All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ranksys.diversity.prop.metrics.CPR Maven / Gradle / Ivy

The newest version!
/* 
 * Copyright (C) 2015 RankSys (http://ranksys.org)
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */
package org.ranksys.diversity.prop.metrics;

import es.uam.eps.ir.ranksys.core.feature.FeatureData;
import es.uam.eps.ir.ranksys.core.Recommendation;
import es.uam.eps.ir.ranksys.diversity.binom.BinomialModel;
import es.uam.eps.ir.ranksys.metrics.AbstractRecommendationMetric;
import es.uam.eps.ir.ranksys.metrics.rel.NoRelevanceModel;
import es.uam.eps.ir.ranksys.metrics.rel.RelevanceModel;
import it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap;
import org.ranksys.core.util.tuples.Tuple2od;

/**
 * Cumulative proportionality metric.
 * 
* * Dang, V., Croft, W. B. (2012). Diversity by Proportionality: An Election-based Approach to Search Result Diversification. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 65–74). New York, NY, USA: ACM. doi:10.1145/2348283.2348296 * * @author Saúl Vargas ([email protected]) * * @param type of user * @param type of item * @param type of feature */ public class CPR extends AbstractRecommendationMetric { private final BinomialModel binomialModel; private final FeatureData featureData; private final int cutoff; private final RelevanceModel relModel; /** * Constructor. * * @param binomialModel binomial model for features * @param featureData feature data * @param cutoff metric cutoff * @param relModel relevance model */ public CPR(BinomialModel binomialModel, FeatureData featureData, int cutoff, RelevanceModel relModel) { this.binomialModel = binomialModel; this.featureData = featureData; this.cutoff = cutoff; this.relModel = relModel; } @Override public double evaluate(Recommendation recommendation) { RelevanceModel.UserRelevanceModel userRelModel = relModel.getModel(recommendation.getUser()); BinomialModel.UserBinomialModel prob = binomialModel.getModel(recommendation.getUser()); Object2IntOpenHashMap count = new Object2IntOpenHashMap<>(); count.defaultReturnValue(0); int rank = 0; int nr = 0; double cpr = 0.0; for (Tuple2od iv : recommendation.getItems()) { if (userRelModel.isRelevant(iv.v1)) { featureData.getItemFeatures(iv.v1).forEach(fv -> { count.addTo(fv.v1, 1); }); } else { nr++; } double[] disprop = {0.5 * nr * nr}; double[] ideal = {0}; if (relModel instanceof NoRelevanceModel) { ideal[0] = 0; } else { ideal[0] = 0.5 * (rank + 1) * (rank + 1); } int _rank = rank; prob.getFeatures().forEach(f -> { double v = prob.p(f) * (_rank + 1); int c = count.getInt(f); if (v >= c) { disprop[0] += (v - c) * (v - c); } ideal[0] += v * v; }); cpr += 1 - disprop[0] / ideal[0]; rank++; if (rank >= cutoff) { break; } } cpr /= rank; return cpr; } }