sun.security.provider.SHA Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.provider;
import java.util.Arrays;
import java.util.Objects;
import static sun.security.provider.ByteArrayAccess.*;
import jdk.internal.vm.annotation.IntrinsicCandidate;
/**
* This class implements the Secure Hash Algorithm (SHA) developed by
* the National Institute of Standards and Technology along with the
* National Security Agency. This is the updated version of SHA
* fip-180 as superseded by fip-180-1.
*
* It implement JavaSecurity MessageDigest, and can be used by in
* the Java Security framework, as a pluggable implementation, as a
* filter for the digest stream classes.
*
* @author Roger Riggs
* @author Benjamin Renaud
* @author Andreas Sterbenz
*/
public final class SHA extends DigestBase {
// Buffer of int's and count of characters accumulated
// 64 bytes are included in each hash block so the low order
// bits of count are used to know how to pack the bytes into ints
// and to know when to compute the block and start the next one.
private int[] W;
// state of this
private int[] state;
/**
* Creates a new SHA object.
*/
public SHA() {
super("SHA-1", 20, 64);
state = new int[5];
resetHashes();
}
/*
* Clones this object.
*/
public Object clone() throws CloneNotSupportedException {
SHA copy = (SHA) super.clone();
copy.state = copy.state.clone();
copy.W = null;
return copy;
}
/**
* Resets the buffers and hash value to start a new hash.
*/
void implReset() {
// Load magic initialization constants.
resetHashes();
// clear out old data
if (W != null) {
Arrays.fill(W, 0);
}
}
private void resetHashes() {
state[0] = 0x67452301;
state[1] = 0xefcdab89;
state[2] = 0x98badcfe;
state[3] = 0x10325476;
state[4] = 0xc3d2e1f0;
}
/**
* Computes the final hash and copies the 20 bytes to the output array.
*/
void implDigest(byte[] out, int ofs) {
long bitsProcessed = bytesProcessed << 3;
int index = (int)bytesProcessed & 0x3f;
int padLen = (index < 56) ? (56 - index) : (120 - index);
engineUpdate(padding, 0, padLen);
i2bBig4((int)(bitsProcessed >>> 32), buffer, 56);
i2bBig4((int)bitsProcessed, buffer, 60);
implCompress(buffer, 0);
i2bBig(state, 0, out, ofs, 20);
}
// Constants for each round
private static final int round1_kt = 0x5a827999;
private static final int round2_kt = 0x6ed9eba1;
private static final int round3_kt = 0x8f1bbcdc;
private static final int round4_kt = 0xca62c1d6;
/**
* Compute a the hash for the current block.
*
* This is in the same vein as Peter Gutmann's algorithm listed in
* the back of Applied Cryptography, Compact implementation of
* "old" NIST Secure Hash Algorithm.
*/
void implCompress(byte[] buf, int ofs) {
implCompressCheck(buf, ofs);
implCompress0(buf, ofs);
}
private void implCompressCheck(byte[] buf, int ofs) {
Objects.requireNonNull(buf);
// Checks similar to those performed by the method 'b2iBig64'
// are sufficient for the case when the method 'implCompress0' is
// replaced with a compiler intrinsic.
if (ofs < 0 || (buf.length - ofs) < 64) {
throw new ArrayIndexOutOfBoundsException();
}
}
// The method 'implCompress0 seems not to use its parameters.
// The method can, however, be replaced with a compiler intrinsic
// that operates directly on the array 'buf' (starting from
// offset 'ofs') and not on array 'W', therefore 'buf' and 'ofs'
// must be passed as parameter to the method.
@IntrinsicCandidate
private void implCompress0(byte[] buf, int ofs) {
if (W == null) {
W = new int[80];
}
b2iBig64(buf, ofs, W);
// The first 16 ints have the byte stream, compute the rest of
// the buffer
for (int t = 16; t <= 79; t++) {
int temp = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
W[t] = (temp << 1) | (temp >>> 31);
}
int a = state[0];
int b = state[1];
int c = state[2];
int d = state[3];
int e = state[4];
// Round 1
for (int i = 0; i < 20; i++) {
int temp = ((a<<5) | (a>>>(32-5))) +
((b&c)|((~b)&d))+ e + W[i] + round1_kt;
e = d;
d = c;
c = ((b<<30) | (b>>>(32-30)));
b = a;
a = temp;
}
// Round 2
for (int i = 20; i < 40; i++) {
int temp = ((a<<5) | (a>>>(32-5))) +
(b ^ c ^ d) + e + W[i] + round2_kt;
e = d;
d = c;
c = ((b<<30) | (b>>>(32-30)));
b = a;
a = temp;
}
// Round 3
for (int i = 40; i < 60; i++) {
int temp = ((a<<5) | (a>>>(32-5))) +
((b&c)|(b&d)|(c&d)) + e + W[i] + round3_kt;
e = d;
d = c;
c = ((b<<30) | (b>>>(32-30)));
b = a;
a = temp;
}
// Round 4
for (int i = 60; i < 80; i++) {
int temp = ((a<<5) | (a>>>(32-5))) +
(b ^ c ^ d) + e + W[i] + round4_kt;
e = d;
d = c;
c = ((b<<30) | (b>>>(32-30)));
b = a;
a = temp;
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
}