sun.security.provider.SHA5 Maven / Gradle / Ivy
/*
* Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.provider;
import java.util.Arrays;
import java.util.Objects;
import jdk.internal.vm.annotation.IntrinsicCandidate;
import static sun.security.provider.ByteArrayAccess.*;
/**
* This class implements the Secure Hash Algorithm SHA-384 and SHA-512
* developed by the National Institute of Standards and Technology along
* with the National Security Agency.
*
* The two algorithms are almost identical. This file contains a base
* class SHA5 and two nested static subclasses as the classes to be used
* by the JCA framework.
*
* It implements java.security.MessageDigestSpi, and can be used
* through Java Cryptography Architecture (JCA), as a pluggable
* MessageDigest implementation.
*
* @since 1.4.2
* @author Valerie Peng
* @author Andreas Sterbenz
*/
abstract class SHA5 extends DigestBase {
private static final int ITERATION = 80;
// Constants for each round/iteration
private static final long[] ROUND_CONSTS = {
0x428A2F98D728AE22L, 0x7137449123EF65CDL, 0xB5C0FBCFEC4D3B2FL,
0xE9B5DBA58189DBBCL, 0x3956C25BF348B538L, 0x59F111F1B605D019L,
0x923F82A4AF194F9BL, 0xAB1C5ED5DA6D8118L, 0xD807AA98A3030242L,
0x12835B0145706FBEL, 0x243185BE4EE4B28CL, 0x550C7DC3D5FFB4E2L,
0x72BE5D74F27B896FL, 0x80DEB1FE3B1696B1L, 0x9BDC06A725C71235L,
0xC19BF174CF692694L, 0xE49B69C19EF14AD2L, 0xEFBE4786384F25E3L,
0x0FC19DC68B8CD5B5L, 0x240CA1CC77AC9C65L, 0x2DE92C6F592B0275L,
0x4A7484AA6EA6E483L, 0x5CB0A9DCBD41FBD4L, 0x76F988DA831153B5L,
0x983E5152EE66DFABL, 0xA831C66D2DB43210L, 0xB00327C898FB213FL,
0xBF597FC7BEEF0EE4L, 0xC6E00BF33DA88FC2L, 0xD5A79147930AA725L,
0x06CA6351E003826FL, 0x142929670A0E6E70L, 0x27B70A8546D22FFCL,
0x2E1B21385C26C926L, 0x4D2C6DFC5AC42AEDL, 0x53380D139D95B3DFL,
0x650A73548BAF63DEL, 0x766A0ABB3C77B2A8L, 0x81C2C92E47EDAEE6L,
0x92722C851482353BL, 0xA2BFE8A14CF10364L, 0xA81A664BBC423001L,
0xC24B8B70D0F89791L, 0xC76C51A30654BE30L, 0xD192E819D6EF5218L,
0xD69906245565A910L, 0xF40E35855771202AL, 0x106AA07032BBD1B8L,
0x19A4C116B8D2D0C8L, 0x1E376C085141AB53L, 0x2748774CDF8EEB99L,
0x34B0BCB5E19B48A8L, 0x391C0CB3C5C95A63L, 0x4ED8AA4AE3418ACBL,
0x5B9CCA4F7763E373L, 0x682E6FF3D6B2B8A3L, 0x748F82EE5DEFB2FCL,
0x78A5636F43172F60L, 0x84C87814A1F0AB72L, 0x8CC702081A6439ECL,
0x90BEFFFA23631E28L, 0xA4506CEBDE82BDE9L, 0xBEF9A3F7B2C67915L,
0xC67178F2E372532BL, 0xCA273ECEEA26619CL, 0xD186B8C721C0C207L,
0xEADA7DD6CDE0EB1EL, 0xF57D4F7FEE6ED178L, 0x06F067AA72176FBAL,
0x0A637DC5A2C898A6L, 0x113F9804BEF90DAEL, 0x1B710B35131C471BL,
0x28DB77F523047D84L, 0x32CAAB7B40C72493L, 0x3C9EBE0A15C9BEBCL,
0x431D67C49C100D4CL, 0x4CC5D4BECB3E42B6L, 0x597F299CFC657E2AL,
0x5FCB6FAB3AD6FAECL, 0x6C44198C4A475817L
};
// buffer used by implCompress()
private long[] W;
// state of this object
private long[] state;
// initial state value. different between SHA-384 and SHA-512
private final long[] initialHashes;
/**
* Creates a new SHA object.
*/
SHA5(String name, int digestLength, long[] initialHashes) {
super(name, digestLength, 128);
this.initialHashes = initialHashes;
state = new long[8];
resetHashes();
}
final void implReset() {
resetHashes();
if (W != null) {
Arrays.fill(W, 0L);
}
}
private void resetHashes() {
System.arraycopy(initialHashes, 0, state, 0, state.length);
}
final void implDigest(byte[] out, int ofs) {
long bitsProcessed = bytesProcessed << 3;
int index = (int)bytesProcessed & 0x7f;
int padLen = (index < 112) ? (112 - index) : (240 - index);
engineUpdate(padding, 0, padLen + 8);
i2bBig4((int)(bitsProcessed >>> 32), buffer, 120);
i2bBig4((int)bitsProcessed, buffer, 124);
implCompress(buffer, 0);
int len = engineGetDigestLength();
if (len == 28) {
// Special case for SHA-512/224
l2bBig(state, 0, out, ofs, 24);
i2bBig4((int)(state[3] >> 32), out, ofs + 24);
} else {
l2bBig(state, 0, out, ofs, len);
}
}
/**
* logical function ch(x,y,z) as defined in spec:
* @return (x and y) xor ((complement x) and z)
* @param x long
* @param y long
* @param z long
*/
private static long lf_ch(long x, long y, long z) {
return (x & y) ^ ((~x) & z);
}
/**
* logical function maj(x,y,z) as defined in spec:
* @return (x and y) xor (x and z) xor (y and z)
* @param x long
* @param y long
* @param z long
*/
private static long lf_maj(long x, long y, long z) {
return (x & y) ^ (x & z) ^ (y & z);
}
/**
* logical function R(x,s) - right shift
* @return x right shift for s times
* @param x long
* @param s int
*/
private static long lf_R(long x, int s) {
return (x >>> s);
}
/**
* logical function S(x,s) - right rotation
* @return x circular right shift for s times
* @param x long
* @param s int
*/
private static long lf_S(long x, int s) {
return (x >>> s) | (x << (64 - s));
}
/**
* logical function sigma0(x) - xor of results of right rotations
* @return S(x,28) xor S(x,34) xor S(x,39)
* @param x long
*/
private static long lf_sigma0(long x) {
return lf_S(x, 28) ^ lf_S(x, 34) ^ lf_S(x, 39);
}
/**
* logical function sigma1(x) - xor of results of right rotations
* @return S(x,14) xor S(x,18) xor S(x,41)
* @param x long
*/
private static long lf_sigma1(long x) {
return lf_S(x, 14) ^ lf_S(x, 18) ^ lf_S(x, 41);
}
/**
* logical function delta0(x) - xor of results of right shifts/rotations
* @return long
* @param x long
*/
private static long lf_delta0(long x) {
return lf_S(x, 1) ^ lf_S(x, 8) ^ lf_R(x, 7);
}
/**
* logical function delta1(x) - xor of results of right shifts/rotations
* @return long
* @param x long
*/
private static long lf_delta1(long x) {
return lf_S(x, 19) ^ lf_S(x, 61) ^ lf_R(x, 6);
}
/**
* Compute the hash for the current block.
*
* This is in the same vein as Peter Gutmann's algorithm listed in
* the back of Applied Cryptography, Compact implementation of
* "old" NIST Secure Hash Algorithm.
*/
final void implCompress(byte[] buf, int ofs) {
implCompressCheck(buf, ofs);
implCompress0(buf, ofs);
}
private void implCompressCheck(byte[] buf, int ofs) {
Objects.requireNonNull(buf);
// Checks similar to those performed by the method 'b2lBig128'
// are sufficient for the case when the method 'implCompress0' is
// replaced with a compiler intrinsic.
if (ofs < 0 || (buf.length - ofs) < 128) {
throw new ArrayIndexOutOfBoundsException();
}
}
// The method 'implCompressImpl' seems not to use its parameters.
// The method can, however, be replaced with a compiler intrinsic
// that operates directly on the array 'buf' (starting from
// offset 'ofs') and not on array 'W', therefore 'buf' and 'ofs'
// must be passed as parameter to the method.
@IntrinsicCandidate
private final void implCompress0(byte[] buf, int ofs) {
if (W == null) {
W = new long[80];
}
b2lBig128(buf, ofs, W);
// The first 16 longs are from the byte stream, compute the rest of
// the W[]'s
for (int t = 16; t < ITERATION; t++) {
W[t] = lf_delta1(W[t-2]) + W[t-7] + lf_delta0(W[t-15])
+ W[t-16];
}
long a = state[0];
long b = state[1];
long c = state[2];
long d = state[3];
long e = state[4];
long f = state[5];
long g = state[6];
long h = state[7];
for (int i = 0; i < ITERATION; i++) {
long T1 = h + lf_sigma1(e) + lf_ch(e,f,g) + ROUND_CONSTS[i] + W[i];
long T2 = lf_sigma0(a) + lf_maj(a,b,c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
public Object clone() throws CloneNotSupportedException {
SHA5 copy = (SHA5) super.clone();
copy.state = copy.state.clone();
copy.W = null;
return copy;
}
/**
* SHA-512 implementation class.
*/
public static final class SHA512 extends SHA5 {
private static final long[] INITIAL_HASHES = {
0x6a09e667f3bcc908L, 0xbb67ae8584caa73bL,
0x3c6ef372fe94f82bL, 0xa54ff53a5f1d36f1L,
0x510e527fade682d1L, 0x9b05688c2b3e6c1fL,
0x1f83d9abfb41bd6bL, 0x5be0cd19137e2179L
};
public SHA512() {
super("SHA-512", 64, INITIAL_HASHES);
}
}
/**
* SHA-384 implementation class.
*/
public static final class SHA384 extends SHA5 {
private static final long[] INITIAL_HASHES = {
0xcbbb9d5dc1059ed8L, 0x629a292a367cd507L,
0x9159015a3070dd17L, 0x152fecd8f70e5939L,
0x67332667ffc00b31L, 0x8eb44a8768581511L,
0xdb0c2e0d64f98fa7L, 0x47b5481dbefa4fa4L
};
public SHA384() {
super("SHA-384", 48, INITIAL_HASHES);
}
}
public static final class SHA512_224 extends SHA5 {
private static final long[] INITIAL_HASHES = {
0x8C3D37C819544DA2L, 0x73E1996689DCD4D6L,
0x1DFAB7AE32FF9C82L, 0x679DD514582F9FCFL,
0x0F6D2B697BD44DA8L, 0x77E36F7304C48942L,
0x3F9D85A86A1D36C8L, 0x1112E6AD91D692A1L
};
public SHA512_224() {
super("SHA-512/224", 28, INITIAL_HASHES);
}
}
public static final class SHA512_256 extends SHA5 {
private static final long[] INITIAL_HASHES = {
0x22312194FC2BF72CL, 0x9F555FA3C84C64C2L,
0x2393B86B6F53B151L, 0x963877195940EABDL,
0x96283EE2A88EFFE3L, 0xBE5E1E2553863992L,
0x2B0199FC2C85B8AAL, 0x0EB72DDC81C52CA2L
};
public SHA512_256() {
super("SHA-512/256", 32, INITIAL_HASHES);
}
}
}