All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.questdb.std.ConcurrentLongHashMap Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 *     ___                  _   ____  ____
 *    / _ \ _   _  ___  ___| |_|  _ \| __ )
 *   | | | | | | |/ _ \/ __| __| | | |  _ \
 *   | |_| | |_| |  __/\__ \ |_| |_| | |_) |
 *    \__\_\\__,_|\___||___/\__|____/|____/
 *
 *  Copyright (c) 2014-2019 Appsicle
 *  Copyright (c) 2019-2024 QuestDB
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 ******************************************************************************/

package io.questdb.std;

/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

import org.jetbrains.annotations.NotNull;

import java.io.ObjectStreamField;
import java.io.Serializable;
import java.lang.ThreadLocal;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.LongFunction;

/**
 * Same as {@link ConcurrentHashMap}, but with primitive type long keys.
 */
@SuppressWarnings("SynchronizationOnLocalVariableOrMethodParameter")
public class ConcurrentLongHashMap implements Serializable {
    static final long EMPTY_KEY = Long.MIN_VALUE;

    /*
     * Overview:
     *
     * The primary design goal of this hash table is to maintain
     * concurrent readability (typically method get(), but also
     * iterators and related methods) while minimizing update
     * contention. Secondary goals are to keep space consumption about
     * the same or better than java.util.HashMap, and to support high
     * initial insertion rates on an empty table by many threads.
     *
     * This map usually acts as a binned (bucketed) hash table.  Each
     * key-value mapping is held in a Node.  Most nodes are instances
     * of the basic Node class with hash, key, value, and next
     * fields. However, various subclasses exist: TreeNodes are
     * arranged in balanced trees, not lists.  TreeBins hold the roots
     * of sets of TreeNodes. ForwardingNodes are placed at the heads
     * of bins during resizing. ReservationNodes are used as
     * placeholders while establishing values in computeIfAbsent and
     * related methods.  The types TreeBin, ForwardingNode, and
     * ReservationNode do not hold normal user keys, values, or
     * hashes, and are readily distinguishable during search etc
     * because they have negative hash fields and null key and value
     * fields. (These special nodes are either uncommon or transient,
     * so the impact of carrying around some unused fields is
     * insignificant.)
     *
     * The table is lazily initialized to a power-of-two size upon the
     * first insertion.  Each bin in the table normally contains a
     * list of Nodes (most often, the list has only zero or one Node).
     * Table accesses require volatile/atomic reads, writes, and
     * CASes.  Because there is no other way to arrange this without
     * adding further indirections, we use intrinsics
     * (sun.misc.Unsafe) operations.
     *
     * We use the top (sign) bit of Node hash fields for control
     * purposes -- it is available anyway because of addressing
     * constraints.  Nodes with negative hash fields are specially
     * handled or ignored in map methods.
     *
     * Insertion (via put or its variants) of the first node in an
     * empty bin is performed by just CASing it to the bin.  This is
     * by far the most common case for put operations under most
     * key/hash distributions.  Other update operations (insert,
     * delete, and replace) require locks.  We do not want to waste
     * the space required to associate a distinct lock object with
     * each bin, so instead use the first node of a bin list itself as
     * a lock. Locking support for these locks relies on builtin
     * "synchronized" monitors.
     *
     * Using the first node of a list as a lock does not by itself
     * suffice though: When a node is locked, any update must first
     * validate that it is still the first node after locking it, and
     * retry if not. Because new nodes are always appended to lists,
     * once a node is first in a bin, it remains first until deleted
     * or the bin becomes invalidated (upon resizing).
     *
     * The main disadvantage of per-bin locks is that other update
     * operations on other nodes in a bin list protected by the same
     * lock can stall, for example when user equals() or mapping
     * functions take a long time.  However, statistically, under
     * random hash codes, this is not a common problem.  Ideally, the
     * frequency of nodes in bins follows a Poisson distribution
     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
     * parameter of about 0.5 on average, given the resizing threshold
     * of 0.75, although with a large variance because of resizing
     * granularity. Ignoring variance, the expected occurrences of
     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
     * first values are:
     *
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * more: less than 1 in ten million
     *
     * Lock contention probability for two threads accessing distinct
     * elements is roughly 1 / (8 * #elements) under random hashes.
     *
     * Actual hash code distributions encountered in practice
     * sometimes deviate significantly from uniform randomness.  This
     * includes the case when N > (1<<30), so some keys MUST collide.
     * Similarly for dumb or hostile usages in which multiple keys are
     * designed to have identical hash codes or ones that differs only
     * in masked-out high bits. So we use a secondary strategy that
     * applies when the number of nodes in a bin exceeds a
     * threshold. These TreeBins use a balanced tree to hold nodes (a
     * specialized form of red-black trees), bounding search time to
     * O(log N).  Each search step in a TreeBin is at least twice as
     * slow as in a regular list, but given that N cannot exceed
     * (1<<64) (before running out of addresses) this bounds search
     * steps, lock hold times, etc, to reasonable constants (roughly
     * 100 nodes inspected per operation worst case) so long as keys
     * are Comparable (which is very common -- String, Long, etc).
     * TreeBin nodes (TreeNodes) also maintain the same "next"
     * traversal pointers as regular nodes, so can be traversed in
     * iterators in the same way.
     *
     * The table is resized when occupancy exceeds a percentage
     * threshold (nominally, 0.75, but see below).  Any thread
     * noticing an overfull bin may assist in resizing after the
     * initiating thread allocates and sets up the replacement array.
     * However, rather than stalling, these other threads may proceed
     * with insertions etc.  The use of TreeBins shields us from the
     * worst case effects of overfilling while resizes are in
     * progress.  Resizing proceeds by transferring bins, one by one,
     * from the table to the next table. However, threads claim small
     * blocks of indices to transfer (via field transferIndex) before
     * doing so, reducing contention.  A generation stamp in field
     * sizeCtl ensures that resizings do not overlap. Because we are
     * using power-of-two expansion, the elements from each bin must
     * either stay at same index, or move with a power of two
     * offset. We eliminate unnecessary node creation by catching
     * cases where old nodes can be reused because their next fields
     * won't change.  On average, only about one-sixth of them need
     * cloning when a table doubles. The nodes they replace will be
     * garbage collectable as soon as they are no longer referenced by
     * any reader thread that may be in the midst of concurrently
     * traversing table.  Upon transfer, the old table bin contains
     * only a special forwarding node (with hash field "MOVED") that
     * contains the next table as its key. On encountering a
     * forwarding node, access and update operations restart, using
     * the new table.
     *
     * Each bin transfer requires its bin lock, which can stall
     * waiting for locks while resizing. However, because other
     * threads can join in and help resize rather than contend for
     * locks, average aggregate waits become shorter as resizing
     * progresses.  The transfer operation must also ensure that all
     * accessible bins in both the old and new table are usable by any
     * traversal.  This is arranged in part by proceeding from the
     * last bin (table.length - 1) up towards the first.  Upon seeing
     * a forwarding node, traversals (see class Traverser) arrange to
     * move to the new table without revisiting nodes.  To ensure that
     * no intervening nodes are skipped even when moved out of order,
     * a stack (see class TableStack) is created on first encounter of
     * a forwarding node during a traversal, to maintain its place if
     * later processing the current table. The need for these
     * save/restore mechanics is relatively rare, but when one
     * forwarding node is encountered, typically many more will be.
     * So Traversers use a simple caching scheme to avoid creating so
     * many new TableStack nodes. (Thanks to Peter Levart for
     * suggesting use of a stack here.)
     *
     * The traversal scheme also applies to partial traversals of
     * ranges of bins (via an alternate Traverser constructor)
     * to support partitioned aggregate operations.  Also, read-only
     * operations give up if ever forwarded to a null table, which
     * provides support for shutdown-style clearing, which is also not
     * currently implemented.
     *
     * Lazy table initialization minimizes footprint until first use,
     * and also avoids resizings when the first operation is from a
     * putAll, constructor with map argument, or deserialization.
     * These cases attempt to override the initial capacity settings,
     * but harmlessly fail to take effect in cases of races.
     *
     * The element count is maintained using a specialization of
     * LongAdder. We need to incorporate a specialization rather than
     * just use a LongAdder in order to access implicit
     * contention-sensing that leads to creation of multiple
     * CounterCells.  The counter mechanics avoid contention on
     * updates but can encounter cache thrashing if read too
     * frequently during concurrent access. To avoid reading so often,
     * resizing under contention is attempted only upon adding to a
     * bin already holding two or more nodes. Under uniform hash
     * distributions, the probability of this occurring at threshold
     * is around 13%, meaning that only about 1 in 8 puts check
     * threshold (and after resizing, many fewer do so).
     *
     * TreeBins use a special form of comparison for search and
     * related operations (which is the main reason we cannot use
     * existing collections such as TreeMaps). TreeBins contain
     * Comparable elements, but may contain others, as well as
     * elements that are Comparable but not necessarily Comparable for
     * the same T, so we cannot invoke compareTo among them. To handle
     * this, the tree is ordered primarily by hash value, then by
     * Comparable.compareTo order if applicable.  On lookup at a node,
     * if elements are not comparable or compare as 0 then both left
     * and right children may need to be searched in the case of tied
     * hash values. (This corresponds to the full list search that
     * would be necessary if all elements were non-Comparable and had
     * tied hashes.) On insertion, to keep a total ordering (or as
     * close as is required here) across rebalancings, we compare
     * classes and identityHashCodes as tie-breakers. The red-black
     * balancing code is updated from pre-jdk-collections
     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
     * Algorithms" (CLR).
     *
     * TreeBins also require an additional locking mechanism.  While
     * list traversal is always possible by readers even during
     * updates, tree traversal is not, mainly because of tree-rotations
     * that may change the root node and/or its linkages.  TreeBins
     * include a simple read-write lock mechanism parasitic on the
     * main bin-synchronization strategy: Structural adjustments
     * associated with an insertion or removal are already bin-locked
     * (and so cannot conflict with other writers) but must wait for
     * ongoing readers to finish. Since there can be only one such
     * waiter, we use a simple scheme using a single "waiter" field to
     * block writers.  However, readers need never block.  If the root
     * lock is held, they proceed along the slow traversal path (via
     * next-pointers) until the lock becomes available or the list is
     * exhausted, whichever comes first. These cases are not fast, but
     * maximize aggregate expected throughput.
     *
     * Maintaining API and serialization compatibility with previous
     * versions of this class introduces several oddities. Mainly: We
     * leave untouched but unused constructor arguments referring to
     * concurrencyLevel. We accept a loadFactor constructor argument,
     * but apply it only to initial table capacity (which is the only
     * time that we can guarantee to honor it.) We also declare an
     * unused "Segment" class that is instantiated in minimal form
     * only when serializing.
     *
     * Also, solely for compatibility with previous versions of this
     * class, it extends AbstractMap, even though all of its methods
     * are overridden, so it is just useless baggage.
     *
     * This file is organized to make things a little easier to follow
     * while reading than they might otherwise: First the main static
     * declarations and utilities, then fields, then main public
     * methods (with a few factorings of multiple public methods into
     * internal ones), then sizing methods, trees, traversers, and
     * bulk operations.
     */

    /* ---------------- Constants -------------- */
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
    /**
     * The largest possible (non-power of two) array size.
     * Needed by toArray and related methods.
     */
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
     * conflicts between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64;
    /*
     * Encodings for Node hash fields. See above for explanation.
     */
    static final int MOVED = -1; // hash for forwarding nodes
    /**
     * Number of CPUS, to place bounds on some sizings
     */
    static final int NCPU = Runtime.getRuntime().availableProcessors();
    static final int RESERVED = -3; // hash for transient reservations
    static final int TREEBIN = -2; // hash for roots of trees
    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2, and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    static final int TREEIFY_THRESHOLD = 8;
    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;
    /* ---------------- Fields -------------- */
    private static final long ABASE;
    private static final int ASHIFT;
    /*
     * Volatile access methods are used for table elements as well as
     * elements of in-progress next table while resizing.  All uses of
     * the tab arguments must be null checked by callers.  All callers
     * also paranoically precheck that tab's length is not zero (or an
     * equivalent check), thus ensuring that any index argument taking
     * the form of a hash value anded with (length - 1) is a valid
     * index.  Note that, to be correct wrt arbitrary concurrency
     * errors by users, these checks must operate on local variables,
     * which accounts for some odd-looking inline assignments below.
     * Note that calls to setTabAt always occur within locked regions,
     * and so in principle require only release ordering, not
     * full volatile semantics, but are currently coded as volatile
     * writes to be conservative.
     */
    private static final long BASECOUNT;
    private static final long CELLSBUSY;
    private static final long CELLVALUE;
    /**
     * The default initial table capacity.  Must be a power of 2
     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
     */
    private static final int DEFAULT_CAPACITY = 16;
    /**
     * The load factor for this table. Overrides of this value in
     * constructors affect only the initial table capacity.  The
     * actual floating point value isn't normally used -- it is
     * simpler to use expressions such as {@code n - (n >>> 2)} for
     * the associated resizing threshold.
     */
    private static final float LOAD_FACTOR = 0.75f;
    /**
     * The largest possible table capacity.  This value must be
     * exactly 1<<30 to stay within Java array allocation and indexing
     * bounds for power of two table sizes, and is further required
     * because the top two bits of 32bit hash fields are used for
     * control purposes.
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;
    /**
     * Minimum number of rebinnings per transfer step. Ranges are
     * subdivided to allow multiple resizer threads.  This value
     * serves as a lower bound to avoid resizers encountering
     * excessive memory contention.  The value should be at least
     * DEFAULT_CAPACITY.
     */
    private static final int MIN_TRANSFER_STRIDE = 16;
    private static final long PROBE;

    /* ---------------- Nodes -------------- */
    /**
     * The increment for generating probe values
     */
    private static final int PROBE_INCREMENT = 0x9e3779b9;

    /* ---------------- Static utilities -------------- */
    /**
     * The number of bits used for generation stamp in sizeCtl.
     * Must be at least 6 for 32bit arrays.
     */
    private static final int RESIZE_STAMP_BITS = 16;
    /**
     * The maximum number of threads that can help resize.
     * Must fit in 32 - RESIZE_STAMP_BITS bits.
     */
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
    /**
     * The bit shift for recording size stamp in sizeCtl.
     */
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    private static final long SEED;

    /* ---------------- Table element access -------------- */
    /**
     * The increment of seeder per new instance
     */
    private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
    private static final long SIZECTL;
    private static final long TRANSFERINDEX;
    /**
     * Generates per-thread initialization/probe field
     */
    private static final AtomicInteger probeGenerator = new AtomicInteger();
    /**
     * The next seed for default constructors.
     */
    private static final AtomicLong seeder = new AtomicLong(initialSeed());
    /**
     * For serialization compatibility.
     */
    private static final ObjectStreamField[] serialPersistentFields = {
            new ObjectStreamField("segments", Segment[].class),
            new ObjectStreamField("segmentMask", Integer.TYPE),
            new ObjectStreamField("segmentShift", Integer.TYPE)
    };
    private static final long serialVersionUID = 7249069246763182397L;
    private final java.lang.ThreadLocal> tlTraverser = ThreadLocal.withInitial(Traverser::new);
    /**
     * The array of bins. Lazily initialized upon first insertion.
     * Size is always a power of two. Accessed directly by iterators.
     */
    transient volatile Node[] table;
    /**
     * Base counter value, used mainly when there is no contention,
     * but also as a fallback during table initialization
     * races. Updated via CAS.
     */
    private transient volatile long baseCount;
    /**
     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
     */
    private transient volatile int cellsBusy;
    /**
     * Table of counter cells. When non-null, size is a power of 2.
     */
    private transient volatile CounterCell[] counterCells;
    // Original (since JDK1.2) Map methods
    private transient EntrySetView entrySet;
    /* ---------------- Public operations -------------- */
    // views
    private transient KeySetView keySet;
    /**
     * The next table to use; non-null only while resizing.
     */
    private transient volatile Node[] nextTable;
    /**
     * Table initialization and resizing control.  When negative, the
     * table is being initialized or resized: -1 for initialization,
     * else -(1 + the number of active resizing threads).  Otherwise,
     * when table is null, holds the initial table size to use upon
     * creation, or 0 for default. After initialization, holds the
     * next element count value upon which to resize the table.
     */
    private transient volatile int sizeCtl;
    /**
     * The next table index (plus one) to split while resizing.
     */
    private transient volatile int transferIndex;
    private transient ValuesView values;

    /**
     * Creates a new, empty map with an initial table size based on
     * the given number of elements ({@code initialCapacity}), table
     * density ({@code loadFactor}), and number of concurrently
     * updating threads ({@code concurrencyLevel}).
     *
     * @param initialCapacity the initial capacity. The implementation
     *                        performs internal sizing to accommodate this many elements,
     *                        given the specified load factor.
     * @param loadFactor      the load factor (table density) for
     *                        establishing the initial table size
     * @throws IllegalArgumentException if the initial capacity is
     *                                  negative or the load factor or concurrencyLevel are
     *                                  nonpositive
     */
    public ConcurrentLongHashMap(int initialCapacity, float loadFactor) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0)
            throw new IllegalArgumentException();
        if (initialCapacity < 1)   // Use at least as many bins
            initialCapacity = 1;   // as estimated threads
        long size = (long) (1.0 + (long) initialCapacity / loadFactor);
        this.sizeCtl = (size >= (long) MAXIMUM_CAPACITY) ?
                MAXIMUM_CAPACITY : tableSizeFor((int) size);
    }

    /**
     * Creates a new map with the same mappings as the given map.
     *
     * @param m the map
     */
    public ConcurrentLongHashMap(ConcurrentLongHashMap m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }

    /**
     * Creates a new, empty map with the default initial table size (16).
     */
    public ConcurrentLongHashMap() {
    }

    /**
     * Creates a new, empty map with an initial table size
     * accommodating the specified number of elements without the need
     * to dynamically resize.
     *
     * @param initialCapacity The implementation performs internal
     *                        sizing to accommodate this many elements.
     * @throws IllegalArgumentException if the initial capacity of
     *                                  elements is negative
     */
    public ConcurrentLongHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        this.sizeCtl = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                MAXIMUM_CAPACITY :
                tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    }

    /**
     * Creates a new {@link Set} backed by a ConcurrentLongHashMap
     * from the given type to {@code Boolean.TRUE}.
     *
     * @return the new set
     * @since 1.8
     */
    public static KeySetView newKeySet() {
        return new KeySetView<>(new ConcurrentLongHashMap<>(), Boolean.TRUE);
    }

    /**
     * Creates a new {@link Set} backed by a ConcurrentLongHashMap
     * from the given type to {@code Boolean.TRUE}.
     *
     * @param initialCapacity The implementation performs internal
     *                        sizing to accommodate this many elements.
     * @return the new set
     * @throws IllegalArgumentException if the initial capacity of
     *                                  elements is negative
     * @since 1.8
     */
    public static KeySetView newKeySet(int initialCapacity) {
        return new KeySetView<>(new ConcurrentLongHashMap<>(initialCapacity), Boolean.TRUE);
    }

    /**
     * Removes all of the mappings from this map.
     */
    public void clear() {
        long delta = 0L; // negative number of deletions
        int i = 0;
        Node[] tab = table;
        while (tab != null && i < tab.length) {
            int fh;
            Node f = tabAt(tab, i);
            if (f == null)
                ++i;
            else if ((fh = f.hash) == MOVED) {
                tab = helpTransfer(tab, f);
                i = 0; // restart
            } else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node p = (fh >= 0 ? f :
                                (f instanceof TreeBin) ?
                                        ((TreeBin) f).first : null);
                        while (p != null) {
                            --delta;
                            p = p.next;
                        }
                        setTabAt(tab, i++, null);
                    }
                }
            }
        }
        if (delta != 0L)
            addCount(delta, -1);
    }

    /**
     * Attempts to compute a mapping for the specified key and its
     * current mapped value (or {@code null} if there is no current
     * mapping). The entire method invocation is performed atomically.
     * Some attempted update operations on this map by other threads
     * may be blocked while computation is in progress, so the
     * computation should be short and simple, and must not attempt to
     * update any other mappings of this Map.
     *
     * @param key               key with which the specified value is to be associated
     * @param remappingFunction the function to compute a value
     * @return the new value associated with the specified key, or null if none
     * @throws IllegalArgumentException if the specified key is negative
     * @throws NullPointerException     if the specified remappingFunction is null
     * @throws IllegalStateException    if the computation detectably
     *                                  attempts a recursive update to this map that would
     *                                  otherwise never complete
     * @throws RuntimeException         or Error if the remappingFunction does so,
     *                                  in which case the mapping is unchanged
     */
    public V compute(long key, BiLongFunction remappingFunction) {
        if (key < 0)
            throw new IllegalArgumentException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int h = spread(keyHashCode(key));
        V val = null;
        int delta = 0;
        int binCount = 0;
        for (Node[] tab = table; ; ) {
            Node f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                Node r = new ReservationNode<>();
                synchronized (r) {
                    if (casTabAt(tab, i, r)) {
                        binCount = 1;
                        Node node = null;
                        try {
                            if ((val = remappingFunction.apply(key, null)) != null) {
                                delta = 1;
                                node = new Node<>(h, key, val, null);
                            }
                        } finally {
                            setTabAt(tab, i, node);
                        }
                    }
                }
                if (binCount != 0)
                    break;
            } else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node e = f, pred = null; ; ++binCount) {
                                if (e.hash == h && (e.key == key)) {
                                    val = remappingFunction.apply(key, e.val);
                                    if (val != null)
                                        e.val = val;
                                    else {
                                        delta = -1;
                                        Node en = e.next;
                                        if (pred != null)
                                            pred.next = en;
                                        else
                                            setTabAt(tab, i, en);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null) {
                                    val = remappingFunction.apply(key, null);
                                    if (val != null) {
                                        delta = 1;
                                        pred.next = new Node<>(h, key, val, null);
                                    }
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) {
                            binCount = 1;
                            TreeBin t = (TreeBin) f;
                            TreeNode r, p;
                            if ((r = t.root) != null)
                                p = r.findTreeNode(h, key);
                            else
                                p = null;
                            V pv = (p == null) ? null : p.val;
                            val = remappingFunction.apply(key, pv);
                            if (val != null) {
                                if (p != null)
                                    p.val = val;
                                else {
                                    delta = 1;
                                    t.putTreeVal(h, key, val);
                                }
                            } else if (p != null) {
                                delta = -1;
                                if (t.removeTreeNode(p))
                                    setTabAt(tab, i, untreeify(t.first));
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    break;
                }
            }
        }
        if (delta != 0)
            addCount(delta, binCount);
        return val;
    }

    /**
     * If the specified key is not already associated with a value,
     * attempts to compute its value using the given mapping function
     * and enters it into this map unless {@code null}.  The entire
     * method invocation is performed atomically, so the function is
     * applied at most once per key.  Some attempted update operations
     * on this map by other threads may be blocked while computation
     * is in progress, so the computation should be short and simple,
     * and must not attempt to update any other mappings of this map.
     *
     * @param key             key with which the specified value is to be associated
     * @param token           token to pass to the mapping function
     * @param mappingFunction the function to compute a value
     * @return the current (existing or computed) value associated with
     * the specified key, or null if the computed value is null
     * @throws IllegalArgumentException if the specified key is negative
     * @throws NullPointerException     if the specified mappingFunction is null
     * @throws IllegalStateException    if the computation detectably
     *                                  attempts a recursive update to this map that would
     *                                  otherwise never complete
     * @throws RuntimeException         or Error if the mappingFunction does so,
     *                                  in which case the mapping is left unestablished
     */
    public V computeIfAbsent(long key, Object token, BiLongFunction mappingFunction) {
        if (key < 0)
            throw new IllegalArgumentException();
        if (mappingFunction == null)
            throw new NullPointerException();
        int h = spread(keyHashCode(key));
        V val = null;
        int binCount = 0;
        for (Node[] tab = table; ; ) {
            Node f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                Node r = new ReservationNode<>();
                synchronized (r) {
                    if (casTabAt(tab, i, r)) {
                        binCount = 1;
                        Node node = null;
                        try {
                            if ((val = mappingFunction.apply(key, token)) != null)
                                node = new Node<>(h, key, val, null);
                        } finally {
                            setTabAt(tab, i, node);
                        }
                    }
                }
                if (binCount != 0)
                    break;
            } else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                boolean added = false;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node e = f; ; ++binCount) {
                                if (e.hash == h && e.key == key) {
                                    val = e.val;
                                    break;
                                }
                                Node pred = e;
                                if ((e = e.next) == null) {
                                    if ((val = mappingFunction.apply(key, token)) != null) {
                                        added = true;
                                        pred.next = new Node<>(h, key, val, null);
                                    }
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin t = (TreeBin) f;
                            TreeNode r, p;
                            if ((r = t.root) != null &&
                                    (p = r.findTreeNode(h, key)) != null)
                                val = p.val;
                            else if ((val = mappingFunction.apply(key, token)) != null) {
                                added = true;
                                t.putTreeVal(h, key, val);
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (!added)
                        return val;
                    break;
                }
            }
        }
        if (val != null)
            addCount(1L, binCount);
        return val;
    }

    /**
     * If the specified key is not already associated with a value,
     * attempts to compute its value using the given mapping function
     * and enters it into this map unless {@code null}.  The entire
     * method invocation is performed atomically, so the function is
     * applied at most once per key.  Some attempted update operations
     * on this map by other threads may be blocked while computation
     * is in progress, so the computation should be short and simple,
     * and must not attempt to update any other mappings of this map.
     *
     * @param key             key with which the specified value is to be associated
     * @param mappingFunction the function to compute a value
     * @return the current (existing or computed) value associated with
     * the specified key, or null if the computed value is null
     * @throws IllegalArgumentException if the specified key is negative
     * @throws NullPointerException     if the specified key or mappingFunction
     *                                  is null
     * @throws IllegalStateException    if the computation detectably
     *                                  attempts a recursive update to this map that would
     *                                  otherwise never complete
     * @throws RuntimeException         or Error if the mappingFunction does so,
     *                                  in which case the mapping is left unestablished
     */
    public V computeIfAbsent(long key, LongFunction mappingFunction) {
        if (key < 0)
            throw new IllegalArgumentException();
        if (mappingFunction == null)
            throw new NullPointerException();
        int h = spread(keyHashCode(key));
        V val = null;
        int binCount = 0;
        for (Node[] tab = table; ; ) {
            Node f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                Node r = new ReservationNode<>();
                synchronized (r) {
                    if (casTabAt(tab, i, r)) {
                        binCount = 1;
                        Node node = null;
                        try {
                            if ((val = mappingFunction.apply(key)) != null)
                                node = new Node<>(h, key, val, null);
                        } finally {
                            setTabAt(tab, i, node);
                        }
                    }
                }
                if (binCount != 0)
                    break;
            } else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                boolean added = false;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node e = f; ; ++binCount) {
                                if (e.hash == h && e.key == key) {
                                    val = e.val;
                                    break;
                                }
                                Node pred = e;
                                if ((e = e.next) == null) {
                                    if ((val = mappingFunction.apply(key)) != null) {
                                        added = true;
                                        pred.next = new Node<>(h, key, val, null);
                                    }
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin t = (TreeBin) f;
                            TreeNode r, p;
                            if ((r = t.root) != null &&
                                    (p = r.findTreeNode(h, key)) != null)
                                val = p.val;
                            else if ((val = mappingFunction.apply(key)) != null) {
                                added = true;
                                t.putTreeVal(h, key, val);
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (!added)
                        return val;
                    break;
                }
            }
        }
        if (val != null)
            addCount(1L, binCount);
        return val;
    }

    /**
     * If the value for the specified key is present, attempts to
     * compute a new mapping given the key and its current mapped
     * value.  The entire method invocation is performed atomically.
     * Some attempted update operations on this map by other threads
     * may be blocked while computation is in progress, so the
     * computation should be short and simple, and must not attempt to
     * update any other mappings of this map.
     *
     * @param key               key with which a value may be associated
     * @param remappingFunction the function to compute a value
     * @return the new value associated with the specified key, or null if none
     * @throws IllegalArgumentException if the specified key is negative
     * @throws NullPointerException     if the specified remappingFunction is null
     * @throws IllegalStateException    if the computation detectably
     *                                  attempts a recursive update to this map that would
     *                                  otherwise never complete
     * @throws RuntimeException         or Error if the remappingFunction does so,
     *                                  in which case the mapping is unchanged
     */
    public V computeIfPresent(long key, BiLongFunction remappingFunction) {
        if (key < 0)
            throw new IllegalArgumentException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int h = spread(keyHashCode(key));
        V val = null;
        int delta = 0;
        int binCount = 0;
        for (Node[] tab = table; ; ) {
            Node f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
                break;
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node e = f, pred = null; ; ++binCount) {
                                if (e.hash == h && e.key == key) {
                                    val = remappingFunction.apply(key, e.val);
                                    if (val != null)
                                        e.val = val;
                                    else {
                                        delta = -1;
                                        Node en = e.next;
                                        if (pred != null)
                                            pred.next = en;
                                        else
                                            setTabAt(tab, i, en);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        } else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin t = (TreeBin) f;
                            TreeNode r, p;
                            if ((r = t.root) != null &&
                                    (p = r.findTreeNode(h, key)) != null) {
                                val = remappingFunction.apply(key, p.val);
                                if (val != null)
                                    p.val = val;
                                else {
                                    delta = -1;
                                    if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (binCount != 0)
                    break;
            }
        }
        if (delta != 0)
            addCount(delta, binCount);
        return val;
    }

    /**
     * Tests if the specified object is a key in this table.
     *
     * @param key possible key
     * @return {@code true} if and only if the specified object
     * is a key in this table, as determined by the
     * {@code equals} method; {@code false} otherwise
     * @throws NullPointerException if the specified key is null
     */
    public boolean containsKey(long key) {
        return get(key) != null;
    }

    /**
     * Returns {@code true} if this map maps one or more keys to the
     * specified value. Note: This method may require a full traversal
     * of the map, and is much slower than method {@code containsKey}.
     *
     * @param value value whose presence in this map is to be tested
     * @return {@code true} if this map maps one or more keys to the
     * specified value
     * @throws NullPointerException if the specified value is null
     */
    public boolean containsValue(V value) {
        if (value == null)
            throw new NullPointerException();
        Node[] t = table;
        if (t != null) {
            Traverser it = getTraverser(t);
            for (Node p; (p = it.advance()) != null; ) {
                V v;
                if ((v = p.val) == value || (value.equals(v)))
                    return true;
            }
        }
        return false;
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  The set supports element
     * removal, which removes the corresponding mapping from the map,
     * via the {@code Iterator.remove}, {@code Set.remove},
     * {@code removeAll}, {@code retainAll}, and {@code clear}
     * operations.
     * 

The view's iterators and spliterators are * weakly consistent. * * @return the set view */ @NotNull public Set> entrySet() { EntrySetView es; return (es = entrySet) != null ? es : (entrySet = new EntrySetView<>(this)); } /** * Compares the specified object with this map for equality. * Returns {@code true} if the given object is a map with the same * mappings as this map. This operation may return misleading * results if either map is concurrently modified during execution * of this method. * * @param o object to be compared for equality with this map * @return {@code true} if the specified object is equal to this map */ public boolean equals(Object o) { if (o != this) { if (!(o instanceof ConcurrentLongHashMap)) return false; ConcurrentLongHashMap m = (ConcurrentLongHashMap) o; Traverser it = getTraverser(table); for (Node p; (p = it.advance()) != null; ) { V val = p.val; Object v = m.get(p.key); if (v == null || (v != val && !v.equals(val))) return false; } for (LongEntry e : m.entrySet()) { long mk; Object mv, v; if ((mk = e.getKey()) == EMPTY_KEY || (mv = e.getValue()) == null || (v = get(mk)) == null || (mv != v && !mv.equals(v))) return false; } } return true; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @param key map key value * @return value to which specified key is mapped * @throws NullPointerException if the specified key is null */ public V get(long key) { Node[] tab; Node e, p; int n, eh; int h = spread(keyHashCode(key)); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if (e.key == key) return e.val; } else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) { if (e.hash == h && e.key == key) return e.val; } } return null; } /** * Returns the value to which the specified key is mapped, or the * given default value if this map contains no mapping for the * key. * * @param key the key whose associated value is to be returned * @param defaultValue the value to return if this map contains * no mapping for the given key * @return the mapping for the key, if present; else the default value * @throws NullPointerException if the specified key is null */ public V getOrDefault(long key, V defaultValue) { V v; return (v = get(key)) == null ? defaultValue : v; } /** * Returns the hash code value for this {@link Map}, i.e., * the sum of, for each key-value pair in the map, * {@code key.hashCode() ^ value.hashCode()}. * * @return the hash code value for this map */ public int hashCode() { int h = 0; Node[] t = table; if (t != null) { Traverser it = getTraverser(t); for (Node p; (p = it.advance()) != null; ) h += keyHashCode(p.key) ^ p.val.hashCode(); } return h; } // ConcurrentMap methods /** * {@inheritDoc} */ public boolean isEmpty() { return sumCount() <= 0L; // ignore transient negative values } /** * Returns a {@link Set} view of the keys in this map, using the * given common mapped value for any additions (i.e., {@link * Collection#add} and {@link Collection#addAll(Collection)}). * This is of course only appropriate if it is acceptable to use * the same value for all additions from this view. * * @param mappedValue the mapped value to use for any additions * @return the set view * @throws NullPointerException if the mappedValue is null */ public KeySetView keySet(V mappedValue) { if (mappedValue == null) throw new NullPointerException(); return new KeySetView<>(this, mappedValue); } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, * via the {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or * {@code addAll} operations. *

The view's iterators and spliterators are * weakly consistent. *

* * @return the set view */ @NotNull public KeySetView keySet() { KeySetView ks; return (ks = keySet) != null ? ks : (keySet = new KeySetView<>(this, null)); } /** * Returns the number of mappings. This method should be used * instead of {@link #size} because a ConcurrentLongHashMap may * contain more mappings than can be represented as an int. The * value returned is an estimate; the actual count may differ if * there are concurrent insertions or removals. * * @return the number of mappings * @since 1.8 */ public long mappingCount() { return Math.max(sumCount(), 0L); // ignore transient negative values } // Overrides of JDK8+ Map extension method defaults /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. *

The value can be retrieved by calling the {@code get} method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key or value is null */ public V put(long key, V value) { return putVal(key, value, false); } /** * Copies all of the mappings from the specified map to this one. * These mappings replace any mappings that this map had for any of the * keys currently in the specified map. * * @param m mappings to be stored in this map */ public void putAll(@NotNull ConcurrentLongHashMap m) { tryPresize(m.size()); for (LongEntry e : m.entrySet()) putVal(e.getKey(), e.getValue(), false); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or {@code null} if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ public V putIfAbsent(long key, V value) { return putVal(key, value, true); } public boolean remove(long key, V value) { return value != null && replaceNode(key, null, value) != null; } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key is null */ public V remove(long key) { return replaceNode(key, null, null); } // Hashtable legacy methods public boolean replace(long key, @NotNull V oldValue, @NotNull V newValue) { return replaceNode(key, newValue, oldValue) != null; } // ConcurrentLongHashMap-only methods /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or {@code null} if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ public V replace(long key, @NotNull V value) { return replaceNode(key, value, null); } /** * {@inheritDoc} */ public int size() { long n = sumCount(); return ((n < 0L) ? 0 : (n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) n); } /** * Returns a string representation of this map. The string * representation consists of a list of key-value mappings (in no * particular order) enclosed in braces ("{@code {}}"). Adjacent * mappings are separated by the characters {@code ", "} (comma * and space). Each key-value mapping is rendered as the key * followed by an equals sign ("{@code =}") followed by the * associated value. * * @return a string representation of this map */ public String toString() { Traverser it = getTraverser(table); StringBuilder sb = new StringBuilder(); sb.append('{'); Node p; if ((p = it.advance()) != null) { for (; ; ) { long k = p.key; V v = p.val; sb.append(k); sb.append('='); sb.append(v == this ? "(this Map)" : v); if ((p = it.advance()) == null) break; sb.append(',').append(' '); } } return sb.append('}').toString(); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll}, and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. *

The view's iterators and spliterators are * weakly consistent. * * @return the collection view */ @NotNull public Collection values() { ValuesView vs; return (vs = values) != null ? vs : (values = new ValuesView<>(this)); } /* ---------------- Special Nodes -------------- */ private static long initialSeed() { String pp = System.getProperty("java.util.secureRandomSeed"); if (pp != null && pp.equalsIgnoreCase("true")) { byte[] seedBytes = java.security.SecureRandom.getSeed(8); long s = (long) (seedBytes[0]) & 0xffL; for (int i = 1; i < 8; ++i) s = (s << 8) | ((long) (seedBytes[i]) & 0xffL); return s; } return (mix64(System.currentTimeMillis()) ^ mix64(System.nanoTime())); } /* ---------------- Table Initialization and Resizing -------------- */ private static int keyHashCode(final long key) { return Hash.hashLong32(key); } private static long mix64(long z) { z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L; return z ^ (z >>> 33); } /** * Returns a power of two table size for the given desired capacity. * See Hackers Delight, sec 3.2 */ private static int tableSizeFor(int c) { int n = c - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /** * Adds to count, and if table is too small and not already * resizing, initiates transfer. If already resizing, helps * perform transfer if work is available. Rechecks occupancy * after a transfer to see if another resize is already needed * because resizings are lagging additions. * * @param x the count to add * @param check if <0, don't check resize, if <= 1 only check if uncontended */ private void addCount(long x, int check) { CounterCell[] as; long b, s; if ((as = counterCells) != null || !Unsafe.cas(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || (a = as[getProbe() & m]) == null || !(uncontended = Unsafe.cas(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, uncontended); return; } if (check <= 1) return; s = sumCount(); } if (check >= 0) { Node[] tab, nt; int n, sc; while (s >= (long) (sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if (sc >>> RESIZE_STAMP_SHIFT != rs || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (Unsafe.getUnsafe().compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (Unsafe.getUnsafe().compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } } // See LongAdder version for explanation private void fullAddCount(long x, boolean wasUncontended) { int h; if ((h = getProbe()) == 0) { localInit(); // force initialization h = getProbe(); wasUncontended = true; } boolean collide = false; // True if last slot nonempty for (; ; ) { CounterCell[] as; CounterCell a; int n; long v; if ((as = counterCells) != null && (n = as.length) > 0) { if ((a = as[(n - 1) & h]) == null) { if (cellsBusy == 0) { // Try to attach new Cell CounterCell r = new CounterCell(x); // Optimistic create if (cellsBusy == 0 && Unsafe.getUnsafe().compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean created = false; try { // Recheck under lock CounterCell[] rs; int m, j; if ((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } } finally { cellsBusy = 0; } if (created) break; continue; // Slot is now non-empty } } collide = false; } else if (!wasUncontended) // CAS already known to fail wasUncontended = true; // Continue after rehash else if (Unsafe.cas(a, CELLVALUE, v = a.value, v + x)) break; else if (counterCells != as || n >= NCPU) collide = false; // At max size or stale else if (!collide) collide = true; else if (cellsBusy == 0 && Unsafe.getUnsafe().compareAndSwapInt(this, CELLSBUSY, 0, 1)) { try { if (counterCells == as) {// Expand table unless stale CounterCell[] rs = new CounterCell[n << 1]; System.arraycopy(as, 0, rs, 0, n); counterCells = rs; } } finally { cellsBusy = 0; } collide = false; continue; // Retry with expanded table } h = advanceProbe(h); } else if (cellsBusy == 0 && counterCells == as && Unsafe.getUnsafe().compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean init = false; try { // Initialize table if (counterCells == as) { CounterCell[] rs = new CounterCell[2]; rs[h & 1] = new CounterCell(x); counterCells = rs; init = true; } } finally { cellsBusy = 0; } if (init) break; } else if (Unsafe.cas(this, BASECOUNT, v = baseCount, v + x)) break; // Fall back on using base } } private Traverser getTraverser(Node[] tab) { Traverser traverser = tlTraverser.get(); int len = tab == null ? 0 : tab.length; traverser.of(tab, len, len); return traverser; } /** * Initializes table, using the size recorded in sizeCtl. */ private Node[] initTable() { Node[] tab; int sc; while ((tab = table) == null || tab.length == 0) { if ((sc = sizeCtl) < 0) Os.pause(); // lost initialization race; just spin else if (Unsafe.getUnsafe().compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node[] nt = (Node[]) new Node[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; } /** * Moves and/or copies the nodes in each bin to new table. See * above for explanation. */ private void transfer(Node[] tab, Node[] nextTab) { int n = tab.length, stride; if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) stride = MIN_TRANSFER_STRIDE; // subdivide range if (nextTab == null) { // initiating try { @SuppressWarnings("unchecked") Node[] nt = (Node[]) new Node[n << 1]; nextTab = nt; } catch (Throwable ex) { // try to cope with OOME sizeCtl = Integer.MAX_VALUE; return; } nextTable = nextTab; transferIndex = n; } int nextn = nextTab.length; ForwardingNode fwd = new ForwardingNode<>(nextTab); boolean advance = true; boolean finishing = false; // to ensure sweep before committing nextTab for (int i = 0, bound = 0; ; ) { Node f; int fh; while (advance) { int nextIndex, nextBound; if (--i >= bound || finishing) advance = false; else if ((nextIndex = transferIndex) <= 0) { i = -1; advance = false; } else if (Unsafe.getUnsafe().compareAndSwapInt (this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) { bound = nextBound; i = nextIndex - 1; advance = false; } } if (i < 0 || i >= n || i + n >= nextn) { int sc; if (finishing) { nextTable = null; table = nextTab; sizeCtl = (n << 1) - (n >>> 1); return; } if (Unsafe.getUnsafe().compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) return; finishing = advance = true; i = n; // recheck before commit } } else if ((f = tabAt(tab, i)) == null) advance = casTabAt(tab, i, fwd); else if ((fh = f.hash) == MOVED) advance = true; // already processed else { synchronized (f) { if (tabAt(tab, i) == f) { Node ln, hn; if (fh >= 0) { int runBit = fh & n; Node lastRun = f; for (Node p = f.next; p != null; p = p.next) { int b = p.hash & n; if (b != runBit) { runBit = b; lastRun = p; } } if (runBit == 0) { ln = lastRun; hn = null; } else { hn = lastRun; ln = null; } for (Node p = f; p != lastRun; p = p.next) { int ph = p.hash; long pk = p.key; V pv = p.val; if ((ph & n) == 0) ln = new Node<>(ph, pk, pv, ln); else hn = new Node<>(ph, pk, pv, hn); } setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } else if (f instanceof TreeBin) { TreeBin t = (TreeBin) f; TreeNode lo = null, loTail = null; TreeNode hi = null, hiTail = null; int lc = 0, hc = 0; for (Node e = t.first; e != null; e = e.next) { int h = e.hash; TreeNode p = new TreeNode<>(h, e.key, e.val, null, null); if ((h & n) == 0) { if ((p.prev = loTail) == null) lo = p; else loTail.next = p; loTail = p; ++lc; } else { if ((p.prev = hiTail) == null) hi = p; else hiTail.next = p; hiTail = p; ++hc; } } ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin<>(lo) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin<>(hi) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } } /* ---------------- Counter support -------------- */ /** * Replaces all linked nodes in bin at given index unless table is * too small, in which case resizes instead. */ private void treeifyBin(Node[] tab, int index) { Node b; int n; if (tab != null) { if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode hd = null, tl = null; for (Node e = b; e != null; e = e.next) { TreeNode p = new TreeNode<>(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } setTabAt(tab, index, new TreeBin<>(hd)); } } } } } /** * Tries to presize table to accommodate the given number of elements. * * @param size number of elements (doesn't need to be perfectly accurate) */ private void tryPresize(int size) { int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(size + (size >>> 1) + 1); int sc; while ((sc = sizeCtl) >= 0) { Node[] tab = table; int n; if (tab == null || (n = tab.length) == 0) { n = Math.max(sc, c); if (Unsafe.getUnsafe().compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if (table == tab) { @SuppressWarnings("unchecked") Node[] nt = (Node[]) new Node[n]; table = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } } } else if (c <= sc || n >= MAXIMUM_CAPACITY) break; else if (tab == table) { int rs = resizeStamp(n); if (sc < 0) { Node[] nt; if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (Unsafe.getUnsafe().compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (Unsafe.getUnsafe().compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); } } } static int advanceProbe(int probe) { probe ^= probe << 13; // xorshift probe ^= probe >>> 17; probe ^= probe << 5; Unsafe.getUnsafe().putInt(Thread.currentThread(), PROBE, probe); return probe; } /* ---------------- Conversion from/to TreeBins -------------- */ static boolean casTabAt(Node[] tab, int i, Node v) { return Unsafe.getUnsafe().compareAndSwapObject(tab, ((long) i << ASHIFT) + ABASE, null, v); } /** * Returns x's Class if it is of the form "class C implements * Comparable", else null. */ static Class comparableClassFor(Object x) { if (x instanceof Comparable) { Class c; Type[] ts, as; Type t; ParameterizedType p; if ((c = x.getClass()) == String.class) // bypass checks return c; if ((ts = c.getGenericInterfaces()) != null) { for (int i = 0; i < ts.length; ++i) { if (((t = ts[i]) instanceof ParameterizedType) && ((p = (ParameterizedType) t).getRawType() == Comparable.class) && (as = p.getActualTypeArguments()) != null && as.length == 1 && as[0] == c) // type arg is c return c; } } } return null; } /* ---------------- TreeNodes -------------- */ /** * Returns k.compareTo(x) if x matches kc (k's screened comparable * class), else 0. */ static int compareComparables(long k, long x) { return Long.compare(k, x); } /* ---------------- TreeBins -------------- */ static int getProbe() { return Unsafe.getUnsafe().getInt(Thread.currentThread(), PROBE); } /* ----------------Table Traversal -------------- */ /** * Initialize Thread fields for the current thread. Called only * when Thread.threadLocalRandomProbe is zero, indicating that a * thread local seed value needs to be generated. Note that even * though the initialization is purely thread-local, we need to * rely on (static) atomic generators to initialize the values. */ static void localInit() { int p = probeGenerator.addAndGet(PROBE_INCREMENT); int probe = (p == 0) ? 1 : p; // skip 0 long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT)); Thread t = Thread.currentThread(); Unsafe.getUnsafe().putLong(t, SEED, seed); Unsafe.getUnsafe().putInt(t, PROBE, probe); } /** * Returns the stamp bits for resizing a table of size n. * Must be negative when shifted left by RESIZE_STAMP_SHIFT. */ static int resizeStamp(int n) { return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); } static void setTabAt(Node[] tab, int i, Node v) { Unsafe.getUnsafe().putObjectVolatile(tab, ((long) i << ASHIFT) + ABASE, v); } /** * Spreads (XORs) higher bits of hash to lower and also forces top * bit to 0. Because the table uses power-of-two masking, sets of * hashes that vary only in bits above the current mask will * always collide. (Among known examples are sets of Float keys * holding consecutive whole numbers in small tables.) So we * apply a transform that spreads the impact of higher bits * downward. There is a tradeoff between speed, utility, and * quality of bit-spreading. Because many common sets of hashes * are already reasonably distributed (so don't benefit from * spreading), and because we use trees to handle large sets of * collisions in bins, we just XOR some shifted bits in the * cheapest possible way to reduce systematic lossage, as well as * to incorporate impact of the highest bits that would otherwise * never be used in index calculations because of table bounds. */ static int spread(int h) { return (h ^ (h >>> 16)) & HASH_BITS; } @SuppressWarnings("unchecked") static Node tabAt(Node[] tab, int i) { return (Node) Unsafe.getUnsafe().getObjectVolatile(tab, ((long) i << ASHIFT) + ABASE); } /** * Returns a list on non-TreeNodes replacing those in given list. */ static Node untreeify(Node b) { Node hd = null, tl = null; for (Node q = b; q != null; q = q.next) { Node p = new Node<>(q.hash, q.key, q.val, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; } /** * Helps transfer if a resize is in progress. */ final Node[] helpTransfer(Node[] tab, Node f) { Node[] nextTab; int sc; if (tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode) f).nextTable) != null) { int rs = resizeStamp(tab.length); while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || transferIndex <= 0) break; if (Unsafe.getUnsafe().compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nextTab); break; } } return nextTab; } return table; } /* ----------------Views -------------- */ /** * Implementation for put and putIfAbsent */ final V putVal(long key, V value, boolean onlyIfAbsent) { if (key < 0) throw new IllegalArgumentException(); if (value == null) throw new NullPointerException(); int hash = spread(keyHashCode(key)); int binCount = 0; Node _new = null; for (Node[] tab = table; ; ) { Node f; int n, i, fh; if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { if (_new == null) { _new = new Node<>(hash, key, value, null); } if (casTabAt(tab, i, _new)) { break; // no lock when adding to empty bin } } else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node e = f; ; ++binCount) { if (e.hash == hash && e.key == key) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node pred = e; if ((e = e.next) == null) { if (_new == null) { pred.next = new Node<>(hash, key, value, null); } else { pred.next = _new; } break; } } } else if (f instanceof TreeBin) { Node p; binCount = 2; if ((p = ((TreeBin) f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } addCount(1L, binCount); return null; } /** * Implementation for the four public remove/replace methods: * Replaces node value with v, conditional upon match of cv if * non-null. If resulting value is null, delete. */ final V replaceNode(long key, V value, V cv) { int hash = spread(keyHashCode(key)); for (Node[] tab = table; ; ) { Node f; int n, i, fh; if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) break; else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; boolean validated = false; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { validated = true; for (Node e = f, pred = null; ; ) { if (e.hash == hash && e.key == key) { V ev = e.val; if (cv == null || cv == ev || (cv.equals(ev))) { oldVal = ev; if (value != null) e.val = value; else if (pred != null) pred.next = e.next; else setTabAt(tab, i, e.next); } break; } pred = e; if ((e = e.next) == null) break; } } else if (f instanceof TreeBin) { validated = true; TreeBin t = (TreeBin) f; TreeNode r, p; if ((r = t.root) != null && (p = r.findTreeNode(hash, key)) != null) { V pv = p.val; if (cv == null || cv == pv || cv.equals(pv)) { oldVal = pv; if (value != null) p.val = value; else if (t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } } } if (validated) { if (oldVal != null) { if (value == null) addCount(-1L, -1); return oldVal; } break; } } } return null; } final long sumCount() { CounterCell[] as = counterCells; CounterCell a; long sum = baseCount; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; } public interface LongEntry { boolean equals(Object var1); long getKey(); V getValue(); int hashCode(); V setValue(V var1); } /** * Base of key, value, and entry Iterators. Adds fields to * Traverser to support iterator.remove. */ static class BaseIterator extends Traverser { Node lastReturned; ConcurrentLongHashMap map; public final boolean hasNext() { return next != null; } public final void remove() { Node p; if ((p = lastReturned) == null) throw new IllegalStateException(); lastReturned = null; map.replaceNode(p.key, null, null); } void of(ConcurrentLongHashMap map) { Node[] tab = map.table; int l = tab == null ? 0 : tab.length; super.of(tab, l, l); this.map = map; advance(); } } /** * Base class for views. */ abstract static class CollectionView implements Collection, java.io.Serializable { private static final String oomeMsg = "Required array size too large"; private static final long serialVersionUID = 7249069246763182397L; final ConcurrentLongHashMap map; CollectionView(ConcurrentLongHashMap map) { this.map = map; } /** * Removes all of the elements from this view, by removing all * the mappings from the map backing this view. */ public final void clear() { map.clear(); } public abstract boolean contains(Object o); public final boolean containsAll(@NotNull Collection c) { if (c != this) { for (Object e : c) { if (e == null || !contains(e)) return false; } } return true; } /** * Returns the map backing this view. * * @return the map backing this view */ public ConcurrentLongHashMap getMap() { return map; } public final boolean isEmpty() { return map.isEmpty(); } /** * Returns an iterator over the elements in this collection. *

The returned iterator is * weakly consistent. * * @return an iterator over the elements in this collection */ @NotNull public abstract Iterator iterator(); public abstract boolean remove(Object o); @Override public final boolean removeAll(@NotNull Collection c) { boolean modified = false; for (Iterator it = iterator(); it.hasNext(); ) { if (c.contains(it.next())) { it.remove(); modified = true; } } return modified; } // implementations below rely on concrete classes supplying these // abstract methods @Override public final boolean retainAll(@NotNull Collection c) { boolean modified = false; for (Iterator it = iterator(); it.hasNext(); ) { if (!c.contains(it.next())) { it.remove(); modified = true; } } return modified; } @Override public final int size() { return map.size(); } @Override public final Object @NotNull [] toArray() { long sz = map.mappingCount(); if (sz > MAX_ARRAY_SIZE) throw new OutOfMemoryError(oomeMsg); int n = (int) sz; Object[] r = new Object[n]; int i = 0; for (E e : this) { if (i == n) { if (n >= MAX_ARRAY_SIZE) throw new OutOfMemoryError(oomeMsg); if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) n = MAX_ARRAY_SIZE; else n += (n >>> 1) + 1; r = Arrays.copyOf(r, n); } r[i++] = e; } return (i == n) ? r : Arrays.copyOf(r, i); } @Override @SuppressWarnings("unchecked") public final T @NotNull [] toArray(@NotNull T @NotNull [] a) { long sz = map.mappingCount(); if (sz > MAX_ARRAY_SIZE) throw new OutOfMemoryError(oomeMsg); int m = (int) sz; T[] r = (a.length >= m) ? a : (T[]) java.lang.reflect.Array .newInstance(a.getClass().getComponentType(), m); int n = r.length; int i = 0; for (E e : this) { if (i == n) { if (n >= MAX_ARRAY_SIZE) throw new OutOfMemoryError(oomeMsg); if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) n = MAX_ARRAY_SIZE; else n += (n >>> 1) + 1; r = Arrays.copyOf(r, n); } r[i++] = (T) e; } if (a == r && i < n) { r[i] = null; // null-terminate return r; } return (i == n) ? r : Arrays.copyOf(r, i); } /** * Returns a string representation of this collection. * The string representation consists of the string representations * of the collection's elements in the order they are returned by * its iterator, enclosed in square brackets ({@code "[]"}). * Adjacent elements are separated by the characters {@code ", "} * (comma and space). Elements are converted to strings as by * {@link String#valueOf(Object)}. * * @return a string representation of this collection */ @Override public final String toString() { StringBuilder sb = new StringBuilder(); sb.append('['); Iterator it = iterator(); if (it.hasNext()) { for (; ; ) { Object e = it.next(); sb.append(e == this ? "(this Collection)" : e); if (!it.hasNext()) break; sb.append(',').append(' '); } } return sb.append(']').toString(); } } /** * A padded cell for distributing counts. Adapted from LongAdder * and Striped64. See their internal docs for explanation. */ static final class CounterCell { final long value; CounterCell(long x) { value = x; } } static final class EntryIterator extends BaseIterator implements Iterator> { @Override public LongEntry next() { Node p; if ((p = next) == null) throw new NoSuchElementException(); long k = p.key; V v = p.val; lastReturned = p; advance(); return new MapEntry<>(k, v, map); } } /** * A view of a ConcurrentLongHashMap as a {@link Set} of (key, value) * entries. This class cannot be directly instantiated. See * {@link #entrySet()}. */ static final class EntrySetView extends CollectionView> implements Set>, java.io.Serializable { private static final long serialVersionUID = 2249069246763182397L; private final ThreadLocal> tlEntryIterator = ThreadLocal.withInitial(EntryIterator::new); EntrySetView(ConcurrentLongHashMap map) { super(map); } @Override public boolean add(LongEntry e) { return map.putVal(e.getKey(), e.getValue(), false) == null; } @Override public boolean addAll(@NotNull Collection> c) { boolean added = false; for (LongEntry e : c) { if (add(e)) added = true; } return added; } @Override public boolean contains(Object o) { long k; Object v, r; LongEntry e; return ((o instanceof LongEntry) && (k = (e = (LongEntry) o).getKey()) != EMPTY_KEY && (r = map.get(k)) != null && (v = e.getValue()) != null && (v == r || v.equals(r))); } @Override public boolean equals(Object o) { Set c; return ((o instanceof Set) && ((c = (Set) o) == this || (containsAll(c) && c.containsAll(this)))); } @Override public int hashCode() { int h = 0; Node[] t = map.table; if (t != null) { Traverser it = map.getTraverser(t); for (Node p; (p = it.advance()) != null; ) { h += p.hashCode(); } } return h; } /** * @return an iterator over the entries of the backing map */ @NotNull public Iterator> iterator() { EntryIterator it = tlEntryIterator.get(); it.of(map); return it; } @Override public boolean remove(Object o) { long k; Object v; LongEntry e; return ((o instanceof LongEntry) && (k = (e = (LongEntry) o).getKey()) != EMPTY_KEY && (v = e.getValue()) != null && map.remove(k, (V) v)); } } /** * A node inserted at head of bins during transfer operations. */ static final class ForwardingNode extends Node { final Node[] nextTable; ForwardingNode(Node[] tab) { super(MOVED, EMPTY_KEY, null, null); this.nextTable = tab; } @Override Node find(int h, long k) { // loop to avoid arbitrarily deep recursion on forwarding nodes outer: for (Node[] tab = nextTable; ; ) { Node e; int n; if (k == EMPTY_KEY || tab == null || (n = tab.length) == 0 || (e = tabAt(tab, (n - 1) & h)) == null) return null; for (; ; ) { int eh; if ((eh = e.hash) == h && e.key == k) return e; if (eh < 0) { if (e instanceof ForwardingNode) { tab = ((ForwardingNode) e).nextTable; continue outer; } else return e.find(h, k); } if ((e = e.next) == null) return null; } } } } public static final class KeyIterator extends BaseIterator { public long next() { Node p; if ((p = next) == null) throw new NoSuchElementException(); long k = p.key; lastReturned = p; advance(); return k; } } /** * A view of a ConcurrentLongHashMap as a long set of keys, in * which additions may optionally be enabled by mapping to a * common value. This class cannot be directly instantiated. * See {@link #keySet() keySet()}, * {@link #keySet(Object) keySet(V)}, * {@link #newKeySet() newKeySet()}, * {@link #newKeySet(int) newKeySet(int)}. * * @since 1.8 */ public static class KeySetView implements java.io.Serializable { private static final long serialVersionUID = 7249069246763182397L; private final ConcurrentLongHashMap map; private final ThreadLocal> tlKeyIterator = ThreadLocal.withInitial(KeyIterator::new); private final V value; KeySetView(ConcurrentLongHashMap map, V value) { // non-public this.map = map; this.value = value; } /** * Adds the specified key to this set view by mapping the key to * the default mapped value in the backing map, if defined. * * @param k key to be added * @return {@code true} if this set changed as a result of the call * @throws NullPointerException if the specified key is null * @throws UnsupportedOperationException if no default mapped value * for additions was provided */ public boolean add(long k) { V v; if ((v = value) == null) throw new UnsupportedOperationException(); return map.putVal(k, v, true) == null; } public final void clear() { map.clear(); } public boolean contains(long k) { return map.containsKey(k); } @Override public boolean equals(Object o) { KeySetView c; return ((o instanceof KeySetView) && ((c = (KeySetView) o) == this || (containsAll(c) && c.containsAll(this)))); } /** * Returns the default mapped value for additions, * or {@code null} if additions are not supported. * * @return the default mapped value for additions, or {@code null} * if not supported */ public V getMappedValue() { return value; } @Override public int hashCode() { int h = 0; KeyIterator it = iterator(); if (it.hasNext()) { do { long k = it.next(); h += keyHashCode(k); } while (it.hasNext()); } return h; } public final boolean isEmpty() { return map.isEmpty(); } /** * @return an iterator over the keys of the backing map */ @NotNull public KeyIterator iterator() { KeyIterator it = tlKeyIterator.get(); it.of(map); return it; } /** * Removes the key from this map view, by removing the key (and its * corresponding value) from the backing map. This method does * nothing if the key is not in the map. * * @param k the key to be removed from the backing map * @return {@code true} if the backing map contained the specified key * @throws NullPointerException if the specified key is null */ public boolean remove(long k) { return map.remove(k) != null; } public final int size() { return map.size(); } @Override public final String toString() { StringBuilder sb = new StringBuilder(); sb.append('['); KeyIterator it = iterator(); if (it.hasNext()) { for (; ; ) { long k = it.next(); sb.append(k); if (!it.hasNext()) break; sb.append(',').append(' '); } } return sb.append(']').toString(); } private boolean containsAll(@NotNull KeySetView c) { KeyIterator it = iterator(); if (it.hasNext()) { do { long k = it.next(); if (!contains(k)) return false; } while (it.hasNext()); } return true; } } /** * Exported Entry for EntryIterator */ static final class MapEntry implements LongEntry { final long key; // != EMPTY_KEY final ConcurrentLongHashMap map; V val; // non-null MapEntry(long key, V val, ConcurrentLongHashMap map) { this.key = key; this.val = val; this.map = map; } @Override public boolean equals(Object o) { long k; Object v; LongEntry e; return ((o instanceof LongEntry) && (k = (e = (LongEntry) o).getKey()) != EMPTY_KEY && (v = e.getValue()) != null && (k == key) && (v == val || v.equals(val))); } @Override public long getKey() { return key; } @Override public V getValue() { return val; } @Override public int hashCode() { return keyHashCode(key) ^ val.hashCode(); } /** * Sets our entry's value and writes through to the map. The * value to return is somewhat arbitrary here. Since we do not * necessarily track asynchronous changes, the most recent * "previous" value could be different from what we return (or * could even have been removed, in which case the put will * re-establish). We do not and cannot guarantee more. */ @NotNull public V setValue(V value) { if (value == null) throw new NullPointerException(); V v = val; val = value; map.put(key, value); return v; } @Override public String toString() { return key + "=" + val; } } /** * Key-value entry. This class is never exported out as a * user-mutable Map.Entry (i.e., one supporting setValue; see * MapEntry below), but can be used for read-only traversals used * in bulk tasks. Subclasses of Node with a negative hash field * are special, and contain null keys and values (but are never * exported). Otherwise, keys and vals are never null. */ static class Node implements LongEntry { final int hash; final long key; volatile Node next; volatile V val; Node(int hash, long key, V val, Node next) { this.hash = hash; this.key = key; this.val = val; this.next = next; } @Override public final boolean equals(Object o) { long k; Object v, u; LongEntry e; return ((o instanceof LongEntry) && (k = (e = (LongEntry) o).getKey()) != EMPTY_KEY && (v = e.getValue()) != null && (k == key) && (v == (u = val) || v.equals(u))); } @Override public final long getKey() { return key; } @Override public final V getValue() { return val; } @Override public final int hashCode() { return keyHashCode(key) ^ val.hashCode(); } @Override public final V setValue(V value) { throw new UnsupportedOperationException(); } @Override public final String toString() { return key + "=" + val; } /** * Virtualized support for map.get(); overridden in subclasses. */ Node find(int h, long k) { Node e = this; if (k != EMPTY_KEY) { do { if (e.hash == h && (e.key == k)) return e; } while ((e = e.next) != null); } return null; } } /** * A place-holder node used in computeIfAbsent and compute */ static final class ReservationNode extends Node { ReservationNode() { super(RESERVED, EMPTY_KEY, null, null); } @Override Node find(int h, long k) { return null; } } /** * Stripped-down version of helper class used in previous version, * declared for the sake of serialization compatibility */ static class Segment extends ReentrantLock implements Serializable { private static final long serialVersionUID = 2249069246763182397L; final float loadFactor; Segment() { this.loadFactor = ConcurrentLongHashMap.LOAD_FACTOR; } } /** * Records the table, its length, and current traversal index for a * traverser that must process a region of a forwarded table before * proceeding with current table. */ static final class TableStack { int index; int length; TableStack next; Node[] tab; } /** * Encapsulates traversal for methods such as containsValue; also * serves as a base class for other iterators and spliterators. *

* Method advance visits once each still-valid node that was * reachable upon iterator construction. It might miss some that * were added to a bin after the bin was visited, which is OK wrt * consistency guarantees. Maintaining this property in the face * of possible ongoing resizes requires a fair amount of * bookkeeping state that is difficult to optimize away amidst * volatile accesses. Even so, traversal maintains reasonable * throughput. *

* Normally, iteration proceeds bin-by-bin traversing lists. * However, if the table has been resized, then all future steps * must traverse both the bin at the current index as well as at * (index + baseSize); and so on for further resizings. To * paranoically cope with potential sharing by users of iterators * across threads, iteration terminates if a bounds checks fails * for a table read. */ static class Traverser { int baseIndex; // current index of initial table int baseLimit; // index bound for initial table int baseSize; // initial table size int index; // index of bin to use next Node next; // the next entry to use TableStack stack, spare; // to save/restore on ForwardingNodes Node[] tab; // current table; updated if resized /** * Saves traversal state upon encountering a forwarding node. */ private void pushState(Node[] t, int i, int n) { TableStack s = spare; // reuse if possible if (s != null) spare = s.next; else s = new TableStack<>(); s.tab = t; s.length = n; s.index = i; s.next = stack; stack = s; } /** * Possibly pops traversal state. * * @param n length of current table */ private void recoverState(int n) { TableStack s; int len; while ((s = stack) != null && (index += (len = s.length)) >= n) { n = len; index = s.index; tab = s.tab; s.tab = null; TableStack next = s.next; s.next = spare; // save for reuse stack = next; spare = s; } if (s == null && (index += baseSize) >= n) index = ++baseIndex; } /** * Advances if possible, returning next valid node, or null if none. */ final Node advance() { Node e; if ((e = next) != null) e = e.next; for (; ; ) { Node[] t; int i, n; // must use locals in checks if (e != null) return next = e; if (baseIndex >= baseLimit || (t = tab) == null || (n = t.length) <= (i = index) || i < 0) return next = null; if ((e = tabAt(t, i)) != null && e.hash < 0) { if (e instanceof ForwardingNode) { tab = ((ForwardingNode) e).nextTable; e = null; pushState(t, i, n); continue; } else if (e instanceof TreeBin) e = ((TreeBin) e).first; else e = null; } if (stack != null) recoverState(n); else if ((index = i + baseSize) >= n) index = ++baseIndex; // visit upper slots if present } } void of(Node[] tab, int size, int limit) { this.tab = tab; this.baseSize = size; this.baseIndex = this.index = 0; this.baseLimit = limit; this.next = null; } } /** * TreeNodes used at the heads of bins. TreeBins do not hold user * keys or values, but instead point to list of TreeNodes and * their root. They also maintain a parasitic read-write lock * forcing writers (who hold bin lock) to wait for readers (who do * not) to complete before tree restructuring operations. */ static final class TreeBin extends Node { static final int READER = 4; // increment value for setting read lock static final int WAITER = 2; // set when waiting for write lock // values for lockState static final int WRITER = 1; // set while holding write lock private static final long LOCKSTATE; private static final sun.misc.Unsafe U; volatile TreeNode first; volatile int lockState; TreeNode root; volatile Thread waiter; /** * Creates bin with initial set of nodes headed by b. */ TreeBin(TreeNode b) { super(TREEBIN, EMPTY_KEY, null, null); this.first = b; TreeNode r = null; for (TreeNode x = b, next; x != null; x = next) { next = (TreeNode) x.next; x.left = x.right = null; if (r == null) { x.parent = null; x.red = false; r = x; } else { long k = x.key; int h = x.hash; for (TreeNode p = r; ; ) { int dir, ph; long pk = p.key; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((dir = compareComparables(k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; r = balanceInsertion(r, x); break; } } } } this.root = r; assert checkInvariants(root); } /** * Possibly blocks awaiting root lock. */ private void contendedLock() { boolean waiting = false; for (int s; ; ) { if (((s = lockState) & ~WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { if (waiting) waiter = null; return; } } else if ((s & WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { waiting = true; waiter = Thread.currentThread(); } } else if (waiting) LockSupport.park(this); } } /** * Acquires write lock for tree restructuring. */ private void lockRoot() { if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) contendedLock(); // offload to separate method } /** * Releases write lock for tree restructuring. */ private void unlockRoot() { lockState = 0; } static TreeNode balanceDeletion(TreeNode root, TreeNode x) { for (TreeNode xp, xpl, xpr; ; ) { if (x == null || x == root) return root; else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) x = xp; else { TreeNode sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = xp.red; if ((sr = xpr.right) != null) sr.red = false; } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) x = xp; else { TreeNode sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = xp.red; if ((sl = xpl.left) != null) sl.red = false; } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } static TreeNode balanceInsertion(TreeNode root, TreeNode x) { x.red = true; for (TreeNode xp, xpp, xppl, xppr; ; ) { if ((xp = x.parent) == null) { x.red = false; return x; } else if (!xp.red || (xpp = xp.parent) == null) return root; if (xp == (xppl = xpp.left)) { if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.right) { root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } else { if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } /** * Recursive invariant check */ @SuppressWarnings("SimplifiableIfStatement") static boolean checkInvariants(TreeNode t) { TreeNode tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode) t.next; if (tb != null && tb.next != t) return false; if (tn != null && tn.prev != t) return false; if (tp != null && t != tp.left && t != tp.right) return false; if (tl != null && (tl.parent != t || tl.hash > t.hash)) return false; if (tr != null && (tr.parent != t || tr.hash < t.hash)) return false; if (t.red && tl != null && tl.red && tr != null && tr.red) return false; if (tl != null && !checkInvariants(tl)) return false; return !(tr != null && !checkInvariants(tr)); } static TreeNode rotateLeft(TreeNode root, TreeNode p) { TreeNode r, pp, rl; if (p != null && (r = p.right) != null) { if ((rl = p.right = r.left) != null) rl.parent = p; if ((pp = r.parent = p.parent) == null) (root = r).red = false; else if (pp.left == p) pp.left = r; else pp.right = r; r.left = p; p.parent = r; } return root; } static TreeNode rotateRight(TreeNode root, TreeNode p) { TreeNode l, pp, lr; if (p != null && (l = p.left) != null) { if ((lr = p.left = l.right) != null) lr.parent = p; if ((pp = l.parent = p.parent) == null) (root = l).red = false; else if (pp.right == p) pp.right = l; else pp.left = l; l.right = p; p.parent = l; } return root; } /** * Tie-breaking utility for ordering insertions when equal * hashCodes and non-comparable. We don't require a total * order, just a consistent insertion rule to maintain * equivalence across rebalancings. Tie-breaking further than * necessary simplifies testing a bit. */ static int tieBreakOrder(Object a, Object b) { int d; if (a == null || b == null || (d = a.getClass().getName(). compareTo(b.getClass().getName())) == 0) d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1); return d; } /** * Returns matching node or null if none. Tries to search * using tree comparisons from root, but continues linear * search when lock not available. */ @Override Node find(int h, long k) { if (k != EMPTY_KEY) { for (Node e = first; e != null; ) { int s; if (((s = lockState) & (WAITER | WRITER)) != 0) { if (e.hash == h && e.key == k) return e; e = e.next; } else if (U.compareAndSwapInt(this, LOCKSTATE, s, s + READER)) { TreeNode r, p; try { p = ((r = root) == null ? null : r.findTreeNode(h, k)); } finally { Thread w; if (U.getAndAddInt(this, LOCKSTATE, -READER) == (READER | WAITER) && (w = waiter) != null) LockSupport.unpark(w); } return p; } } } return null; } /** * Finds or adds a node. * * @return null if added */ TreeNode putTreeVal(int h, long k, V v) { boolean searched = false; for (TreeNode p = root; ; ) { int dir, ph; long pk; if (p == null) { first = root = new TreeNode<>(h, k, v, null, null); break; } else if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((pk = p.key) == k) return p; else if ((dir = compareComparables(k, pk)) == 0) { if (!searched) { TreeNode q, ch; searched = true; if (((ch = p.left) != null && (q = ch.findTreeNode(h, k)) != null) || ((ch = p.right) != null && (q = ch.findTreeNode(h, k)) != null)) return q; } dir = tieBreakOrder(k, pk); } TreeNode xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { TreeNode x, f = first; first = x = new TreeNode<>(h, k, v, f, xp); if (f != null) f.prev = x; if (dir <= 0) xp.left = x; else xp.right = x; if (!xp.red) x.red = true; else { lockRoot(); try { root = balanceInsertion(root, x); } finally { unlockRoot(); } } break; } } assert checkInvariants(root); return null; } /** * Removes the given node, that must be present before this * call. This is messier than typical red-black deletion code * because we cannot swap the contents of an interior node * with a leaf successor that is pinned by "next" pointers * that are accessible independently of lock. So instead we * swap the tree linkages. * * @return true if now too small, so should be untreeified */ boolean removeTreeNode(TreeNode p) { TreeNode next = (TreeNode) p.next; TreeNode pred = p.prev; // unlink traversal pointers TreeNode r, rl; if (pred == null) first = next; else pred.next = next; if (next != null) next.prev = pred; if (first == null) { root = null; return true; } if ((r = root) == null || r.right == null || // too small (rl = r.left) == null || rl.left == null) return true; lockRoot(); try { TreeNode replacement; TreeNode pl = p.left; TreeNode pr = p.right; if (pl != null && pr != null) { TreeNode s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode sr = s.right; TreeNode pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) sp.left = p; else sp.right = p; } s.right = pr; pr.parent = s; } p.left = null; if ((p.right = sr) != null) sr.parent = p; s.left = pl; pl.parent = s; if ((s.parent = pp) == null) r = s; else if (p == pp.left) pp.left = s; else pp.right = s; if (sr != null) replacement = sr; else replacement = p; } else if (pl != null) replacement = pl; else if (pr != null) replacement = pr; else replacement = p; if (replacement != p) { TreeNode pp = replacement.parent = p.parent; if (pp == null) r = replacement; else if (p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } root = (p.red) ? r : balanceDeletion(r, replacement); if (p == replacement) { // detach pointers TreeNode pp; if ((pp = p.parent) != null) { if (p == pp.left) pp.left = null; else if (p == pp.right) pp.right = null; p.parent = null; } } } finally { unlockRoot(); } assert checkInvariants(root); return false; } static { try { U = Unsafe.getUnsafe(); Class k = TreeBin.class; LOCKSTATE = U.objectFieldOffset (k.getDeclaredField("lockState")); } catch (Exception e) { throw new Error(e); } } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR } /** * Nodes for use in TreeBins */ static final class TreeNode extends Node { TreeNode left; TreeNode parent; // red-black tree links TreeNode prev; // needed to unlink next upon deletion boolean red; TreeNode right; TreeNode(int hash, long key, V val, Node next, TreeNode parent) { super(hash, key, val, next); this.parent = parent; } @Override Node find(int h, long k) { return findTreeNode(h, k); } /** * Returns the TreeNode (or null if not found) for the given key * starting at given root. */ TreeNode findTreeNode(int h, long k) { if (k != EMPTY_KEY) { TreeNode p = this; do { int ph, dir; long pk; TreeNode q; TreeNode pl = p.left, pr = p.right; if ((ph = p.hash) > h) p = pl; else if (ph < h) p = pr; else if ((pk = p.key) == k) return p; else if (pl == null) p = pr; else if (pr == null) p = pl; else if ((dir = compareComparables(k, pk)) != 0) p = (dir < 0) ? pl : pr; else if ((q = pr.findTreeNode(h, k)) != null) return q; else p = pl; } while (p != null); } return null; } } static final class ValueIterator extends BaseIterator implements Iterator { public V next() { Node p; if ((p = next) == null) throw new NoSuchElementException(); V v = p.val; lastReturned = p; advance(); return v; } } /** * A view of a ConcurrentLongHashMap as a {@link Collection} of * values, in which additions are disabled. This class cannot be * directly instantiated. See {@link #values()}. */ static final class ValuesView extends CollectionView implements Collection, java.io.Serializable { private static final long serialVersionUID = 2249069246763182397L; private final ThreadLocal> tlValueIterator = ThreadLocal.withInitial(ValueIterator::new); ValuesView(ConcurrentLongHashMap map) { super(map); } @Override public boolean add(V e) { throw new UnsupportedOperationException(); } @Override public boolean addAll(@NotNull Collection c) { throw new UnsupportedOperationException(); } @Override public boolean contains(Object o) { return map.containsValue((V) o); } @Override @NotNull public Iterator iterator() { ValueIterator it = tlValueIterator.get(); it.of(map); return it; } @Override public boolean remove(Object o) { if (o != null) { for (Iterator it = iterator(); it.hasNext(); ) { if (o.equals(it.next())) { it.remove(); return true; } } } return false; } } static { try { Class tk = Thread.class; SEED = Unsafe.getUnsafe().objectFieldOffset(tk.getDeclaredField("threadLocalRandomSeed")); PROBE = Unsafe.getUnsafe().objectFieldOffset(tk.getDeclaredField("threadLocalRandomProbe")); } catch (Exception e) { throw new Error(e); } } static { try { Class k = ConcurrentLongHashMap.class; SIZECTL = Unsafe.getUnsafe().objectFieldOffset (k.getDeclaredField("sizeCtl")); TRANSFERINDEX = Unsafe.getUnsafe().objectFieldOffset (k.getDeclaredField("transferIndex")); BASECOUNT = Unsafe.getUnsafe().objectFieldOffset (k.getDeclaredField("baseCount")); CELLSBUSY = Unsafe.getUnsafe().objectFieldOffset (k.getDeclaredField("cellsBusy")); Class ck = CounterCell.class; CELLVALUE = Unsafe.getUnsafe().objectFieldOffset (ck.getDeclaredField("value")); Class ak = Node[].class; ABASE = Unsafe.getUnsafe().arrayBaseOffset(ak); int scale = Unsafe.getUnsafe().arrayIndexScale(ak); if ((scale & (scale - 1)) != 0) throw new Error("data type scale not a power of two"); ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); } catch (Exception e) { throw new Error(e); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy