All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.crypto.provider.DHKeyAgreement Maven / Gradle / Ivy

/*
 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.crypto.provider;

import java.util.*;
import java.lang.*;
import java.math.BigInteger;
import java.security.AccessController;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.PrivilegedAction;
import java.security.ProviderException;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.InvalidKeySpecException;
import javax.crypto.KeyAgreementSpi;
import javax.crypto.ShortBufferException;
import javax.crypto.SecretKey;
import javax.crypto.spec.*;

import sun.security.util.KeyUtil;

/**
 * This class implements the Diffie-Hellman key agreement protocol between
 * any number of parties.
 *
 * @author Jan Luehe
 *
 */

public final class DHKeyAgreement
extends KeyAgreementSpi {

    private boolean generateSecret = false;
    private BigInteger init_p = null;
    private BigInteger init_g = null;
    private BigInteger x = BigInteger.ZERO; // the private value
    private BigInteger y = BigInteger.ZERO;

    private static class AllowKDF {

        private static final boolean VALUE = getValue();

        @SuppressWarnings("removal")
        private static boolean getValue() {
            return AccessController.doPrivileged(
                (PrivilegedAction)
                () -> Boolean.getBoolean("jdk.crypto.KeyAgreement.legacyKDF"));
        }
    }

    /**
     * Empty constructor
     */
    public DHKeyAgreement() {
    }

    /**
     * Initializes this key agreement with the given key and source of
     * randomness. The given key is required to contain all the algorithm
     * parameters required for this key agreement.
     *
     * 

If the key agreement algorithm requires random bytes, it gets them * from the given source of randomness, random. * However, if the underlying * algorithm implementation does not require any random bytes, * random is ignored. * * @param key the party's private information. For example, in the case * of the Diffie-Hellman key agreement, this would be the party's own * Diffie-Hellman private key. * @param random the source of randomness * * @exception InvalidKeyException if the given key is * inappropriate for this key agreement, e.g., is of the wrong type or * has an incompatible algorithm type. */ protected void engineInit(Key key, SecureRandom random) throws InvalidKeyException { try { engineInit(key, null, random); } catch (InvalidAlgorithmParameterException e) { // never happens, because we did not pass any parameters } } /** * Initializes this key agreement with the given key, set of * algorithm parameters, and source of randomness. * * @param key the party's private information. For example, in the case * of the Diffie-Hellman key agreement, this would be the party's own * Diffie-Hellman private key. * @param params the key agreement parameters * @param random the source of randomness * * @exception InvalidKeyException if the given key is * inappropriate for this key agreement, e.g., is of the wrong type or * has an incompatible algorithm type. * @exception InvalidAlgorithmParameterException if the given parameters * are inappropriate for this key agreement. */ protected void engineInit(Key key, AlgorithmParameterSpec params, SecureRandom random) throws InvalidKeyException, InvalidAlgorithmParameterException { // ignore "random" parameter, because our implementation does not // require any source of randomness generateSecret = false; init_p = null; init_g = null; if ((params != null) && !(params instanceof DHParameterSpec)) { throw new InvalidAlgorithmParameterException ("Diffie-Hellman parameters expected"); } if (!(key instanceof javax.crypto.interfaces.DHPrivateKey)) { throw new InvalidKeyException("Diffie-Hellman private key " + "expected"); } javax.crypto.interfaces.DHPrivateKey dhPrivKey; dhPrivKey = (javax.crypto.interfaces.DHPrivateKey)key; // check if private key parameters are compatible with // initialized ones if (params != null) { init_p = ((DHParameterSpec)params).getP(); init_g = ((DHParameterSpec)params).getG(); } BigInteger priv_p = dhPrivKey.getParams().getP(); BigInteger priv_g = dhPrivKey.getParams().getG(); if (init_p != null && priv_p != null && !(init_p.equals(priv_p))) { throw new InvalidKeyException("Incompatible parameters"); } if (init_g != null && priv_g != null && !(init_g.equals(priv_g))) { throw new InvalidKeyException("Incompatible parameters"); } if ((init_p == null && priv_p == null) || (init_g == null && priv_g == null)) { throw new InvalidKeyException("Missing parameters"); } init_p = priv_p; init_g = priv_g; // store the x value this.x = dhPrivKey.getX(); } /** * Executes the next phase of this key agreement with the given * key that was received from one of the other parties involved in this key * agreement. * * @param key the key for this phase. For example, in the case of * Diffie-Hellman between 2 parties, this would be the other party's * Diffie-Hellman public key. * @param lastPhase flag which indicates whether or not this is the last * phase of this key agreement. * * @return the (intermediate) key resulting from this phase, or null if * this phase does not yield a key * * @exception InvalidKeyException if the given key is inappropriate for * this phase. * @exception IllegalStateException if this key agreement has not been * initialized. */ protected Key engineDoPhase(Key key, boolean lastPhase) throws InvalidKeyException, IllegalStateException { if (!(key instanceof javax.crypto.interfaces.DHPublicKey)) { throw new InvalidKeyException("Diffie-Hellman public key " + "expected"); } javax.crypto.interfaces.DHPublicKey dhPubKey; dhPubKey = (javax.crypto.interfaces.DHPublicKey)key; if (init_p == null || init_g == null) { throw new IllegalStateException("Not initialized"); } // check if public key parameters are compatible with // initialized ones BigInteger pub_p = dhPubKey.getParams().getP(); BigInteger pub_g = dhPubKey.getParams().getG(); if (pub_p != null && !(init_p.equals(pub_p))) { throw new InvalidKeyException("Incompatible parameters"); } if (pub_g != null && !(init_g.equals(pub_g))) { throw new InvalidKeyException("Incompatible parameters"); } // validate the Diffie-Hellman public key KeyUtil.validate(dhPubKey); // store the y value this.y = dhPubKey.getY(); // we've received a public key (from one of the other parties), // so we are ready to create the secret, which may be an // intermediate secret, in which case we wrap it into a // Diffie-Hellman public key object and return it. generateSecret = true; if (lastPhase == false) { byte[] intermediate = engineGenerateSecret(); return new DHPublicKey(new BigInteger(1, intermediate), init_p, init_g); } else { return null; } } /** * Generates the shared secret and returns it in a new buffer. * *

This method resets this KeyAgreementSpi object, * so that it * can be reused for further key agreements. Unless this key agreement is * reinitialized with one of the engineInit methods, the same * private information and algorithm parameters will be used for * subsequent key agreements. * * @return the new buffer with the shared secret * * @exception IllegalStateException if this key agreement has not been * completed yet */ protected byte[] engineGenerateSecret() throws IllegalStateException { int expectedLen = (init_p.bitLength() + 7) >>> 3; byte[] result = new byte[expectedLen]; try { engineGenerateSecret(result, 0); } catch (ShortBufferException sbe) { // should never happen since length are identical } return result; } /** * Generates the shared secret, and places it into the buffer * sharedSecret, beginning at offset. * *

If the sharedSecret buffer is too small to hold the * result, a ShortBufferException is thrown. * In this case, this call should be repeated with a larger output buffer. * *

This method resets this KeyAgreementSpi object, * so that it * can be reused for further key agreements. Unless this key agreement is * reinitialized with one of the engineInit methods, the same * private information and algorithm parameters will be used for * subsequent key agreements. * * @param sharedSecret the buffer for the shared secret * @param offset the offset in sharedSecret where the * shared secret will be stored * * @return the number of bytes placed into sharedSecret * * @exception IllegalStateException if this key agreement has not been * completed yet * @exception ShortBufferException if the given output buffer is too small * to hold the secret */ protected int engineGenerateSecret(byte[] sharedSecret, int offset) throws IllegalStateException, ShortBufferException { if (generateSecret == false) { throw new IllegalStateException ("Key agreement has not been completed yet"); } if (sharedSecret == null) { throw new ShortBufferException ("No buffer provided for shared secret"); } BigInteger modulus = init_p; int expectedLen = (modulus.bitLength() + 7) >>> 3; if ((sharedSecret.length - offset) < expectedLen) { throw new ShortBufferException ("Buffer too short for shared secret"); } // Reset the key agreement after checking for ShortBufferException // above, so user can recover w/o losing internal state generateSecret = false; // No further process if z <= 1 or z == (p - 1) (See section 5.7.1, // NIST SP 800-56A Rev 3). BigInteger z = this.y.modPow(this.x, modulus); if ((z.compareTo(BigInteger.ONE) <= 0) || z.equals(modulus.subtract(BigInteger.ONE))) { throw new ProviderException( "Generated secret is out-of-range of (1, p -1)"); } /* * NOTE: BigInteger.toByteArray() returns a byte array containing * the two's-complement representation of this BigInteger with * the most significant byte is in the zeroth element. This * contains the minimum number of bytes required to represent * this BigInteger, including at least one sign bit whose value * is always 0. * * Keys are always positive, and the above sign bit isn't * actually used when representing keys. (i.e. key = new * BigInteger(1, byteArray)) To obtain an array containing * exactly expectedLen bytes of magnitude, we strip any extra * leading 0's, or pad with 0's in case of a "short" secret. */ byte[] secret = z.toByteArray(); if (secret.length == expectedLen) { System.arraycopy(secret, 0, sharedSecret, offset, secret.length); } else { // Array too short, pad it w/ leading 0s if (secret.length < expectedLen) { System.arraycopy(secret, 0, sharedSecret, offset + (expectedLen - secret.length), secret.length); } else { // Array too long, check and trim off the excess if ((secret.length == (expectedLen+1)) && secret[0] == 0) { // ignore the leading sign byte System.arraycopy(secret, 1, sharedSecret, offset, expectedLen); } else { throw new ProviderException("Generated secret is out-of-range"); } } } return expectedLen; } /** * Creates the shared secret and returns it as a secret key object * of the requested algorithm type. * *

This method resets this KeyAgreementSpi object, * so that it * can be reused for further key agreements. Unless this key agreement is * reinitialized with one of the engineInit methods, the same * private information and algorithm parameters will be used for * subsequent key agreements. * * @param algorithm the requested secret key algorithm * * @return the shared secret key * * @exception IllegalStateException if this key agreement has not been * completed yet * @exception NoSuchAlgorithmException if the requested secret key * algorithm is not available * @exception InvalidKeyException if the shared secret key material cannot * be used to generate a secret key of the requested algorithm type (e.g., * the key material is too short) */ protected SecretKey engineGenerateSecret(String algorithm) throws IllegalStateException, NoSuchAlgorithmException, InvalidKeyException { if (algorithm == null) { throw new NoSuchAlgorithmException("null algorithm"); } if (!algorithm.equalsIgnoreCase("TlsPremasterSecret") && !AllowKDF.VALUE) { throw new NoSuchAlgorithmException("Unsupported secret key " + "algorithm: " + algorithm); } byte[] secret = engineGenerateSecret(); if (algorithm.equalsIgnoreCase("DES")) { // DES return new DESKey(secret); } else if (algorithm.equalsIgnoreCase("DESede") || algorithm.equalsIgnoreCase("TripleDES")) { // Triple DES return new DESedeKey(secret); } else if (algorithm.equalsIgnoreCase("Blowfish")) { // Blowfish int keysize = secret.length; if (keysize >= BlowfishConstants.BLOWFISH_MAX_KEYSIZE) keysize = BlowfishConstants.BLOWFISH_MAX_KEYSIZE; SecretKeySpec skey = new SecretKeySpec(secret, 0, keysize, "Blowfish"); return skey; } else if (algorithm.equalsIgnoreCase("AES")) { // AES int keysize = secret.length; SecretKeySpec skey = null; int idx = AESConstants.AES_KEYSIZES.length - 1; while (skey == null && idx >= 0) { // Generate the strongest key using the shared secret // assuming the key sizes in AESConstants class are // in ascending order if (keysize >= AESConstants.AES_KEYSIZES[idx]) { keysize = AESConstants.AES_KEYSIZES[idx]; skey = new SecretKeySpec(secret, 0, keysize, "AES"); } idx--; } if (skey == null) { throw new InvalidKeyException("Key material is too short"); } return skey; } else if (algorithm.equals("TlsPremasterSecret")) { // remove leading zero bytes per RFC 5246 Section 8.1.2 return new SecretKeySpec( KeyUtil.trimZeroes(secret), "TlsPremasterSecret"); } else { throw new NoSuchAlgorithmException("Unsupported secret key " + "algorithm: "+ algorithm); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy