Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.qcri.rheem.profiler.log.Individual Maven / Gradle / Ivy
package org.qcri.rheem.profiler.log;
import org.qcri.rheem.core.api.Configuration;
import org.qcri.rheem.core.optimizer.costs.EstimationContext;
import org.qcri.rheem.core.optimizer.costs.LoadProfileEstimator;
import org.qcri.rheem.core.optimizer.costs.TimeEstimate;
import org.qcri.rheem.core.platform.AtomicExecutionGroup;
import org.qcri.rheem.core.platform.PartialExecution;
import org.qcri.rheem.core.platform.Platform;
import org.qcri.rheem.core.util.Bitmask;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;
import java.util.function.ToDoubleFunction;
import java.util.stream.DoubleStream;
/**
* Context for the optimization of {@link LoadProfileEstimator}s.
*/
public class Individual {
/**
* Orders {@link Individual}s by their fitness descendingly.
*/
public static Comparator fitnessComparator =
(i1, i2) -> Double.compare(i2.getFitness(), i1.getFitness());
private final double[] genome;
private final double[] maturity;
private double minMaturity = Double.NaN, maxMaturity = Double.NaN;
private double fitness = Double.NaN;
Individual(int genomeSize) {
this.genome = new double[genomeSize];
this.maturity = new double[genomeSize];
}
public double[] getGenome() {
return this.genome;
}
public void setGene(int index, double value, double maturity) {
this.genome[index] = value;
this.updateMaturity(index, maturity);
}
private void updateMaturity(int index, double maturity) {
maturity = 1d;
this.maturity[index] = maturity;
if (Double.isNaN(this.minMaturity) || this.minMaturity > maturity) {
this.minMaturity = maturity;
}
if (Double.isNaN(this.maxMaturity) || this.maxMaturity < maturity) {
this.maxMaturity = maturity;
}
}
public Individual mutate(Random random,
Bitmask activatedGenes,
OptimizationSpace optimizationSpace,
double mutationProb,
double resetProb) {
// Make at least one mutation more likely.
if (mutationProb > 0d) mutationProb = Math.max(mutationProb, 1 / activatedGenes.cardinality());
final double smoothing = 1d;
int numActivatedGenes = activatedGenes.cardinality();
double logGainProduct = 0d;
for (int i = activatedGenes.nextSetBit(0); i != -1; i = activatedGenes.nextSetBit(i + 1)) {
final double gain = this.maturity[i] - this.minMaturity;
logGainProduct += Math.log(gain + smoothing);
}
double meanGain = Math.exp((logGainProduct / numActivatedGenes)) - smoothing;
Individual mutant = new Individual(this.genome.length);
for (int i = 0; i < this.genome.length; i++) {
if (!activatedGenes.get(i)) {
mutant.setGene(i, this.genome[i], this.maturity[i]);
continue;
}
final double gain = this.maturity[i] - this.minMaturity;
double boost = (meanGain + smoothing) / (gain + smoothing);
final double uniform = random.nextDouble() * boost;
if (uniform <= mutationProb) {
final double mutatedGene = optimizationSpace.getVariable(i).mutate(this.genome[i], random);
mutant.setGene(i, mutatedGene, Double.NaN);
} else if (uniform <= mutationProb + resetProb) {
mutant.setGene(i, optimizationSpace.getVariable(i).createRandomValue(random), Double.NaN);
} else {
mutant.setGene(i, this.genome[i], this.maturity[i]);
}
}
return mutant;
}
public Individual crossOver(Individual that, Random random) {
Individual offspring = new Individual(this.genome.length);
double minMaturity = Math.min(this.minMaturity, that.minMaturity);
for (int i = 0; i < this.genome.length; i++) {
double thisProb = GeneticOptimizer.getSelectionProbability(this.maturity[i], that.maturity[i], minMaturity);
if (random.nextDouble() < thisProb) {
offspring.setGene(i, this.genome[i], this.maturity[i]);
} else {
offspring.setGene(i, that.genome[i], that.maturity[i]);
}
}
return offspring;
}
// /**
// * Calculate the fitness as the arithmetic mean the individual fitnesses of the estimation subjects.
// */
// double calcluateSubjectbasedFitness(GeneticOptimizer geneticOptimizer) {
//
// Map subjectAggregators = new HashMap<>();
// for (PartialExecution partialExecution : geneticOptimizer.getData()) {
// // Calculate values for the given partialExecution
// double timeEstimate = this.estimateTime(
// partialExecution,
// geneticOptimizer.getEstimators(),
// geneticOptimizer.getPlatformOverheads(),
// geneticOptimizer.getConfiguration()
// );
// double partialFitness = this.calculateRelativeDelta(timeEstimate, partialExecution.getMeasuredExecutionTime());
// double weight = Math.log(Math.max(timeEstimate, partialExecution.getMeasuredExecutionTime()) + 2d) / Math.log(2);
//// double weight = Math.max(timeEstimate.getGeometricMeanEstimate(), partialExecution.getMeasuredExecutionTime()) + 1;
//
// // Attribute the fitness to all involved subjects.
// for (PartialExecution.OperatorExecution operatorExecution : partialExecution.getOperatorExecutions()) {
// Object subject = operatorExecution.getOperator().getClass();
// final FitnessAggregator aggregator = subjectAggregators.computeIfAbsent(subject, k -> new FitnessAggregator(0, 0));
// aggregator.fitnessAccumulator += weight * partialFitness;
// aggregator.weightAccumulator += weight;
// aggregator.numObservations++;
// }
// for (Platform subject : partialExecution.getInitializedPlatforms()) {
// final FitnessAggregator aggregator = subjectAggregators.computeIfAbsent(subject, k -> new FitnessAggregator(0, 0));
// aggregator.fitnessAccumulator += weight * partialFitness;
// aggregator.weightAccumulator += weight;
// aggregator.numObservations++;
// }
// }
//
// // Aggregate the fitness values of the different subjects.
// FitnessAggregator aggregator = new FitnessAggregator(0, 0);
// for (FitnessAggregator subjectAggregator : subjectAggregators.values()) {
// double subjectFitness = subjectAggregator.fitnessAccumulator / subjectAggregator.weightAccumulator;
// double subjectWeight = 1;//Math.log(1 + subjectAggregator.numObservations);
// aggregator.fitnessAccumulator += subjectWeight * subjectFitness;
// aggregator.weightAccumulator += subjectWeight;
// aggregator.numObservations++;
// }
//
// return aggregator.fitnessAccumulator / aggregator.weightAccumulator;
//
// }
// private static class FitnessAggregator {
//
// private double fitnessAccumulator;
//
// private double weightAccumulator;
//
// private int numObservations = 0;
//
// public FitnessAggregator(double fitnessAccumulator, double weightAccumulator) {
// this.fitnessAccumulator = fitnessAccumulator;
// this.weightAccumulator = weightAccumulator;
// }
// }
public void updateMaturity(Bitmask activatedGenes) {
final double newMaturity = this.getFitness();
for (int activatedGene = activatedGenes.nextSetBit(0);
activatedGene != -1;
activatedGene = activatedGenes.nextSetBit(activatedGene + 1)) {
double currentMaturity = this.maturity[activatedGene];
if (Double.isNaN(currentMaturity) || newMaturity > currentMaturity) {
this.updateMaturity(activatedGene, newMaturity);
}
}
}
/**
* Update the fitness of this instance.
*
* @param fitnessFunction calculates the fitness for this instance
* @return the new fitness
*/
public double updateFitness(ToDoubleFunction fitnessFunction) {
return this.fitness = fitnessFunction.applyAsDouble(this);
}
public double getFitness() {
if (Double.isNaN(this.fitness)) {
throw new IllegalStateException("The fitness of the individual has not yet been calculated.");
}
return this.fitness;
}
/**
* Calculate the fitness as weighted harmonic mean of the relative prediction accuracies.
*/
double calculateRelativeFitness(GeneticOptimizer geneticOptimizer) {
// Some settings.
double harmonicSmoothing = .1d;
double weightSum = 0d;
double fitnessSum = 0d;
// Calculate the arithmetic mean of the partial fitnesses for each data point.
for (PartialExecution partialExecution : geneticOptimizer.getData()) {
// Estimate the time with the current variables.
double timeEstimate = this.estimateTime(
partialExecution,
geneticOptimizer.getPlatformOverheads(),
geneticOptimizer.getConfiguration()
);
// Calculate the weight.
// double weight = Math.log(partialExecution.getMeasuredExecutionTime() + 2d) / Math.log(2);
// double weight = Math.sqrt(Math.max(timeEstimate, partialExecution.getMeasuredExecutionTime())) + 1;
double weight = geneticOptimizer.calculateObservationBasedWeight(partialExecution);
// + geneticOptimizer.calculateRuntimeBasedWeight(partialExecution);
// Calculate the partial fitness.
double relativeDelta = this.calculateRelativeDelta(timeEstimate, partialExecution.getMeasuredExecutionTime());
// Prepare mean calculation.
// fitnessSum += weight / (partialFitness + harmonicSmoothing);
fitnessSum += weight * (relativeDelta * relativeDelta);
weightSum += weight;
}
// return (weightSum / fitnessSum) - harmonicSmoothing;
return -Math.sqrt(fitnessSum) / weightSum;
}
private double calculateRelativeDelta(double timeEstimate, long actualTime) {
// Get important values.
final double smoothing = 1000d;
final long meanEstimate = Math.round(timeEstimate);
final long delta = Math.abs(meanEstimate - actualTime);
return (delta + smoothing) / (actualTime + smoothing);
}
/**
* Calculate the fitness as weighted arithmetic mean of the absolute prediction accuracies.
*/
double calculateAbsoluteFitness(GeneticOptimizer geneticOptimizer) {
double weightSum = 0d;
double fitnessSum = 0d;
for (PartialExecution partialExecution : geneticOptimizer.getData()) {
double timeEstimate = this.estimateTime(
partialExecution,
geneticOptimizer.getPlatformOverheads(),
geneticOptimizer.getConfiguration()
);
double weight = geneticOptimizer.calculateObservationBasedWeight(partialExecution)
+ 3 * geneticOptimizer.calculateRuntimeBasedWeight(partialExecution);
double partialFitness = this.calculateAbsolutePartialFitness(timeEstimate, partialExecution.getMeasuredExecutionTime());
weightSum += weight;
fitnessSum += weight * -(partialFitness * partialFitness);
}
return fitnessSum / weightSum;
}
private double calculateAbsolutePartialFitness(double timeEstimate, long actualTime) {
final long delta = Math.abs(Math.round(timeEstimate) - actualTime);
return -delta;
}
double estimateTime(PartialExecution partialExecution,
Map platformOverheads,
Configuration configuration) {
final DoubleStream operatorEstimates = partialExecution.getAtomicExecutionGroups().stream()
.map(atomicExecutionGroup -> this.estimateTime(atomicExecutionGroup, configuration))
.mapToDouble(TimeEstimate::getGeometricMeanEstimate);
final DoubleStream platformEstimates = partialExecution.getInitializedPlatforms().stream()
.mapToDouble(p -> {
final Variable variable = platformOverheads.get(p);
return variable == null ? 0d : variable.getValue(this);
});
return DoubleStream.concat(operatorEstimates, platformEstimates).sum();
}
/**
* Estimates the execution time for the given {@link AtomicExecutionGroup} with the genome of this instance.
*
* @param executionGroup the {@link AtomicExecutionGroup}
* @param configuration provides estimation context
* @return the {@link TimeEstimate}
*/
private TimeEstimate estimateTime(AtomicExecutionGroup executionGroup,
Configuration configuration) {
final EstimationContext estimationContext = executionGroup.getEstimationContext();
return executionGroup.estimateExecutionTime(new DynamicEstimationContext(this, estimationContext));
}
}