All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.crypto.provider.GHASH Maven / Gradle / Ivy

/*
 * Copyright (c) 2013, 2021, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
/*
 * (C) Copyright IBM Corp. 2013
 * Copyright (c) 2015 Red Hat, Inc.
 */

package com.sun.crypto.provider;

import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.security.ProviderException;

import jdk.internal.vm.annotation.IntrinsicCandidate;

/**
 * This class represents the GHASH function defined in NIST 800-38D
 * under section 6.4. It needs to be constructed w/ a hash subkey, i.e.
 * block H. Given input of 128-bit blocks, it will process and output
 * a 128-bit block.
 *
 * 

This function is used in the implementation of GCM mode. * * @since 1.8 */ final class GHASH implements Cloneable, GCM { private static final int AES_BLOCK_SIZE = 16; // Handle for converting byte[] <-> long private static final VarHandle asLongView = MethodHandles.byteArrayViewVarHandle(long[].class, ByteOrder.BIG_ENDIAN); // Maximum buffer size rotating ByteBuffer->byte[] intrinsic copy private static final int MAX_LEN = 1024; // Multiplies state[0], state[1] by subkeyH[0], subkeyH[1]. private static void blockMult(long[] st, long[] subH) { long Z0 = 0; long Z1 = 0; long V0 = subH[0]; long V1 = subH[1]; long X; // Separate loops for processing state[0] and state[1]. X = st[0]; for (int i = 0; i < 64; i++) { // Zi+1 = Zi if bit i of x is 0 long mask = X >> 63; Z0 ^= V0 & mask; Z1 ^= V1 & mask; // Save mask for conditional reduction below. mask = (V1 << 63) >> 63; // V = rightshift(V) long carry = V0 & 1; V0 = V0 >>> 1; V1 = (V1 >>> 1) | (carry << 63); // Conditional reduction modulo P128. V0 ^= 0xe100000000000000L & mask; X <<= 1; } X = st[1]; for (int i = 64; i < 127; i++) { // Zi+1 = Zi if bit i of x is 0 long mask = X >> 63; Z0 ^= V0 & mask; Z1 ^= V1 & mask; // Save mask for conditional reduction below. mask = (V1 << 63) >> 63; // V = rightshift(V) long carry = V0 & 1; V0 = V0 >>> 1; V1 = (V1 >>> 1) | (carry << 63); // Conditional reduction. V0 ^= 0xe100000000000000L & mask; X <<= 1; } // calculate Z128 long mask = X >> 63; Z0 ^= V0 & mask; Z1 ^= V1 & mask; // Save result. st[0] = Z0; st[1] = Z1; } /* subkeyHtbl and state are stored in long[] for GHASH intrinsic use */ // hashtable subkeyHtbl holds 2*9 powers of subkeyH computed using // carry-less multiplication private long[] subkeyHtbl; // buffer for storing hash private final long[] state; /** * Initializes the cipher in the specified mode with the given key * and iv. * * @param subkeyH the hash subkey * * @exception ProviderException if the given key is inappropriate for * initializing this digest */ GHASH(byte[] subkeyH) throws ProviderException { if ((subkeyH == null) || subkeyH.length != AES_BLOCK_SIZE) { throw new ProviderException("Internal error"); } state = new long[2]; subkeyHtbl = new long[2*9]; subkeyHtbl[0] = (long)asLongView.get(subkeyH, 0); subkeyHtbl[1] = (long)asLongView.get(subkeyH, 8); } // Cloning constructor private GHASH(GHASH g) { state = g.state.clone(); subkeyHtbl = g.subkeyHtbl.clone(); } @Override public GHASH clone() { return new GHASH(this); } private static void processBlock(byte[] data, int ofs, long[] st, long[] subH) { st[0] ^= (long)asLongView.get(data, ofs); st[1] ^= (long)asLongView.get(data, ofs + 8); blockMult(st, subH); } int update(byte[] in) { return update(in, 0, in.length); } int update(byte[] in, int inOfs, int inLen) { if (inLen == 0) { return 0; } int len = inLen - (inLen % AES_BLOCK_SIZE); ghashRangeCheck(in, inOfs, len, state, subkeyHtbl); processBlocks(in, inOfs, len / AES_BLOCK_SIZE, state, subkeyHtbl); return len; } // Will process as many blocks it can and will leave the remaining. int update(ByteBuffer ct, int inLen) { inLen -= (inLen % AES_BLOCK_SIZE); if (inLen == 0) { return 0; } // If ct is a direct bytebuffer, send it directly to the intrinsic if (ct.isDirect()) { int processed = inLen; processBlocksDirect(ct, inLen); return processed; } else if (!ct.isReadOnly()) { // If a non-read only heap bytebuffer, use the array update method int processed = update(ct.array(), ct.arrayOffset() + ct.position(), inLen); ct.position(ct.position() + processed); return processed; } // Read only heap bytebuffers have to be copied and operated on int to_process = inLen; byte[] in = new byte[Math.min(MAX_LEN, inLen)]; while (to_process > MAX_LEN ) { ct.get(in, 0, MAX_LEN); update(in, 0 , MAX_LEN); to_process -= MAX_LEN; } ct.get(in, 0, to_process); update(in, 0, to_process); return inLen; } int doFinal(ByteBuffer src, int inLen) { int processed = 0; if (inLen >= AES_BLOCK_SIZE) { processed = update(src, inLen); } if (inLen == processed) { return processed; } byte[] block = new byte[AES_BLOCK_SIZE]; src.get(block, 0, inLen - processed); update(block, 0, AES_BLOCK_SIZE); return inLen; } int doFinal(byte[] in, int inOfs, int inLen) { int remainder = inLen % AES_BLOCK_SIZE; inOfs += update(in, inOfs, inLen - remainder); if (remainder > 0) { byte[] block = new byte[AES_BLOCK_SIZE]; System.arraycopy(in, inOfs, block, 0, remainder); update(block, 0, AES_BLOCK_SIZE); } return inLen; } private static void ghashRangeCheck(byte[] in, int inOfs, int inLen, long[] st, long[] subH) { if (inLen < 0) { throw new RuntimeException("invalid input length: " + inLen); } if (inOfs < 0) { throw new RuntimeException("invalid offset: " + inOfs); } if (inLen > in.length - inOfs) { throw new RuntimeException("input length out of bound: " + inLen + " > " + (in.length - inOfs)); } if (inLen % AES_BLOCK_SIZE != 0) { throw new RuntimeException("input length/block size mismatch: " + inLen); } // These two checks are for C2 checking if (st.length != 2) { throw new RuntimeException("internal state has invalid length: " + st.length); } if (subH.length != 18) { throw new RuntimeException("internal subkeyHtbl has invalid length: " + subH.length); } } /* * This is an intrinsified method. The method's argument list must match * the hotspot signature. This method and methods called by it, cannot * throw exceptions or allocate arrays as it will breaking intrinsics */ @IntrinsicCandidate private static void processBlocks(byte[] data, int inOfs, int blocks, long[] st, long[] subH) { int offset = inOfs; while (blocks > 0) { processBlock(data, offset, st, subH); blocks--; offset += AES_BLOCK_SIZE; } } // ProcessBlock for Direct ByteBuffers private void processBlocksDirect(ByteBuffer ct, int inLen) { byte[] data = new byte[Math.min(MAX_LEN, inLen)]; while (inLen > MAX_LEN) { ct.get(data, 0, MAX_LEN); processBlocks(data, 0, MAX_LEN / AES_BLOCK_SIZE, state, subkeyHtbl); inLen -= MAX_LEN; } if (inLen >= AES_BLOCK_SIZE) { int len = inLen - (inLen % AES_BLOCK_SIZE); ct.get(data, 0, len); processBlocks(data, 0, len / AES_BLOCK_SIZE, state, subkeyHtbl); } } byte[] digest() { byte[] result = new byte[AES_BLOCK_SIZE]; asLongView.set(result, 0, state[0]); asLongView.set(result, 8, state[1]); // Reset state state[0] = 0; state[1] = 0; return result; } /** * None of the out or dst values are necessary, they are to satisfy the * GCM interface requirement */ @Override public int update(byte[] in, int inOfs, int inLen, byte[] out, int outOfs) { return update(in, inOfs, inLen); } @Override public int update(byte[] in, int inOfs, int inLen, ByteBuffer dst) { return update(in, inOfs, inLen); } @Override public int update(ByteBuffer src, ByteBuffer dst) { return update(src, src.remaining()); } @Override public int doFinal(byte[] in, int inOfs, int inLen, byte[] out, int outOfs) { return doFinal(in, inOfs, inLen); } @Override public int doFinal(ByteBuffer src, ByteBuffer dst) { return doFinal(src, src.remaining()); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy