All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.gwt.emul.java.util.TreeMap Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2008 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package java.util;

import static javaemul.internal.InternalPreconditions.checkNotNull;

import java.io.Serializable;

/**
 * Implements a TreeMap using a red-black tree. This guarantees O(log n)
 * performance on lookups, inserts, and deletes while maintaining linear
 * in-order traversal time. Null keys and values are fully supported if the
 * comparator supports them (the default comparator does not).
 *
 * @param  key type
 * @param  value type
 */
public class TreeMap extends AbstractNavigableMap implements Serializable {
  /*
   * Implementation derived from public domain C implementation as of 5
   * September 2007 at:
   * http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx
   * written by Julienne Walker.
   *
   * This version does not require a parent pointer kept in each node.
   */

  /**
   * Iterator for descendingMap().entrySet().
   */
  private final class DescendingEntryIterator implements Iterator> {
    private final ListIterator> iter;
    private Entry last;

    /**
     * Constructor for DescendingEntryIterator.
     */
    public DescendingEntryIterator() {
      this(SubMapType.All, null, false, null, false);
    }

    /**
     * Create an iterator which may return only a restricted range.
     *
     * @param fromKey the first key to return in the iterator.
     * @param toKey the upper bound of keys to return.
     */
    public DescendingEntryIterator(SubMapType type,
        K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) {
      List> list = new ArrayList>();
      inOrderAdd(list, type, TreeMap.this.root,
          fromKey, fromInclusive, toKey, toInclusive);
      this.iter = list.listIterator(list.size());
    }

    @Override
    public boolean hasNext() {
      return iter.hasPrevious();
    }

    @Override
    public Entry next() {
      return last = iter.previous();
    }

    @Override
    public void remove() {
      iter.remove();
      removeEntry(last);
      last = null;
    }
  }

  /**
   * Iterator for EntrySet.
   */
  private final class EntryIterator implements Iterator> {
    private final ListIterator> iter;
    private Entry last;

    /**
     * Constructor for EntrySetIterator.
     */
    public EntryIterator() {
      this(SubMapType.All, null, false, null, false);
    }

    /**
     * Create an iterator which may return only a restricted range.
     *
     * @param fromKey the first key to return in the iterator.
     * @param toKey the upper bound of keys to return.
     */
    public EntryIterator(SubMapType type,
        K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) {
      List> list = new ArrayList>();
      inOrderAdd(list, type, TreeMap.this.root,
          fromKey, fromInclusive, toKey, toInclusive);
      this.iter = list.listIterator();
    }

    @Override
    public boolean hasNext() {
      return iter.hasNext();
    }

    @Override
    public Entry next() {
      return last = iter.next();
    }

    @Override
    public void remove() {
      iter.remove();
      removeEntry(last);
      last = null;
    }
  }

  private final class EntrySet extends AbstractNavigableMap.EntrySet {
    @Override
    public void clear() {
      TreeMap.this.clear();
    }
  }

  /**
   * Tree node.
   *
   * @param  key type
   * @param  value type
   */
  private static class Node extends SimpleEntry {
    /*
     * The children are kept in an array to minimize the normal duplication of
     * code.
     */
    @SuppressWarnings("unchecked")
    protected final Node[] child = new Node[2];
    protected boolean isRed;

    /**
     * Create a red node.
     *
     * @param key
     * @param value
     */
    public Node(K key, V value) {
      this(key, value, true);
    }

    /**
     * Create a node of the specified color.
     *
     * @param key
     * @param value
     * @param isRed true if this should be a red node, false for black
     */
    public Node(K key, V value, boolean isRed) {
      super(key, value);
      this.isRed = isRed;
    }
  }

  /**
   * A state object which is passed down the tree for both insert and remove.
   * All uses make use of the done flag to indicate when no further rebalancing
   * of the tree is required. Remove methods use the found flag to indicate when
   * the desired key has been found. value is used both to return the value of a
   * removed node as well as to pass in a value which must match (used for
   * entrySet().remove(entry)), and the matchValue flag is used to request this
   * behavior.
   *
   * @param  value type
   */
  private static class State {
    public boolean done;
    public boolean found;
    public boolean matchValue;
    public V value;

    @Override
    public String toString() {
      return "State: mv=" + matchValue + " value=" + value + " done=" + done + " found=" + found;
    }
  }

  private class SubMap extends AbstractNavigableMap {
    private final boolean fromInclusive;

    // valid only if type is Range or Tail
    private final K fromKey;

    private final boolean toInclusive;

    // valid only if type is Range or Head
    private final K toKey;

    private final SubMapType type;

    SubMap(SubMapType type,
        K fromKey, boolean fromInclusive,
        K toKey, boolean toInclusive) {
      switch (type) {
        case Range:
          if (cmp.compare(toKey, fromKey) < 0) {
            throw new IllegalArgumentException("subMap: " + toKey
                + " less than " + fromKey);
          }
          break;
        case Head:
          // check key for compatibility with comparator
          cmp.compare(toKey, toKey);
          break;
        case Tail:
          // check key for compatibility with comparator
          cmp.compare(fromKey, fromKey);
          break;
        case All:
          // no checks are needed
          break;
      }
      this.type = type;
      this.fromKey = fromKey;
      this.fromInclusive = fromInclusive;
      this.toKey = toKey;
      this.toInclusive = toInclusive;
    }

    @Override
    public Comparator comparator() {
      return TreeMap.this.comparator();
    }

    @Override
    public Set> entrySet() {
      return new SubMap.EntrySet();
    }

    @Override
    public NavigableMap headMap(K toKey, boolean toInclusive) {
      if (type.toKeyValid() && cmp.compare(toKey, this.toKey) > 0) {
        throw new IllegalArgumentException("subMap: " + toKey +
            " greater than " + this.toKey);
      }
      if (type.fromKeyValid()) {
        return TreeMap.this.subMap(fromKey, fromInclusive, toKey, toInclusive);
      } else {
        return TreeMap.this.headMap(toKey, toInclusive);
      }
    }

    @Override
    public V put(K key, V value) {
      if (!inRange(key)) {
        throw new IllegalArgumentException(key + " outside the range "
            + fromKey + " to " + toKey);
      }
      return TreeMap.this.put(key, value);
    }

    @SuppressWarnings("unchecked")
    @Override
    public V remove(Object k) {
      K key = (K) k;
      if (!inRange(key)) {
        return null;
      }
      return TreeMap.this.remove(key);
    }

    @Override
    public int size() {
      if (getFirstEntry() == null) {
        return 0;
      }

      // TODO(jat): more efficient way to do this?
      int count = 0;
      for (Iterator> it = entryIterator(); it.hasNext(); it.next()) {
        count++;
      }
      return count;
    }

    @Override
    public NavigableMap subMap(K newFromKey, boolean newFromInclusive,
        K newToKey, boolean newToInclusive) {
      if (type.fromKeyValid() && cmp.compare(newFromKey, fromKey) < 0) {
        throw new IllegalArgumentException("subMap: " + newFromKey +
            " less than " + fromKey);
      }
      if (type.toKeyValid() && cmp.compare(newToKey, toKey) > 0) {
        throw new IllegalArgumentException("subMap: " + newToKey +
            " greater than " + toKey);
      }
      return TreeMap.this.subMap(newFromKey, newFromInclusive, newToKey, newToInclusive);
    }

    @Override
    public NavigableMap tailMap(K fromKey, boolean fromInclusive) {
      if (type.fromKeyValid() && cmp.compare(fromKey, this.fromKey) < 0) {
        throw new IllegalArgumentException("subMap: " + fromKey +
            " less than " + this.fromKey);
      }
      if (type.toKeyValid()) {
        return TreeMap.this.subMap(fromKey, fromInclusive, toKey, toInclusive);
      } else {
        return TreeMap.this.tailMap(fromKey, fromInclusive);
      }
    }

    @Override
    Iterator> descendingEntryIterator() {
      return new DescendingEntryIterator(type, fromKey, fromInclusive, toKey, toInclusive);
    }

    @Override
    Iterator> entryIterator() {
      return new EntryIterator(type, fromKey, fromInclusive, toKey, toInclusive);
    }

    @Override
    Entry getEntry(K key) {
      return guardInRange(TreeMap.this.getEntry(key));
    }

    @Override
    Entry getFirstEntry() {
      Entry entry;
      if (type.fromKeyValid()) {
        if (fromInclusive) {
          entry = TreeMap.this.getCeilingEntry(fromKey);
        } else {
          entry = TreeMap.this.getHigherEntry(fromKey);
        }
      } else {
        entry = TreeMap.this.getFirstEntry();
      }
      // The map is empty if the first key after fromKey is out of range.
      return guardInRange(entry);
    }

    @Override
    Entry getLastEntry() {
      Entry entry;
      if (type.toKeyValid()) {
        if (toInclusive) {
          entry = TreeMap.this.getFloorEntry(toKey);
        } else {
          entry = TreeMap.this.getLowerEntry(toKey);
        }
      } else {
        entry = TreeMap.this.getLastEntry();
      }
      // The map is empty if the last key before toKey is out of range.
      return guardInRange(entry);
    }

    @Override
    Entry getCeilingEntry(K key) {
      return guardInRange(TreeMap.this.getCeilingEntry(key));
    }

    @Override
    Entry getFloorEntry(K key) {
      return guardInRange(TreeMap.this.getFloorEntry(key));
    }

    @Override
    Entry getHigherEntry(K key) {
      return guardInRange(TreeMap.this.getHigherEntry(key));
    }

    @Override
    Entry getLowerEntry(K key) {
      return guardInRange(TreeMap.this.getLowerEntry(key));
    }

    @Override
    boolean removeEntry(Entry entry) {
      return inRange(entry.getKey()) && TreeMap.this.removeEntry(entry);
    }

    private Entry guardInRange(Entry entry) {
      return entry != null && inRange(entry.getKey()) ? entry : null;
    }

    private boolean inRange(K key) {
      return TreeMap.this.inRange(type, key, fromKey, fromInclusive, toKey, toInclusive);
    }
  }

  private enum SubMapType {
    All,

    Head {
      @Override
      public boolean toKeyValid() {
        return true;
      }
    },

    Range {
      @Override
      public boolean fromKeyValid() {
        return true;
      }

      @Override
      public boolean toKeyValid() {
        return true;
      }
    },

    Tail {
      @Override
      public boolean fromKeyValid() {
        return true;
      }
    };

    /**
     * Returns true if this submap type uses a from-key.
     */
    public boolean fromKeyValid() {
      return false;
    }

    /**
     * Returns true if this submap type uses a to-key.
     */
    public boolean toKeyValid() {
      return false;
    }
  }

  private static final int LEFT = 0;
  private static final int RIGHT = 1;

  private static int otherChild(int child) {
    assert (child == 0 || child == 1);
    return 1 - child;
  }

  // The comparator to use.
  private Comparator cmp;

  /*
   * These two fields are just hints to STOB so that it generates serializers
   * for K and V
   */
  @SuppressWarnings("unused")
  private K exposeKeyType;

  @SuppressWarnings("unused")
  private V exposeValueType;

  // The root of the tree.
  private transient Node root;

  // The number of nodes in the tree.
  private int size = 0;

  public TreeMap() {
    this((Comparator) null);
  }

  @SuppressWarnings("unchecked")
  public TreeMap(Comparator c) {
    root = null;
    cmp = Comparators.nullToNaturalOrder(c);
  }

  public TreeMap(Map map) {
    this();
    putAll(map);
  }

  @SuppressWarnings("unchecked")
  public TreeMap(SortedMap map) {
    this(checkNotNull(map).comparator());
    putAll(map); // TODO(jat): more efficient init from sorted map
  }

  @Override
  public void clear() {
    root = null;
    size = 0;
  }

  @Override
  public Comparator comparator() {
    return Comparators.naturalOrderToNull(cmp);
  }

  @Override
  public Set> entrySet() {
    return new EntrySet();
  }

  @Override
  public NavigableMap headMap(K toKey, boolean inclusive) {
    return new SubMap(SubMapType.Head, null, false, toKey, inclusive);
  }

  @Override
  public V put(K key, V value) {
    Node node = new Node(key, value);
    State state = new State();
    root = insert(root, node, state);
    if (!state.found) {
      ++size;
    }
    root.isRed = false;
    return state.value;
  }

  @Override
  @SuppressWarnings("unchecked")
  public V remove(Object k) {
    K key = (K) k;
    State state = new State();
    removeWithState(key, state);
    return state.value;
  }

  @Override
  public int size() {
    return size;
  }

  @Override
  public NavigableMap subMap(K fromKey, boolean fromInclusive,
      K toKey, boolean toInclusive) {
    return new SubMap(SubMapType.Range, fromKey, fromInclusive, toKey, toInclusive);
  }

  @Override
  public NavigableMap tailMap(K fromKey, boolean inclusive) {
    return new SubMap(SubMapType.Tail, fromKey, inclusive, null, false);
  }

  /**
   * Returns the first node which compares greater than the given key.
   *
   * @param key the key to search for
   * @return the next node, or null if there is none
   */
  private Node getNodeAfter(K key, boolean inclusive) {
    Node foundNode = null;
    Node node = root;
    while (node != null) {
      int c = cmp.compare(key, node.getKey());
      if (inclusive && c == 0) {
        return node;
      }
      if (c >= 0) {
        node = node.child[RIGHT];
      } else {
        foundNode = node;
        node = node.child[LEFT];
      }
    }
    return foundNode;
  }

  /**
   * Returns the last node which is strictly less than the given key.
   *
   * @param key the key to search for
   * @return the previous node, or null if there is none
   */
  private Node getNodeBefore(K key, boolean inclusive) {
    Node foundNode = null;
    Node node = root;
    while (node != null) {
      int c = cmp.compare(key, node.getKey());
      if (inclusive && c == 0) {
        return node;
      }
      if (c <= 0) {
        node = node.child[LEFT];
      } else {
        foundNode = node;
        node = node.child[RIGHT];
      }
    }
    return foundNode;
  }

  /**
   * Used for testing. Validate that the tree meets all red-black correctness
   * requirements. These include:
   *
   * 
   *  - root is black
   *  - no children of a red node may be red
   *  - the black height of every path through the three to a leaf is exactly the same
   * 
* * @throws RuntimeException if any correctness errors are detected. */ void assertCorrectness() { assertCorrectness(root, true); } @Override Iterator> descendingEntryIterator() { return new DescendingEntryIterator(); } @Override Iterator> entryIterator() { return new EntryIterator(); } /** * Internal helper function for public {@link #assertCorrectness()}. * * @param tree the subtree to validate. * @param isRed true if the parent of this node is red. * @return the black height of this subtree. * @throws RuntimeException if this RB-tree is not valid. */ private int assertCorrectness(Node tree, boolean isRed) { if (tree == null) { return 0; } if (isRed && tree.isRed) { throw new RuntimeException("Two red nodes adjacent"); } Node leftNode = tree.child[LEFT]; if (leftNode != null && cmp.compare(leftNode.getKey(), tree.getKey()) > 0) { throw new RuntimeException("Left child " + leftNode + " larger than " + tree); } Node rightNode = tree.child[RIGHT]; if (rightNode != null && cmp.compare(rightNode.getKey(), tree.getKey()) < 0) { throw new RuntimeException("Right child " + rightNode + " smaller than " + tree); } int leftHeight = assertCorrectness(leftNode, tree.isRed); int rightHeight = assertCorrectness(rightNode, tree.isRed); if (leftHeight != 0 && rightHeight != 0 && leftHeight != rightHeight) { throw new RuntimeException("Black heights don't match"); } return tree.isRed ? leftHeight : leftHeight + 1; } /** * Finds an entry given a key and returns the node. * * @param key the search key * @return the node matching the key or null */ @Override Entry getEntry(K key) { Node tree = root; while (tree != null) { int c = cmp.compare(key, tree.getKey()); if (c == 0) { return tree; } int childNum = c < 0 ? LEFT : RIGHT; tree = tree.child[childNum]; } return null; } /** * Returns the left-most node of the tree, or null if empty. */ @Override Entry getFirstEntry() { if (root == null) { return null; } Node node = root; Node nextNode; while ((nextNode = node.child[LEFT]) != null) { node = nextNode; } return node; } /** * Returns the right-most node of the tree, or null if empty. */ @Override Entry getLastEntry() { if (root == null) { return null; } Node node = root; Node nextNode; while ((nextNode = node.child[RIGHT]) != null) { node = nextNode; } return node; } @Override Entry getCeilingEntry(K key) { return getNodeAfter(key, true); } @Override Entry getFloorEntry(K key) { return getNodeBefore(key, true); } @Override Entry getHigherEntry(K key) { return getNodeAfter(key, false); } @Override Entry getLowerEntry(K key) { return getNodeBefore(key, false); } @Override boolean removeEntry(Entry entry) { State state = new State(); state.matchValue = true; state.value = entry.getValue(); return removeWithState(entry.getKey(), state); } private void inOrderAdd(List> list, SubMapType type, Node current, K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (current == null) { return; } // TODO: truncate this recursion if the whole subtree is known to be // outside of bounds? Node leftNode = current.child[LEFT]; if (leftNode != null) { inOrderAdd(list, type, leftNode, fromKey, fromInclusive, toKey, toInclusive); } if (inRange(type, current.getKey(), fromKey, fromInclusive, toKey, toInclusive)) { list.add(current); } Node rightNode = current.child[RIGHT]; if (rightNode != null) { inOrderAdd(list, type, rightNode, fromKey, fromInclusive, toKey, toInclusive); } } private boolean inRange(SubMapType type, K key, K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (type.fromKeyValid() && smaller(key, fromKey, !fromInclusive)) { return false; } if (type.toKeyValid() && larger(key, toKey, !toInclusive)) { return false; } return true; } /** * Insert a node into a subtree, collecting state about the insertion. * * If the same key already exists, the value of the node is overwritten with * the value from the new node instead. * * @param tree subtree to insert into * @param newNode new node to insert * @param state result of the insertion: state.found true if the key already * existed in the tree state.value the old value if the key existed * @return the new subtree root */ private Node insert(Node tree, Node newNode, State state) { if (tree == null) { return newNode; } else { int c = cmp.compare(newNode.getKey(), tree.getKey()); if (c == 0) { state.value = tree.setValue(newNode.getValue()); state.found = true; return tree; } int childNum = c < 0 ? LEFT : RIGHT; tree.child[childNum] = insert(tree.child[childNum], newNode, state); if (isRed(tree.child[childNum])) { if (isRed(tree.child[otherChild(childNum)])) { // both children are red (nulls are black), make both black and me red tree.isRed = true; tree.child[LEFT].isRed = false; tree.child[RIGHT].isRed = false; } else { // if (isRed(tree.child[childNum].child[childNum])) { tree = rotateSingle(tree, otherChild(childNum)); } else if (isRed(tree.child[childNum].child[otherChild(childNum)])) { tree = rotateDouble(tree, otherChild(childNum)); } } } } return tree; } /** * Returns true if node is red. Note that null pointers are * considered black. */ private boolean isRed(Node node) { return node != null && node.isRed; } /** * Returns true if a is greater than or equal to b. */ private boolean larger(K a, K b, boolean orEqual) { int compare = cmp.compare(a, b); return compare > 0 || (orEqual && compare == 0); } /** * Returns true if a is less than or equal to b. */ private boolean smaller(K a, K b, boolean orEqual) { int compare = cmp.compare(a, b); return compare < 0 || (orEqual && compare == 0); } /** * Remove a key from the tree, returning whether it was found and its value. * * @param key key to remove * @param state return state, not null * @return true if the value was found */ private boolean removeWithState(K key, State state) { if (root == null) { return false; } Node found = null; Node parent = null; // create a fake tree root to minimize special cases for changing the root Node head = new Node(null, null); int dir = RIGHT; head.child[RIGHT] = root; Node node = head; while (node.child[dir] != null) { int last = dir; Node grandparent = parent; parent = node; node = node.child[dir]; int c = cmp.compare(key, node.getKey()); dir = c < 0 ? LEFT : RIGHT; if (c == 0 && (!state.matchValue || Objects.equals(node.getValue(), state.value))) { found = node; } if (!isRed(node) && !isRed(node.child[dir])) { if (isRed(node.child[otherChild(dir)])) { parent = parent.child[last] = rotateSingle(node, dir); } else if (!isRed(node.child[otherChild(dir)])) { Node sibling = parent.child[otherChild(last)]; if (sibling != null) { if (!isRed(sibling.child[otherChild(last)]) && !isRed(sibling.child[last])) { parent.isRed = false; sibling.isRed = true; node.isRed = true; } else { assert grandparent != null; int dir2 = grandparent.child[RIGHT] == parent ? RIGHT : LEFT; if (isRed(sibling.child[last])) { grandparent.child[dir2] = rotateDouble(parent, last); } else if (isRed(sibling.child[otherChild(last)])) { grandparent.child[dir2] = rotateSingle(parent, last); } node.isRed = grandparent.child[dir2].isRed = true; grandparent.child[dir2].child[LEFT].isRed = false; grandparent.child[dir2].child[RIGHT].isRed = false; } } } } } if (found != null) { state.found = true; state.value = found.getValue(); /** * put the "node" values in "found" (the node with key K) and cut "node" * out. However, we do not want to corrupt "found" -- issue 3423. So * create a new node "newNode" to replace the "found" node. * * TODO: (jat's suggestion) Consider using rebalance to move the deleted * node to a leaf to avoid the extra traversal in replaceNode. */ if (node != found) { Node newNode = new Node(node.getKey(), node.getValue()); replaceNode(head, found, newNode); if (parent == found) { parent = newNode; } } // cut "node" out parent.child[parent.child[RIGHT] == node ? RIGHT : LEFT] = node.child[node.child[LEFT] == null ? RIGHT : LEFT]; size--; } root = head.child[RIGHT]; if (root != null) { root.isRed = false; } return state.found; } /** * replace 'node' with 'newNode' in the tree rooted at 'head'. Could have * avoided this traversal if each node maintained a parent pointer. */ private void replaceNode(Node head, Node node, Node newNode) { Node parent = head; int direction = (parent.getKey() == null || cmp.compare(node.getKey(), parent.getKey()) > 0) ? RIGHT : LEFT; // parent.key == null handles the fake root node while (parent.child[direction] != node) { parent = parent.child[direction]; assert parent != null; direction = cmp.compare(node.getKey(), parent.getKey()) > 0 ? RIGHT : LEFT; } // replace node with newNode parent.child[direction] = newNode; newNode.isRed = node.isRed; newNode.child[LEFT] = node.child[LEFT]; newNode.child[RIGHT] = node.child[RIGHT]; node.child[LEFT] = null; node.child[RIGHT] = null; } /** * Perform a double rotation, first rotating the child which will become the * root in the opposite direction, then rotating the root in the specified * direction. * *
   *           A                                               F
   *         B   C    becomes (with rotateDirection=0)       A   C
   *        D E F G                                         B E   G
   *                                                       D
   * 
* * @param tree root of the subtree to rotate * @param rotateDirection the direction to rotate: 0=left, 1=right * @return the new root of the rotated subtree */ private Node rotateDouble(Node tree, int rotateDirection) { // free the pointer of the new root int otherChildDir = otherChild(rotateDirection); tree.child[otherChildDir] = rotateSingle(tree.child[otherChildDir], otherChildDir); return rotateSingle(tree, rotateDirection); } /** * Perform a single rotation, pushing the root of the subtree to the specified * direction. * *
   *      A                                              B
   *    B   C     becomes (with rotateDirection=1)     D   A
   *   D E                                              E   C
   * 
* * @param tree the root of the subtree to rotate * @param rotateDirection the direction to rotate: 0=left rotation, 1=right * @return the new root of the rotated subtree */ private Node rotateSingle(Node tree, int rotateDirection) { int otherChildDir = otherChild(rotateDirection); Node save = tree.child[otherChildDir]; tree.child[otherChildDir] = save.child[rotateDirection]; save.child[rotateDirection] = tree; tree.isRed = true; save.isRed = false; return save; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy