp > 0; j++, exp >>= 1) { if ((exp & 1) != 0) { dValue *= BIG_10_POW[j]; } } } } else if (exp < 0) { exp = -exp; if (decExponent < SINGLE_MIN_DECIMAL_EXPONENT - 1) { // // Lets face it. This is going to be // zero. Cut to the chase. // return (isNegative) ? -0.0f : 0.0f; } if ((exp & 15) != 0) { dValue /= SMALL_10_POW[exp & 15]; } if ((exp >>= 4) != 0) { int j; for (j = 0; exp > 0; j++, exp >>= 1) { if ((exp & 1) != 0) { dValue *= TINY_10_POW[j]; } } } } fValue = Math.max(Float.MIN_VALUE, Math.min(Float.MAX_VALUE, (float) dValue)); // // fValue is now approximately the result. // The hard part is adjusting it, by comparison // with FDBigInteger arithmetic. // Formulate the EXACT big-number result as // bigD0 * 10^exp // if (nDigits > SINGLE_MAX_NDIGITS) { nDigits = SINGLE_MAX_NDIGITS + 1; digits[SINGLE_MAX_NDIGITS] = '1'; } FDBigInteger bigD0 = new FDBigInteger(iValue, digits, kDigits, nDigits); exp = decExponent - nDigits; int ieeeBits = Float.floatToRawIntBits(fValue); // IEEE-754 bits of float candidate final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop bigD0 = bigD0.multByPow52(D5, 0); bigD0.makeImmutable(); // prevent bigD0 modification inside correctionLoop FDBigInteger bigD = null; int prevD2 = 0; correctionLoop: while (true) { // here ieeeBits can't be NaN, Infinity or zero int binexp = ieeeBits >>> SINGLE_EXP_SHIFT; int bigBbits = ieeeBits & FloatConsts.SIGNIF_BIT_MASK; if (binexp > 0) { bigBbits |= SINGLE_FRACT_HOB; } else { // Normalize denormalized numbers. assert bigBbits != 0 : bigBbits; // floatToBigInt(0.0) int leadingZeros = Integer.numberOfLeadingZeros(bigBbits); int shift = leadingZeros - (31 - SINGLE_EXP_SHIFT); bigBbits <<= shift; binexp = 1 - shift; } binexp -= FloatConsts.EXP_BIAS; int lowOrderZeros = Integer.numberOfTrailingZeros(bigBbits); bigBbits >>>= lowOrderZeros; final int bigIntExp = binexp - SINGLE_EXP_SHIFT + lowOrderZeros; final int bigIntNBits = SINGLE_EXP_SHIFT + 1 - lowOrderZeros; // // Scale bigD, bigB appropriately for // big-integer operations. // Naively, we multiply by powers of ten // and powers of two. What we actually do // is keep track of the powers of 5 and // powers of 2 we would use, then factor out // common divisors before doing the work. // int B2 = B5; // powers of 2 in bigB int D2 = D5; // powers of 2 in bigD int Ulp2; // powers of 2 in halfUlp. if (bigIntExp >= 0) { B2 += bigIntExp; } else { D2 -= bigIntExp; } Ulp2 = B2; // shift bigB and bigD left by a number s. t. // halfUlp is still an integer. int hulpbias; if (binexp <= -FloatConsts.EXP_BIAS) { // This is going to be a denormalized number // (if not actually zero). // half an ULP is at 2^-(FloatConsts.EXP_BIAS+SINGLE_EXP_SHIFT+1) hulpbias = binexp + lowOrderZeros + FloatConsts.EXP_BIAS; } else { hulpbias = 1 + lowOrderZeros; } B2 += hulpbias; D2 += hulpbias; // if there are common factors of 2, we might just as well // factor them out, as they add nothing useful. int common2 = Math.min(B2, Math.min(D2, Ulp2)); B2 -= common2; D2 -= common2; Ulp2 -= common2; // do multiplications by powers of 5 and 2 FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2); if (bigD == null || prevD2 != D2) { bigD = bigD0.leftShift(D2); prevD2 = D2; } // // to recap: // bigB is the scaled-big-int version of our floating-point // candidate. // bigD is the scaled-big-int version of the exact value // as we understand it. // halfUlp is 1/2 an ulp of bigB, except for special cases // of exact powers of 2 // // the plan is to compare bigB with bigD, and if the difference // is less than halfUlp, then we're satisfied. Otherwise, // use the ratio of difference to halfUlp to calculate a fudge // factor to add to the floating value, then go 'round again. // FDBigInteger diff; int cmpResult; boolean overvalue; if ((cmpResult = bigB.cmp(bigD)) > 0) { overvalue = true; // our candidate is too big. diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse if ((bigIntNBits == 1) && (bigIntExp > -FloatConsts.EXP_BIAS + 1)) { // candidate is a normalized exact power of 2 and // is too big (larger than Float.MIN_NORMAL). We will be subtracting. // For our purposes, ulp is the ulp of the // next smaller range. Ulp2 -= 1; if (Ulp2 < 0) { // rats. Cannot de-scale ulp this far. // must scale diff in other direction. Ulp2 = 0; diff = diff.leftShift(1); } } } else if (cmpResult < 0) { overvalue = false; // our candidate is too small. diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse } else { // the candidate is exactly right! // this happens with surprising frequency break correctionLoop; } cmpResult = diff.cmpPow52(B5, Ulp2); if ((cmpResult) < 0) { // difference is small. // this is close enough break correctionLoop; } else if (cmpResult == 0) { // difference is exactly half an ULP // round to some other value maybe, then finish if ((ieeeBits & 1) != 0) { // half ties to even ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp } break correctionLoop; } else { // difference is non-trivial. // could scale addend by ratio of difference to // halfUlp here, if we bothered to compute that difference. // Most of the time ( I hope ) it is about 1 anyway. ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp if (ieeeBits == 0 || ieeeBits == FloatConsts.EXP_BIT_MASK) { // 0.0 or Float.POSITIVE_INFINITY break correctionLoop; // oops. Fell off end of range. } continue; // try again. } } if (isNegative) { ieeeBits |= FloatConsts.SIGN_BIT_MASK; } return Float.intBitsToFloat(ieeeBits); } /** * All the positive powers of 10 that can be * represented exactly in double/float. */ private static final double[] SMALL_10_POW = { 1.0e0, 1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5, 1.0e6, 1.0e7, 1.0e8, 1.0e9, 1.0e10, 1.0e11, 1.0e12, 1.0e13, 1.0e14, 1.0e15, 1.0e16, 1.0e17, 1.0e18, 1.0e19, 1.0e20, 1.0e21, 1.0e22 }; private static final float[] SINGLE_SMALL_10_POW = { 1.0e0f, 1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f, 1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f }; private static final double[] BIG_10_POW = { 1e16, 1e32, 1e64, 1e128, 1e256 }; private static final double[] TINY_10_POW = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; private static final int MAX_SMALL_TEN = SMALL_10_POW.length-1; private static final int SINGLE_MAX_SMALL_TEN = SINGLE_SMALL_10_POW.length-1; } /** * Returns aBinaryToASCIIConverter
for adouble
. * The returned object is aThreadLocal
variable of this class. * * @param d The double precision value to convert. * @return The converter. */ public static BinaryToASCIIConverter getBinaryToASCIIConverter(double d) { return getBinaryToASCIIConverter(d, true); } /** * Returns aBinaryToASCIIConverter
for adouble
. * The returned object is aThreadLocal
variable of this class. * * @param d The double precision value to convert. * @param isCompatibleFormat * @return The converter. */ static BinaryToASCIIConverter getBinaryToASCIIConverter(double d, boolean isCompatibleFormat) { long dBits = Double.doubleToRawLongBits(d); boolean isNegative = (dBits&DoubleConsts.SIGN_BIT_MASK) != 0; // discover sign long fractBits = dBits & DoubleConsts.SIGNIF_BIT_MASK; int binExp = (int)( (dBits&DoubleConsts.EXP_BIT_MASK) >> EXP_SHIFT ); // Discover obvious special cases of NaN and Infinity. if ( binExp == (int)(DoubleConsts.EXP_BIT_MASK>>EXP_SHIFT) ) { if ( fractBits == 0L ){ return isNegative ? B2AC_NEGATIVE_INFINITY : B2AC_POSITIVE_INFINITY; } else { return B2AC_NOT_A_NUMBER; } } // Finish unpacking // Normalize denormalized numbers. // Insert assumed high-order bit for normalized numbers. // Subtract exponent bias. int nSignificantBits; if ( binExp == 0 ){ if ( fractBits == 0L ){ // not a denorm, just a 0! return isNegative ? B2AC_NEGATIVE_ZERO : B2AC_POSITIVE_ZERO; } int leadingZeros = Long.numberOfLeadingZeros(fractBits); int shift = leadingZeros-(63-EXP_SHIFT); fractBits <<= shift; binExp = 1 - shift; nSignificantBits = 64-leadingZeros; // recall binExp is - shift count. } else { fractBits |= FRACT_HOB; nSignificantBits = EXP_SHIFT+1; } binExp -= DoubleConsts.EXP_BIAS; BinaryToASCIIBuffer buf = getBinaryToASCIIBuffer(); buf.setSign(isNegative); // call the routine that actually does all the hard work. buf.dtoa(binExp, fractBits, nSignificantBits, isCompatibleFormat); return buf; } private static BinaryToASCIIConverter getBinaryToASCIIConverter(float f) { int fBits = Float.floatToRawIntBits( f ); boolean isNegative = (fBits&FloatConsts.SIGN_BIT_MASK) != 0; int fractBits = fBits&FloatConsts.SIGNIF_BIT_MASK; int binExp = (fBits&FloatConsts.EXP_BIT_MASK) >> SINGLE_EXP_SHIFT; // Discover obvious special cases of NaN and Infinity. if ( binExp == (FloatConsts.EXP_BIT_MASK>>SINGLE_EXP_SHIFT) ) { if ( fractBits == 0L ){ return isNegative ? B2AC_NEGATIVE_INFINITY : B2AC_POSITIVE_INFINITY; } else { return B2AC_NOT_A_NUMBER; } } // Finish unpacking // Normalize denormalized numbers. // Insert assumed high-order bit for normalized numbers. // Subtract exponent bias. int nSignificantBits; if ( binExp == 0 ){ if ( fractBits == 0 ){ // not a denorm, just a 0! return isNegative ? B2AC_NEGATIVE_ZERO : B2AC_POSITIVE_ZERO; } int leadingZeros = Integer.numberOfLeadingZeros(fractBits); int shift = leadingZeros-(31-SINGLE_EXP_SHIFT); fractBits <<= shift; binExp = 1 - shift; nSignificantBits = 32 - leadingZeros; // recall binExp is - shift count. } else { fractBits |= SINGLE_FRACT_HOB; nSignificantBits = SINGLE_EXP_SHIFT+1; } binExp -= FloatConsts.EXP_BIAS; BinaryToASCIIBuffer buf = getBinaryToASCIIBuffer(); buf.setSign(isNegative); // call the routine that actually does all the hard work. buf.dtoa(binExp, ((long)fractBits)<<(EXP_SHIFT-SINGLE_EXP_SHIFT), nSignificantBits, true); return buf; } @SuppressWarnings("fallthrough") static ASCIIToBinaryConverter readJavaFormatString( String in ) throws NumberFormatException { boolean isNegative = false; boolean signSeen = false; int decExp; char c; parseNumber: try{ in = in.trim(); // don't fool around with white space. // throws NullPointerException if null int len = in.length(); if ( len == 0 ) { throw new NumberFormatException("empty String"); } int i = 0; switch (in.charAt(i)){ case '-': isNegative = true; //FALLTHROUGH case '+': i++; signSeen = true; } c = in.charAt(i); if(c == 'N') { // Check for NaN if((len-i)==NAN_LENGTH && in.indexOf(NAN_REP,i)==i) { return A2BC_NOT_A_NUMBER; } // something went wrong, throw exception break parseNumber; } else if(c == 'I') { // Check for Infinity strings if((len-i)==INFINITY_LENGTH && in.indexOf(INFINITY_REP,i)==i) { return isNegative? A2BC_NEGATIVE_INFINITY : A2BC_POSITIVE_INFINITY; } // something went wrong, throw exception break parseNumber; } else if (c == '0') { // check for hexadecimal floating-point number if (len > i+1 ) { char ch = in.charAt(i+1); if (ch == 'x' || ch == 'X' ) { // possible hex string return parseHexString(in); } } } // look for and process decimal floating-point string char[] digits = new char[ len ]; boolean decSeen = false; int nDigits = 0; int decPt = 0; int nLeadZero = 0; int nTrailZero = 0; skipLeadingZerosLoop: while (i < len) { c = in.charAt(i); if (c == '0') { nLeadZero++; } else if (c == '.') { if (decSeen) { // already saw one ., this is the 2nd. throw new NumberFormatException("multiple points"); } decPt = i; if (signSeen) { decPt -= 1; } decSeen = true; } else { break skipLeadingZerosLoop; } i++; } digitLoop: while (i < len) { c = in.charAt(i); if (c >= '1' && c <= '9') { digits[nDigits++] = c; nTrailZero = 0; } else if (c == '0') { digits[nDigits++] = c; nTrailZero++; } else if (c == '.') { if (decSeen) { // already saw one ., this is the 2nd. throw new NumberFormatException("multiple points"); } decPt = i; if (signSeen) { decPt -= 1; } decSeen = true; } else { break digitLoop; } i++; } nDigits -=nTrailZero; // // At this point, we've scanned all the digits and decimal // point we're going to see. Trim off leading and trailing // zeros, which will just confuse us later, and adjust // our initial decimal exponent accordingly. // To review: // we have seen i total characters. // nLeadZero of them were zeros before any other digits. // nTrailZero of them were zeros after any other digits. // if ( decSeen ), then a . was seen after decPt characters // ( including leading zeros which have been discarded ) // nDigits characters were neither lead nor trailing // zeros, nor point // // // special hack: if we saw no non-zero digits, then the // answer is zero! // Unfortunately, we feel honor-bound to keep parsing! // boolean isZero = (nDigits == 0); if ( isZero && nLeadZero == 0 ){ // we saw NO DIGITS AT ALL, // not even a crummy 0! // this is not allowed. break parseNumber; // go throw exception } // // Our initial exponent is decPt, adjusted by the number of // discarded zeros. Or, if there was no decPt, // then its just nDigits adjusted by discarded trailing zeros. // if ( decSeen ){ decExp = decPt - nLeadZero; } else { decExp = nDigits + nTrailZero; } // // Look for 'e' or 'E' and an optionally signed integer. // if ( (i < len) && (((c = in.charAt(i) )=='e') || (c == 'E') ) ){ int expSign = 1; int expVal = 0; int reallyBig = Integer.MAX_VALUE / 10; boolean expOverflow = false; switch( in.charAt(++i) ){ case '-': expSign = -1; //FALLTHROUGH case '+': i++; } int expAt = i; expLoop: while ( i < len ){ if ( expVal >= reallyBig ){ // the next character will cause integer // overflow. expOverflow = true; } c = in.charAt(i++); if(c>='0' && c<='9') { expVal = expVal*10 + ( (int)c - (int)'0' ); } else { i--; // back up. break expLoop; // stop parsing exponent. } } int expLimit = BIG_DECIMAL_EXPONENT + nDigits + nTrailZero; if (expOverflow || (expVal > expLimit)) { // There is still a chance that the exponent will be safe to // use: if it would eventually decrease due to a negative // decExp, and that number is below the limit. We check for // that here. if (!expOverflow && (expSign == 1 && decExp < 0) && (expVal + decExp) < expLimit) { // Cannot overflow: adding a positive and negative number. decExp += expVal; } else { // // The intent here is to end up with // infinity or zero, as appropriate. // The reason for yielding such a small decExponent, // rather than something intuitive such as // expSign*Integer.MAX_VALUE, is that this value // is subject to further manipulation in // doubleValue() and floatValue(), and I don't want // it to be able to cause overflow there! // (The only way we can get into trouble here is for // really outrageous nDigits+nTrailZero, such as 2 // billion.) // decExp = expSign * expLimit; } } else { // this should not overflow, since we tested // for expVal > (MAX+N), where N >= abs(decExp) decExp = decExp + expSign*expVal; } // if we saw something not a digit ( or end of string ) // after the [Ee][+-], without seeing any digits at all // this is certainly an error. If we saw some digits, // but then some trailing garbage, that might be ok. // so we just fall through in that case. // HUMBUG if ( i == expAt ) { break parseNumber; // certainly bad } } // // We parsed everything we could. // If there are leftovers, then this is not good input! // if ( i < len && ((i != len - 1) || (in.charAt(i) != 'f' && in.charAt(i) != 'F' && in.charAt(i) != 'd' && in.charAt(i) != 'D'))) { break parseNumber; // go throw exception } if(isZero) { return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; } return new ASCIIToBinaryBuffer(isNegative, decExp, digits, nDigits); } catch ( StringIndexOutOfBoundsException e ){ } throw new NumberFormatException("For input string: \"" + in + "\""); } private static class HexFloatPattern { /** * Grammar is compatible with hexadecimal floating-point constants * described in section 6.4.4.2 of the C99 specification. */ private static final Pattern VALUE = Pattern.compile( //1 234 56 7 8 9 "([-+])?0[xX](((\\p{XDigit}+)\\.?)|((\\p{XDigit}*)\\.(\\p{XDigit}+)))[pP]([-+])?(\\p{Digit}+)[fFdD]?" ); } /** * Converts string s to a suitable floating decimal; uses the * double constructor and sets the roundDir variable appropriately * in case the value is later converted to a float. * * @param s TheString
to parse. */ static ASCIIToBinaryConverter parseHexString(String s) { // Verify string is a member of the hexadecimal floating-point // string language. Matcher m = HexFloatPattern.VALUE.matcher(s); boolean validInput = m.matches(); if (!validInput) { // Input does not match pattern throw new NumberFormatException("For input string: \"" + s + "\""); } else { // validInput // // We must isolate the sign, significand, and exponent // fields. The sign value is straightforward. Since // floating-point numbers are stored with a normalized // representation, the significand and exponent are // interrelated. // // After extracting the sign, we normalized the // significand as a hexadecimal value, calculating an // exponent adjust for any shifts made during // normalization. If the significand is zero, the // exponent doesn't need to be examined since the output // will be zero. // // Next the exponent in the input string is extracted. // Afterwards, the significand is normalized as a *binary* // value and the input value's normalized exponent can be // computed. The significand bits are copied into a // double significand; if the string has more logical bits // than can fit in a double, the extra bits affect the // round and sticky bits which are used to round the final // value. // // Extract significand sign String group1 = m.group(1); boolean isNegative = ((group1 != null) && group1.equals("-")); // Extract Significand magnitude // // Based on the form of the significand, calculate how the // binary exponent needs to be adjusted to create a // normalized//hexadecimal* floating-point number; that // is, a number where there is one nonzero hex digit to // the left of the (hexa)decimal point. Since we are // adjusting a binary, not hexadecimal exponent, the // exponent is adjusted by a multiple of 4. // // There are a number of significand scenarios to consider; // letters are used in indicate nonzero digits: // // 1. 000xxxx => x.xxx normalized // increase exponent by (number of x's - 1)*4 // // 2. 000xxx.yyyy => x.xxyyyy normalized // increase exponent by (number of x's - 1)*4 // // 3. .000yyy => y.yy normalized // decrease exponent by (number of zeros + 1)*4 // // 4. 000.00000yyy => y.yy normalized // decrease exponent by (number of zeros to right of point + 1)*4 // // If the significand is exactly zero, return a properly // signed zero. // String significandString; int signifLength; int exponentAdjust; { int leftDigits = 0; // number of meaningful digits to // left of "decimal" point // (leading zeros stripped) int rightDigits = 0; // number of digits to right of // "decimal" point; leading zeros // must always be accounted for // // The significand is made up of either // // 1. group 4 entirely (integer portion only) // // OR // // 2. the fractional portion from group 7 plus any // (optional) integer portions from group 6. // String group4; if ((group4 = m.group(4)) != null) { // Integer-only significand // Leading zeros never matter on the integer portion significandString = stripLeadingZeros(group4); leftDigits = significandString.length(); } else { // Group 6 is the optional integer; leading zeros // never matter on the integer portion String group6 = stripLeadingZeros(m.group(6)); leftDigits = group6.length(); // fraction String group7 = m.group(7); rightDigits = group7.length(); // Turn "integer.fraction" into "integer"+"fraction" significandString = ((group6 == null) ? "" : group6) + // is the null // check necessary? group7; } significandString = stripLeadingZeros(significandString); signifLength = significandString.length(); // // Adjust exponent as described above // if (leftDigits >= 1) { // Cases 1 and 2 exponentAdjust = 4 * (leftDigits - 1); } else { // Cases 3 and 4 exponentAdjust = -4 * (rightDigits - signifLength + 1); } // If the significand is zero, the exponent doesn't // matter; return a properly signed zero. if (signifLength == 0) { // Only zeros in input return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; } } // Extract Exponent // // Use an int to read in the exponent value; this should // provide more than sufficient range for non-contrived // inputs. If reading the exponent in as an int does // overflow, examine the sign of the exponent and // significand to determine what to do. // String group8 = m.group(8); boolean positiveExponent = (group8 == null) || group8.equals("+"); long unsignedRawExponent; try { unsignedRawExponent = Integer.parseInt(m.group(9)); } catch (NumberFormatException e) { // At this point, we know the exponent is // syntactically well-formed as a sequence of // digits. Therefore, if an NumberFormatException // is thrown, it must be due to overflowing int's // range. Also, at this point, we have already // checked for a zero significand. Thus the signs // of the exponent and significand determine the // final result: // // significand // + - // exponent + +infinity -infinity // - +0.0 -0.0 return isNegative ? (positiveExponent ? A2BC_NEGATIVE_INFINITY : A2BC_NEGATIVE_ZERO) : (positiveExponent ? A2BC_POSITIVE_INFINITY : A2BC_POSITIVE_ZERO); } long rawExponent = (positiveExponent ? 1L : -1L) * // exponent sign unsignedRawExponent; // exponent magnitude // Calculate partially adjusted exponent long exponent = rawExponent + exponentAdjust; // Starting copying non-zero bits into proper position in // a long; copy explicit bit too; this will be masked // later for normal values. boolean round = false; boolean sticky = false; int nextShift; long significand = 0L; // First iteration is different, since we only copy // from the leading significand bit; one more exponent // adjust will be needed... // IMPORTANT: make leadingDigit a long to avoid // surprising shift semantics! long leadingDigit = getHexDigit(significandString, 0); // // Left shift the leading digit (53 - (bit position of // leading 1 in digit)); this sets the top bit of the // significand to 1. The nextShift value is adjusted // to take into account the number of bit positions of // the leadingDigit actually used. Finally, the // exponent is adjusted to normalize the significand // as a binary value, not just a hex value. // if (leadingDigit == 1) { significand |= leadingDigit << 52; nextShift = 52 - 4; // exponent += 0 } else if (leadingDigit <= 3) { // [2, 3] significand |= leadingDigit << 51; nextShift = 52 - 5; exponent += 1; } else if (leadingDigit <= 7) { // [4, 7] significand |= leadingDigit << 50; nextShift = 52 - 6; exponent += 2; } else if (leadingDigit <= 15) { // [8, f] significand |= leadingDigit << 49; nextShift = 52 - 7; exponent += 3; } else { throw new AssertionError("Result from digit conversion too large!"); } // The preceding if-else could be replaced by a single // code block based on the high-order bit set in // leadingDigit. Given leadingOnePosition, // significand |= leadingDigit << (SIGNIFICAND_WIDTH - leadingOnePosition); // nextShift = 52 - (3 + leadingOnePosition); // exponent += (leadingOnePosition-1); // // Now the exponent variable is equal to the normalized // binary exponent. Code below will make representation // adjustments if the exponent is incremented after // rounding (includes overflows to infinity) or if the // result is subnormal. // // Copy digit into significand until the significand can't // hold another full hex digit or there are no more input // hex digits. int i = 0; for (i = 1; i < signifLength && nextShift >= 0; i++) { long currentDigit = getHexDigit(significandString, i); significand |= (currentDigit << nextShift); nextShift -= 4; } // After the above loop, the bulk of the string is copied. // Now, we must copy any partial hex digits into the // significand AND compute the round bit and start computing // sticky bit. if (i < signifLength) { // at least one hex input digit exists long currentDigit = getHexDigit(significandString, i); // from nextShift, figure out how many bits need // to be copied, if any switch (nextShift) { // must be negative case -1: // three bits need to be copied in; can // set round bit significand |= ((currentDigit & 0xEL) >> 1); round = (currentDigit & 0x1L) != 0L; break; case -2: // two bits need to be copied in; can // set round and start sticky significand |= ((currentDigit & 0xCL) >> 2); round = (currentDigit & 0x2L) != 0L; sticky = (currentDigit & 0x1L) != 0; break; case -3: // one bit needs to be copied in significand |= ((currentDigit & 0x8L) >> 3); // Now set round and start sticky, if possible round = (currentDigit & 0x4L) != 0L; sticky = (currentDigit & 0x3L) != 0; break; case -4: // all bits copied into significand; set // round and start sticky round = ((currentDigit & 0x8L) != 0); // is top bit set? // nonzeros in three low order bits? sticky = (currentDigit & 0x7L) != 0; break; default: throw new AssertionError("Unexpected shift distance remainder."); // break; } // Round is set; sticky might be set. // For the sticky bit, it suffices to check the // current digit and test for any nonzero digits in // the remaining unprocessed input. i++; while (i < signifLength && !sticky) { currentDigit = getHexDigit(significandString, i); sticky = sticky || (currentDigit != 0); i++; } } // else all of string was seen, round and sticky are // correct as false. // Float calculations int floatBits = isNegative ? FloatConsts.SIGN_BIT_MASK : 0; if (exponent >= Float.MIN_EXPONENT) { if (exponent > Float.MAX_EXPONENT) { // Float.POSITIVE_INFINITY floatBits |= FloatConsts.EXP_BIT_MASK; } else { int threshShift = DoubleConsts.SIGNIFICAND_WIDTH - FloatConsts.SIGNIFICAND_WIDTH - 1; boolean floatSticky = (significand & ((1L << threshShift) - 1)) != 0 || round || sticky; int iValue = (int) (significand >>> threshShift); if ((iValue & 3) != 1 || floatSticky) { iValue++; } floatBits |= (((((int) exponent) + (FloatConsts.EXP_BIAS - 1))) << SINGLE_EXP_SHIFT) + (iValue >> 1); } } else { if (exponent < FloatConsts.MIN_SUB_EXPONENT - 1) { // 0 } else { // exponent == -127 ==> threshShift = 53 - 2 + (-149) - (-127) = 53 - 24 int threshShift = (int) ((DoubleConsts.SIGNIFICAND_WIDTH - 2 + FloatConsts.MIN_SUB_EXPONENT) - exponent); assert threshShift >= DoubleConsts.SIGNIFICAND_WIDTH - FloatConsts.SIGNIFICAND_WIDTH; assert threshShift < DoubleConsts.SIGNIFICAND_WIDTH; boolean floatSticky = (significand & ((1L << threshShift) - 1)) != 0 || round || sticky; int iValue = (int) (significand >>> threshShift); if ((iValue & 3) != 1 || floatSticky) { iValue++; } floatBits |= iValue >> 1; } } float fValue = Float.intBitsToFloat(floatBits); // Check for overflow and update exponent accordingly. if (exponent > Double.MAX_EXPONENT) { // Infinite result // overflow to properly signed infinity return isNegative ? A2BC_NEGATIVE_INFINITY : A2BC_POSITIVE_INFINITY; } else { // Finite return value if (exponent <= Double.MAX_EXPONENT && // (Usually) normal result exponent >= Double.MIN_EXPONENT) { // The result returned in this block cannot be a // zero or subnormal; however after the // significand is adjusted from rounding, we could // still overflow in infinity. // AND exponent bits into significand; if the // significand is incremented and overflows from // rounding, this combination will update the // exponent correctly, even in the case of // Double.MAX_VALUE overflowing to infinity. significand = ((( exponent + (long) DoubleConsts.EXP_BIAS) << (DoubleConsts.SIGNIFICAND_WIDTH - 1)) & DoubleConsts.EXP_BIT_MASK) | (DoubleConsts.SIGNIF_BIT_MASK & significand); } else { // Subnormal or zero // (exponent < Double.MIN_EXPONENT) if (exponent < (DoubleConsts.MIN_SUB_EXPONENT - 1)) { // No way to round back to nonzero value // regardless of significand if the exponent is // less than -1075. return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; } else { // -1075 <= exponent <= MIN_EXPONENT -1 = -1023 // // Find bit position to round to; recompute // round and sticky bits, and shift // significand right appropriately. // sticky = sticky || round; round = false; // Number of bits of significand to preserve is // exponent - abs_min_exp +1 // check: // -1075 +1074 + 1 = 0 // -1023 +1074 + 1 = 52 int bitsDiscarded = 53 - ((int) exponent - DoubleConsts.MIN_SUB_EXPONENT + 1); assert bitsDiscarded >= 1 && bitsDiscarded <= 53; // What to do here: // First, isolate the new round bit round = (significand & (1L << (bitsDiscarded - 1))) != 0L; if (bitsDiscarded > 1) { // create mask to update sticky bits; low // order bitsDiscarded bits should be 1 long mask = ~((~0L) << (bitsDiscarded - 1)); sticky = sticky || ((significand & mask) != 0L); } // Now, discard the bits significand = significand >> bitsDiscarded; significand = ((((long) (Double.MIN_EXPONENT - 1) + // subnorm exp. (long) DoubleConsts.EXP_BIAS) << (DoubleConsts.SIGNIFICAND_WIDTH - 1)) & DoubleConsts.EXP_BIT_MASK) | (DoubleConsts.SIGNIF_BIT_MASK & significand); } } // The significand variable now contains the currently // appropriate exponent bits too. // // Determine if significand should be incremented; // making this determination depends on the least // significant bit and the round and sticky bits. // // Round to nearest even rounding table, adapted from // table 4.7 in "Computer Arithmetic" by IsraelKoren. // The digit to the left of the "decimal" point is the // least significant bit, the digits to the right of // the point are the round and sticky bits // // Number Round(x) // x0.00 x0. // x0.01 x0. // x0.10 x0. // x0.11 x1. = x0. +1 // x1.00 x1. // x1.01 x1. // x1.10 x1. + 1 // x1.11 x1. + 1 // boolean leastZero = ((significand & 1L) == 0L); if ((leastZero && round && sticky) || ((!leastZero) && round)) { significand++; } double value = isNegative ? Double.longBitsToDouble(significand | DoubleConsts.SIGN_BIT_MASK) : Double.longBitsToDouble(significand ); return new PreparedASCIIToBinaryBuffer(value, fValue); } } } /** * Returnss
with any leading zeros removed. */ static String stripLeadingZeros(String s) { if(!s.isEmpty() && s.charAt(0)=='0') { for(int i=1; iposition * of string s
. */ static int getHexDigit(String s, int position) { int value = Character.digit(s.charAt(position), 16); if (value <= -1 || value >= 16) { throw new AssertionError("Unexpected failure of digit conversion of " + s.charAt(position)); } return value; } }
© 2015 - 2025 Weber Informatics LLC | Privacy Policy