sun.security.tools.keytool.CertAndKeyGen Maven / Gradle / Ivy
Show all versions of qbicc-rt-java.base Show documentation
/*
* Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.tools.keytool;
import java.io.IOException;
import java.security.cert.X509Certificate;
import java.security.cert.CertificateException;
import java.security.cert.CertificateEncodingException;
import java.security.*;
import java.security.spec.ECGenParameterSpec;
import java.security.spec.NamedParameterSpec;
import java.util.Date;
import sun.security.pkcs10.PKCS10;
import sun.security.util.SignatureUtil;
import sun.security.x509.*;
/**
* Generate a pair of keys, and provide access to them. This class is
* provided primarily for ease of use.
*
* This provides some simple certificate management functionality.
* Specifically, it allows you to create self-signed X.509 certificates
* as well as PKCS 10 based certificate signing requests.
*
*
Keys for some public key signature algorithms have algorithm
* parameters, such as DSS/DSA. Some sites' Certificate Authorities
* adopt fixed algorithm parameters, which speeds up some operations
* including key generation and signing. At this time, this interface
* supports initializing with a named group.
*
*
Also, note that at this time only signature-capable keys may be
* acquired through this interface. Diffie-Hellman keys, used for secure
* key exchange, may be supported later.
*
* @author David Brownell
* @author Hemma Prafullchandra
* @see PKCS10
* @see X509CertImpl
*/
public final class CertAndKeyGen {
/**
* Creates a CertAndKeyGen object for a particular key type
* and signature algorithm.
*
* @param keyType type of key, e.g. "RSA", "DSA"
* @param sigAlg name of the signature algorithm, e.g. "MD5WithRSA",
* "MD2WithRSA", "SHAwithDSA". If set to null, a default
* algorithm matching the private key will be chosen after
* the first keypair is generated.
* @exception NoSuchAlgorithmException on unrecognized algorithms.
*/
public CertAndKeyGen (String keyType, String sigAlg)
throws NoSuchAlgorithmException
{
keyGen = KeyPairGenerator.getInstance(keyType);
this.sigAlg = sigAlg;
this.keyType = keyType;
}
/**
* @see #CertAndKeyGen(String, String, String, PrivateKey, X500Name)
*/
public CertAndKeyGen (String keyType, String sigAlg, String providerName)
throws NoSuchAlgorithmException, NoSuchProviderException
{
this(keyType, sigAlg, providerName, null, null);
}
/**
* Creates a CertAndKeyGen object for a particular key type,
* signature algorithm, and provider. The newly generated cert will
* be signed by the signer's private key when it is provided.
*
* @param keyType type of key, e.g. "RSA", "DSA", "X25519", "DH", etc.
* @param sigAlg name of the signature algorithm, e.g. "SHA384WithRSA",
* "SHA256withDSA", etc. If set to null, a default
* algorithm matching the private key or signer's private
* key will be chosen after the first keypair is generated.
* @param providerName name of the provider
* @param signerPrivateKey (optional) signer's private key
* @param signerSubjectName (optional) signer's subject name
* @exception NoSuchAlgorithmException on unrecognized algorithms.
* @exception NoSuchProviderException on unrecognized providers.
*/
public CertAndKeyGen(String keyType, String sigAlg, String providerName,
PrivateKey signerPrivateKey, X500Name signerSubjectName)
throws NoSuchAlgorithmException, NoSuchProviderException
{
if (providerName == null) {
keyGen = KeyPairGenerator.getInstance(keyType);
} else {
try {
keyGen = KeyPairGenerator.getInstance(keyType, providerName);
} catch (Exception e) {
// try first available provider instead
keyGen = KeyPairGenerator.getInstance(keyType);
}
}
this.sigAlg = sigAlg;
this.keyType = keyType;
this.signerPrivateKey = signerPrivateKey;
this.signerSubjectName = signerSubjectName;
this.signerFlag = signerPrivateKey != null;
}
/**
* Sets the source of random numbers used when generating keys.
* If you do not provide one, a system default facility is used.
* You may wish to provide your own source of random numbers
* to get a reproducible sequence of keys and signatures, or
* because you may be able to take advantage of strong sources
* of randomness/entropy in your environment.
*/
public void setRandom (SecureRandom generator)
{
prng = generator;
}
public void generate(String name) {
try {
if (prng == null) {
prng = new SecureRandom();
}
try {
keyGen.initialize(new NamedParameterSpec(name), prng);
} catch (InvalidAlgorithmParameterException e) {
if (keyType.equalsIgnoreCase("EC")) {
// EC has another NamedParameterSpec
keyGen.initialize(new ECGenParameterSpec(name), prng);
} else {
throw e;
}
}
} catch (Exception e) {
throw new IllegalArgumentException(e.getMessage());
}
generateInternal();
}
// want "public void generate (X509Certificate)" ... inherit DSA/D-H param
public void generate(int keyBits) {
if (keyBits != -1) {
try {
if (prng == null) {
prng = new SecureRandom();
}
keyGen.initialize(keyBits, prng);
} catch (Exception e) {
throw new IllegalArgumentException(e.getMessage());
}
}
generateInternal();
}
/**
* Generates a random public/private key pair.
*
*
Note that not all public key algorithms are currently
* supported for use in X.509 certificates. If the algorithm
* you specified does not produce X.509 compatible keys, an
* invalid key exception is thrown.
*
* @exception IllegalArgumentException if the environment does not
* provide X.509 public keys for this signature algorithm.
*/
private void generateInternal() {
KeyPair pair = keyGen.generateKeyPair();
publicKey = pair.getPublic();
privateKey = pair.getPrivate();
// publicKey's format must be X.509 otherwise
// the whole CertGen part of this class is broken.
if (!"X.509".equalsIgnoreCase(publicKey.getFormat())) {
throw new IllegalArgumentException("Public key format is "
+ publicKey.getFormat() + ", must be X.509");
}
if (sigAlg == null) {
if (signerFlag) {
sigAlg = SignatureUtil.getDefaultSigAlgForKey(signerPrivateKey);
if (sigAlg == null) {
throw new IllegalArgumentException(
"Cannot derive signature algorithm from "
+ signerPrivateKey.getAlgorithm());
}
} else {
sigAlg = SignatureUtil.getDefaultSigAlgForKey(privateKey);
if (sigAlg == null) {
throw new IllegalArgumentException(
"Cannot derive signature algorithm from "
+ privateKey.getAlgorithm());
}
}
}
}
/**
* Returns the public key of the generated key pair if it is of type
* X509Key
, or null if the public key is of a different type.
*
* XXX Note: This behaviour is needed for backwards compatibility.
* What this method really should return is the public key of the
* generated key pair, regardless of whether or not it is an instance of
* X509Key
. Accordingly, the return type of this method
* should be PublicKey
.
*/
public X509Key getPublicKey()
{
if (!(publicKey instanceof X509Key)) {
return null;
}
return (X509Key)publicKey;
}
/**
* Always returns the public key of the generated key pair. Used
* by KeyTool only.
*
* The publicKey is not necessarily to be an instance of
* X509Key in some JCA/JCE providers, for example SunPKCS11.
*/
public PublicKey getPublicKeyAnyway() {
return publicKey;
}
/**
* Returns the private key of the generated key pair.
*
*
Be extremely careful when handling private keys.
* When private keys are not kept secret, they lose their ability
* to securely authenticate specific entities ... that is a huge
* security risk!
*/
public PrivateKey getPrivateKey ()
{
return privateKey;
}
/**
* Returns a self-signed X.509v3 certificate for the public key.
* The certificate is immediately valid. No extensions.
*
*
Such certificates normally are used to identify a "Certificate
* Authority" (CA). Accordingly, they will not always be accepted by
* other parties. However, such certificates are also useful when
* you are bootstrapping your security infrastructure, or deploying
* system prototypes.
*
* @param myname X.500 name of the subject (who is also the issuer)
* @param firstDate the issue time of the certificate
* @param validity how long the certificate should be valid, in seconds
* @exception CertificateException on certificate handling errors.
* @exception InvalidKeyException on key handling errors.
* @exception SignatureException on signature handling errors.
* @exception NoSuchAlgorithmException on unrecognized algorithms.
* @exception NoSuchProviderException on unrecognized providers.
*/
public X509Certificate getSelfCertificate (
X500Name myname, Date firstDate, long validity)
throws CertificateException, InvalidKeyException, SignatureException,
NoSuchAlgorithmException, NoSuchProviderException
{
return getSelfCertificate(myname, firstDate, validity, null);
}
// Like above, plus a CertificateExtensions argument, which can be null.
// Create a self-signed certificate, or a certificate that is signed by
// a signer when the signer's private key is provided.
public X509Certificate getSelfCertificate (X500Name myname, Date firstDate,
long validity, CertificateExtensions ext)
throws CertificateException, InvalidKeyException, SignatureException,
NoSuchAlgorithmException, NoSuchProviderException
{
X509CertImpl cert;
Date lastDate;
try {
lastDate = new Date ();
lastDate.setTime (firstDate.getTime () + validity * 1000);
CertificateValidity interval =
new CertificateValidity(firstDate,lastDate);
X509CertInfo info = new X509CertInfo();
// Add all mandatory attributes
info.set(X509CertInfo.VERSION,
new CertificateVersion(CertificateVersion.V3));
if (prng == null) {
prng = new SecureRandom();
}
info.set(X509CertInfo.SERIAL_NUMBER,
CertificateSerialNumber.newRandom64bit(prng));
info.set(X509CertInfo.SUBJECT, myname);
info.set(X509CertInfo.KEY, new CertificateX509Key(publicKey));
info.set(X509CertInfo.VALIDITY, interval);
if (signerFlag) {
// use signer's subject name to set the issuer name
info.set(X509CertInfo.ISSUER, signerSubjectName);
} else {
info.set(X509CertInfo.ISSUER, myname);
}
if (ext != null) info.set(X509CertInfo.EXTENSIONS, ext);
cert = new X509CertImpl(info);
if (signerFlag) {
// use signer's private key to sign
cert.sign(signerPrivateKey, sigAlg);
} else {
cert.sign(privateKey, sigAlg);
}
return cert;
} catch (IOException e) {
throw new CertificateEncodingException("getSelfCert: " +
e.getMessage());
}
}
// Keep the old method
public X509Certificate getSelfCertificate (X500Name myname, long validity)
throws CertificateException, InvalidKeyException, SignatureException,
NoSuchAlgorithmException, NoSuchProviderException
{
return getSelfCertificate(myname, new Date(), validity);
}
private SecureRandom prng;
private String keyType;
private String sigAlg;
private KeyPairGenerator keyGen;
private PublicKey publicKey;
private PrivateKey privateKey;
private boolean signerFlag;
private PrivateKey signerPrivateKey;
private X500Name signerSubjectName;
}