All Downloads are FREE. Search and download functionalities are using the official Maven repository.

querqy.lucene.contrib.rewrite.wordbreak.Collector Maven / Gradle / Ivy

There is a newer version: 5.8.lucene961.1
Show newest version
package querqy.lucene.contrib.rewrite.wordbreak;

import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexReaderContext;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.PostingsEnum;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.util.BytesRef;

import java.io.IOException;
import java.io.UncheckedIOException;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Optional;
import java.util.PriorityQueue;
import java.util.Queue;

/**
 * 

A Collector receives the de-compounding candidates, checks whether they exist in the index, and, optionally, * verifies that they co-occur in a document. It collects the candidates that match these requirements, ranks them and * keeps up to 'maxDecompoundExpansions' of them. The number of index lookups is restricted by the 'maxEvaluations' * property.

* *

Candidates are scores like this:

* * The score depends on two main variables: A 'prior' score that reflects general the popularity of the morphological * structure in compound creation (see constants names PRIOR... in {@link GermanDecompoundingMorphology}), and a score * that depends on the document frequency (df) in the index of the two terms that form the compound. The df-dependent * score is calculated as: * *
 *  score_df = -log(count(term1) / N) -log(count(term2) / N)
 *  
* * where a smaller value will be better. * * To avoid issues with missing terms, we use add-1 smoothing: * *
 *  score_df = -log((count(term1) +1) / (N + 1)) -log((count(term2) +1)/ (N + 1))
 *  
* * which can be reformulated into: * *
 *  score_df = 2*log(N+1) - (log(count(term1) +1) + log(count(term2) +1))
 *  
* * We combine it with the score from the prior (score_prior) in a weighted manner: * *
 *  score = score_prior^w / score_df^(1-w)
 *  
* * * * *

The approach to the calculation of score_df follows: *

    *
  • Schiller, A.: German compound analysis with wfsc. In Proceedings of Finite State Methods and Natural * Language Processing 2005, Helsinki (2005)
  • *
  • Marek, T.: Analysis of german compounds using weighted finite state transducers. Technical report, BA Thesis, * Universiät Tübingen (2006)
  • *
  • Both of the above quoted in: Alfonseca, E. & Pharies, S.: German Decompounding in a Difficult Corpus. * CICLing 2008
  • *
* * @author renekrie */ public class Collector { /** * A call to {@link #collect(CharSequence, CharSequence, Term, int, float)} returns a CollectionState, containing * the information about whether the maximum number of evaluations have been reached and if the terms could be found * in the index (fulfilling all requirements about verification and minimum index frequency). */ enum CollectionState { MAX_EVALUATIONS_REACHED(null, true), MATCHED_MAX_EVALUATIONS_REACHED(true, true), MATCHED_MAX_EVALUATIONS_NOT_REACHED(true, false), NOT_MATCHED_MAX_EVALUATIONS_REACHED(false, true), NOT_MATCHED_MAX_EVALUATIONS_NOT_REACHED(false, false); private final Boolean matched; private final boolean maxEvaluationsReached; CollectionState(final Boolean matched, final boolean maxEvaluationsReached) { this.matched = matched; this.maxEvaluationsReached = maxEvaluationsReached; } boolean isMaxEvaluationsReached() { return maxEvaluationsReached; } Optional getMatched() { return Optional.ofNullable(matched); } } private final Queue collection; private final int minSuggestionFrequency; private final boolean verifyCollation; private final IndexReader indexReader; private final String dictionaryField; private final float weightDfObservation; private final float totalDocsNorm; private final int maxDecompoundExpansions; private final IndexSearcher searcher; private final int maxEvaluations; private int evaluations = 0; /** * * @param minSuggestionFrequency Minimum frequency of each split term in the index * @param maxDecompoundExpansions Maximum number of decompound structures to return * @param maxEvaluations Maximum number of lookups in the index * @param verifyCollation Iff true, the compound parts must co-occur in a document in the index * @param indexReader The index reader * @param dictionaryField The document field to use for the lookup * @param weightDfObservation The weight of the observed document frequencies when combining with the score of the morphological compound pattern. */ public Collector(final int minSuggestionFrequency,final int maxDecompoundExpansions, final int maxEvaluations, final boolean verifyCollation, final IndexReader indexReader, final String dictionaryField, final float weightDfObservation) { final int queueInitialCapacity = Math.min(maxDecompoundExpansions, 10); collection = new PriorityQueue<>(queueInitialCapacity); this.minSuggestionFrequency = minSuggestionFrequency; this.maxDecompoundExpansions = maxDecompoundExpansions; this.verifyCollation = verifyCollation; this.indexReader = indexReader; searcher = new IndexSearcher(indexReader); this.dictionaryField = dictionaryField; this.weightDfObservation = weightDfObservation; this.maxEvaluations = maxEvaluations; this.totalDocsNorm = 2f * (float) Math.log(1 + indexReader.numDocs()); } /** * * @param left The modifier character sequence * @param right The head character sequence * @param rightTerm The head character sequence as a term in the dictionary field * @param rightDf The document frequency of the rightTerm * @param weightMorphologicalPattern The weight of this specific morphological pattern. * @return The state of candidate collection */ public CollectionState collect(final CharSequence left, final CharSequence right, final Term rightTerm, final int rightDf, final float weightMorphologicalPattern) { if (maxEvaluations <= evaluations) { return CollectionState.MAX_EVALUATIONS_REACHED; } evaluations++; final Term leftTerm = new Term(dictionaryField, new BytesRef(left)); final int leftDf; try { leftDf = indexReader.docFreq(leftTerm); if (leftDf >= minSuggestionFrequency) { final float score = weightDfObservation == 0f ? weightMorphologicalPattern : weightMorphologicalPattern / ((float) Math.pow(totalDocsNorm - Math.log(leftDf + 1) - Math.log(rightDf + 1), weightDfObservation)); if (verifyCollation) { if (((collection.size() < maxDecompoundExpansions) || (score > collection.element().score)) && hasMinMatches(1, leftTerm, rightTerm)) { collection.offer(new Suggestion(new CharSequence[]{left, right}, score)); if (collection.size() > maxDecompoundExpansions) { collection.poll(); } return evaluations == maxEvaluations ? CollectionState.MATCHED_MAX_EVALUATIONS_REACHED : CollectionState.MATCHED_MAX_EVALUATIONS_NOT_REACHED; } } else { collection.offer(new Suggestion(new CharSequence[]{left, right}, score)); if (collection.size() > maxDecompoundExpansions) { collection.poll(); } return evaluations == maxEvaluations ? CollectionState.MATCHED_MAX_EVALUATIONS_REACHED : CollectionState.MATCHED_MAX_EVALUATIONS_NOT_REACHED; } } } catch (final IOException e) { throw new UncheckedIOException(e); } return evaluations == maxEvaluations ? CollectionState.NOT_MATCHED_MAX_EVALUATIONS_REACHED : CollectionState.NOT_MATCHED_MAX_EVALUATIONS_NOT_REACHED; } public boolean maxEvaluationsReached() { return evaluations >= maxEvaluations; } /** * Get the collected results ordered by decreasing score. This resets the internal result queue. * * @return The collected results. */ public List flushResults() { if (collection.isEmpty()) { return Collections.emptyList(); } final LinkedList result = new LinkedList<>(); while (collection.size() > 0) { result.addFirst(collection.remove().sequence); } return result; } private boolean hasMinMatches(final int minCount, final Term term1, final Term term2) throws IOException { final IndexReaderContext topReaderContext = searcher.getTopReaderContext(); final IndexReader indexReader = topReaderContext.reader(); // TODO: deleted documents? final int numDocs = indexReader.numDocs(); if (minCount > numDocs) { return false; } final int df1 = indexReader.docFreq(term1); if (minCount > df1) { return false; } final int df2 = indexReader.docFreq(term2); if (minCount > df2) { return false; } int count = 0; for (final LeafReaderContext context : topReaderContext.leaves()) { final Terms terms1 = context.reader().terms(term1.field()); if (terms1 != null) { final Terms terms2 = context.reader().terms(term2.field()); if (terms2 != null) { final TermsEnum termsEnum1 = terms1.iterator(); if (!termsEnum1.seekExact(term1.bytes())) { continue; } final TermsEnum termsEnum2 = terms2.iterator(); if (!termsEnum2.seekExact(term2.bytes())) { continue; } final PostingsEnum postings1 = termsEnum1.postings(null, PostingsEnum.NONE); final PostingsEnum postings2 = termsEnum2.postings(null, PostingsEnum.NONE); int doc1 = postings1.nextDoc(); while (doc1 != DocIdSetIterator.NO_MORE_DOCS) { int doc2 = postings2.advance(doc1); if (doc2 == DocIdSetIterator.NO_MORE_DOCS) { break; } if (doc2 == doc1) { count++; if (count >= minCount) { return true; } } else if (doc2 > doc1) { doc1 = postings1.advance(doc2); if (doc2 == doc1) { count++; if (count >= minCount) { return true; } } } } } } } return false; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy