All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.reactivex.rxjava3.processors.ReplayProcessor Maven / Gradle / Ivy

Go to download

Easy Redis Java client and Real-Time Data Platform. Valkey compatible. Sync/Async/RxJava3/Reactive API. Client side caching. Over 50 Redis based Java objects and services: JCache API, Apache Tomcat, Hibernate, Spring, Set, Multimap, SortedSet, Map, List, Queue, Deque, Semaphore, Lock, AtomicLong, Map Reduce, Bloom filter, Scheduler, RPC

There is a newer version: 3.43.0
Show newest version
/**
 * Copyright (c) 2016-present, RxJava Contributors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License is
 * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
 * the License for the specific language governing permissions and limitations under the License.
 */

package io.reactivex.rxjava3.processors;

import java.lang.reflect.Array;
import java.util.*;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.*;

import org.reactivestreams.*;

import io.reactivex.rxjava3.annotations.*;
import io.reactivex.rxjava3.core.Scheduler;
import io.reactivex.rxjava3.internal.functions.ObjectHelper;
import io.reactivex.rxjava3.internal.subscriptions.SubscriptionHelper;
import io.reactivex.rxjava3.internal.util.*;
import io.reactivex.rxjava3.plugins.RxJavaPlugins;

/**
 * Replays events to Subscribers.
 * 

* The {@code ReplayProcessor} supports the following item retention strategies: *

    *
  • {@link #create()} and {@link #create(int)}: retains and replays all events to current and * future {@code Subscriber}s. *

    * *

    * *

  • *
  • {@link #createWithSize(int)}: retains at most the given number of items and replays only these * latest items to new {@code Subscriber}s. *

    * *

  • *
  • {@link #createWithTime(long, TimeUnit, Scheduler)}: retains items no older than the specified time * and replays them to new {@code Subscriber}s (which could mean all items age out). *

    * *

  • *
  • {@link #createWithTimeAndSize(long, TimeUnit, Scheduler, int)}: retains no more than the given number of items * which are also no older than the specified time and replays them to new {@code Subscriber}s (which could mean all items age out). *

    * *

  • *
*

* The {@code ReplayProcessor} can be created in bounded and unbounded mode. It can be bounded by * size (maximum number of elements retained at most) and/or time (maximum age of elements replayed). *

* Since a {@code ReplayProcessor} is a Reactive Streams {@code Processor}, * {@code null}s are not allowed (Rule 2.13) as * parameters to {@link #onNext(Object)} and {@link #onError(Throwable)}. Such calls will result in a * {@link NullPointerException} being thrown and the processor's state is not changed. *

* This {@code ReplayProcessor} respects the individual backpressure behavior of its {@code Subscriber}s but * does not coordinate their request amounts towards the upstream (because there might not be any) and * consumes the upstream in an unbounded manner (requesting {@link Long#MAX_VALUE}). * Note that {@code Subscriber}s receive a continuous sequence of values after they subscribed even * if an individual item gets delayed due to backpressure. * Due to concurrency requirements, a size-bounded {@code ReplayProcessor} may hold strong references to more source * emissions than specified. *

* When this {@code ReplayProcessor} is terminated via {@link #onError(Throwable)} or {@link #onComplete()}, * late {@link Subscriber}s will receive the retained/cached items first (if any) followed by the respective * terminal event. If the {@code ReplayProcessor} has a time-bound, the age of the retained/cached items are still considered * when replaying and thus it may result in no items being emitted before the terminal event. *

* Once an {@code Subscriber} has subscribed, it will receive items continuously from that point on. Bounds only affect how * many past items a new {@code Subscriber} will receive before it catches up with the live event feed. *

* Even though {@code ReplayProcessor} implements the {@code Subscriber} interface, calling * {@code onSubscribe} is not required (Rule 2.12) * if the processor is used as a standalone source. However, calling {@code onSubscribe} * after the {@code ReplayProcessor} reached its terminal state will result in the * given {@code Subscription} being canceled immediately. *

* Calling {@link #onNext(Object)}, {@link #onError(Throwable)} and {@link #onComplete()} * is required to be serialized (called from the same thread or called non-overlappingly from different threads * through external means of serialization). The {@link #toSerialized()} method available to all {@code FlowableProcessor}s * provides such serialization and also protects against reentrance (i.e., when a downstream {@code Subscriber} * consuming this processor also wants to call {@link #onNext(Object)} on this processor recursively). *

* This {@code ReplayProcessor} supports the standard state-peeking methods {@link #hasComplete()}, {@link #hasThrowable()}, * {@link #getThrowable()} and {@link #hasSubscribers()} as well as means to read the retained/cached items * in a non-blocking and thread-safe manner via {@link #hasValue()}, {@link #getValue()}, * {@link #getValues()} or {@link #getValues(Object[])}. *

* Note that due to concurrency requirements, a size- and time-bounded {@code ReplayProcessor} may hold strong references to more * source emissions than specified while it isn't terminated yet. Use the {@link #cleanupBuffer()} to allow * such inaccessible items to be cleaned up by GC once no consumer references them anymore. *

*
Backpressure:
*
This {@code ReplayProcessor} respects the individual backpressure behavior of its {@code Subscriber}s but * does not coordinate their request amounts towards the upstream (because there might not be any) and * consumes the upstream in an unbounded manner (requesting {@link Long#MAX_VALUE}). * Note that {@code Subscriber}s receive a continuous sequence of values after they subscribed even * if an individual item gets delayed due to backpressure.
*
Scheduler:
*
{@code ReplayProcessor} does not operate by default on a particular {@link io.reactivex.rxjava3.core.Scheduler} and * the {@code Subscriber}s get notified on the thread the respective {@code onXXX} methods were invoked. * Time-bound {@code ReplayProcessor}s use the given {@code Scheduler} in their {@code create} methods * as time source to timestamp of items received for the age checks.
*
Error handling:
*
When the {@link #onError(Throwable)} is called, the {@code ReplayProcessor} enters into a terminal state * and emits the same {@code Throwable} instance to the last set of {@code Subscriber}s. During this emission, * if one or more {@code Subscriber}s cancel their respective {@code Subscription}s, the * {@code Throwable} is delivered to the global error handler via * {@link io.reactivex.rxjava3.plugins.RxJavaPlugins#onError(Throwable)} (multiple times if multiple {@code Subscriber}s * cancel at once). * If there were no {@code Subscriber}s subscribed to this {@code ReplayProcessor} when the {@code onError()} * was called, the global error handler is not invoked. *
*
*

* Example usage: *

 {@code

  ReplayProcessor processor = new ReplayProcessor();
  processor.onNext("one");
  processor.onNext("two");
  processor.onNext("three");
  processor.onComplete();

  // both of the following will get the onNext/onComplete calls from above
  processor.subscribe(subscriber1);
  processor.subscribe(subscriber2);

  } 
 *
 * @param  the value type
 */
public final class ReplayProcessor extends FlowableProcessor {
    /** An empty array to avoid allocation in getValues(). */
    private static final Object[] EMPTY_ARRAY = new Object[0];

    final ReplayBuffer buffer;

    boolean done;

    final AtomicReference[]> subscribers;

    @SuppressWarnings("rawtypes")
    static final ReplaySubscription[] EMPTY = new ReplaySubscription[0];

    @SuppressWarnings("rawtypes")
    static final ReplaySubscription[] TERMINATED = new ReplaySubscription[0];

    /**
     * Creates an unbounded ReplayProcessor.
     * 

* The internal buffer is backed by an {@link ArrayList} and starts with an initial capacity of 16. Once the * number of items reaches this capacity, it will grow as necessary (usually by 50%). However, as the * number of items grows, this causes frequent array reallocation and copying, and may hurt performance * and latency. This can be avoided with the {@link #create(int)} overload which takes an initial capacity * parameter and can be tuned to reduce the array reallocation frequency as needed. * * @param * the type of items observed and emitted by the ReplayProcessor * @return the created ReplayProcessor */ @CheckReturnValue @NonNull public static ReplayProcessor create() { return new ReplayProcessor<>(new UnboundedReplayBuffer<>(16)); } /** * Creates an unbounded ReplayProcessor with the specified initial buffer capacity. *

* Use this method to avoid excessive array reallocation while the internal buffer grows to accommodate new * items. For example, if you know that the buffer will hold 32k items, you can ask the * {@code ReplayProcessor} to preallocate its internal array with a capacity to hold that many items. Once * the items start to arrive, the internal array won't need to grow, creating less garbage and no overhead * due to frequent array-copying. * * @param * the type of items observed and emitted by this type of processor * @param capacityHint * the initial buffer capacity * @return the created processor * @throws IllegalArgumentException if {@code capacityHint} is non-positive */ @CheckReturnValue @NonNull public static ReplayProcessor create(int capacityHint) { ObjectHelper.verifyPositive(capacityHint, "capacityHint"); return new ReplayProcessor<>(new UnboundedReplayBuffer<>(capacityHint)); } /** * Creates a size-bounded ReplayProcessor. *

* In this setting, the {@code ReplayProcessor} holds at most {@code size} items in its internal buffer and * discards the oldest item. *

* When {@code Subscriber}s subscribe to a terminated {@code ReplayProcessor}, they are guaranteed to see at most * {@code size} {@code onNext} events followed by a termination event. *

* If a {@code Subscriber} subscribes while the {@code ReplayProcessor} is active, it will observe all items in the * buffer at that point in time and each item observed afterwards, even if the buffer evicts items due to * the size constraint in the mean time. In other words, once a {@code Subscriber} subscribes, it will receive items * without gaps in the sequence. * * @param * the type of items observed and emitted by this type of processor * @param maxSize * the maximum number of buffered items * @return the created processor * @throws IllegalArgumentException if {@code maxSize} is non-positive */ @CheckReturnValue @NonNull public static ReplayProcessor createWithSize(int maxSize) { ObjectHelper.verifyPositive(maxSize, "maxSize"); return new ReplayProcessor<>(new SizeBoundReplayBuffer<>(maxSize)); } /** * Creates an unbounded ReplayProcessor with the bounded-implementation for testing purposes. *

* This variant behaves like the regular unbounded {@code ReplayProcessor} created via {@link #create()} but * uses the structures of the bounded-implementation. This is by no means intended for the replacement of * the original, array-backed and unbounded {@code ReplayProcessor} due to the additional overhead of the * linked-list based internal buffer. The sole purpose is to allow testing and reasoning about the behavior * of the bounded implementations without the interference of the eviction policies. * * @param * the type of items observed and emitted by this type of processor * @return the created processor */ @CheckReturnValue /* test */ static ReplayProcessor createUnbounded() { return new ReplayProcessor<>(new SizeBoundReplayBuffer<>(Integer.MAX_VALUE)); } /** * Creates a time-bounded ReplayProcessor. *

* In this setting, the {@code ReplayProcessor} internally tags each observed item with a timestamp value * supplied by the {@link Scheduler} and keeps only those whose age is less than the supplied time value * converted to milliseconds. For example, an item arrives at T=0 and the max age is set to 5; at T>=5 * this first item is then evicted by any subsequent item or termination event, leaving the buffer empty. *

* Once the processor is terminated, {@code Subscriber}s subscribing to it will receive items that remained in the * buffer after the terminal event, regardless of their age. *

* If a {@code Subscriber} subscribes while the {@code ReplayProcessor} is active, it will observe only those items * from within the buffer that have an age less than the specified time, and each item observed thereafter, * even if the buffer evicts items due to the time constraint in the mean time. In other words, once a * {@code Subscriber} subscribes, it observes items without gaps in the sequence except for any outdated items at the * beginning of the sequence. *

* Note that terminal notifications ({@code onError} and {@code onComplete}) trigger eviction as well. For * example, with a max age of 5, the first item is observed at T=0, then an {@code onComplete} notification * arrives at T=10. If a {@code Subscriber} subscribes at T=11, it will find an empty {@code ReplayProcessor} with just * an {@code onComplete} notification. * * @param * the type of items observed and emitted by this type of processor * @param maxAge * the maximum age of the contained items * @param unit * the time unit of {@code time} * @param scheduler * the {@link Scheduler} that provides the current time * @return the created processor * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code maxAge} is non-positive */ @CheckReturnValue @NonNull public static ReplayProcessor createWithTime(long maxAge, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { ObjectHelper.verifyPositive(maxAge, "maxAge"); Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return new ReplayProcessor<>(new SizeAndTimeBoundReplayBuffer<>(Integer.MAX_VALUE, maxAge, unit, scheduler)); } /** * Creates a time- and size-bounded ReplayProcessor. *

* In this setting, the {@code ReplayProcessor} internally tags each received item with a timestamp value * supplied by the {@link Scheduler} and holds at most {@code size} items in its internal buffer. It evicts * items from the start of the buffer if their age becomes less-than or equal to the supplied age in * milliseconds or the buffer reaches its {@code size} limit. *

* When {@code Subscriber}s subscribe to a terminated {@code ReplayProcessor}, they observe the items that remained in * the buffer after the terminal notification, regardless of their age, but at most {@code size} items. *

* If a {@code Subscriber} subscribes while the {@code ReplayProcessor} is active, it will observe only those items * from within the buffer that have age less than the specified time and each subsequent item, even if the * buffer evicts items due to the time constraint in the mean time. In other words, once a {@code Subscriber} * subscribes, it observes items without gaps in the sequence except for the outdated items at the beginning * of the sequence. *

* Note that terminal notifications ({@code onError} and {@code onComplete}) trigger eviction as well. For * example, with a max age of 5, the first item is observed at T=0, then an {@code onComplete} notification * arrives at T=10. If a {@code Subscriber} subscribes at T=11, it will find an empty {@code ReplayProcessor} with just * an {@code onComplete} notification. * * @param * the type of items observed and emitted by this type of processor * @param maxAge * the maximum age of the contained items * @param unit * the time unit of {@code time} * @param maxSize * the maximum number of buffered items * @param scheduler * the {@link Scheduler} that provides the current time * @return the created processor * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code maxAge} or {@code maxSize} is non-positive */ @CheckReturnValue @NonNull public static ReplayProcessor createWithTimeAndSize(long maxAge, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, int maxSize) { ObjectHelper.verifyPositive(maxSize, "maxSize"); ObjectHelper.verifyPositive(maxAge, "maxAge"); Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return new ReplayProcessor<>(new SizeAndTimeBoundReplayBuffer<>(maxSize, maxAge, unit, scheduler)); } /** * Constructs a ReplayProcessor with the given custom ReplayBuffer instance. * @param buffer the ReplayBuffer instance, not null (not verified) */ @SuppressWarnings("unchecked") ReplayProcessor(ReplayBuffer buffer) { this.buffer = buffer; this.subscribers = new AtomicReference<>(EMPTY); } @Override protected void subscribeActual(Subscriber<@NonNull ? super T> s) { ReplaySubscription rs = new ReplaySubscription<>(s, this); s.onSubscribe(rs); if (add(rs)) { if (rs.cancelled) { remove(rs); return; } } buffer.replay(rs); } @Override public void onSubscribe(Subscription s) { if (done) { s.cancel(); return; } s.request(Long.MAX_VALUE); } @Override public void onNext(T t) { ExceptionHelper.nullCheck(t, "onNext called with a null value."); if (done) { return; } ReplayBuffer b = buffer; b.next(t); for (ReplaySubscription rs : subscribers.get()) { b.replay(rs); } } @SuppressWarnings("unchecked") @Override public void onError(Throwable t) { ExceptionHelper.nullCheck(t, "onError called with a null Throwable."); if (done) { RxJavaPlugins.onError(t); return; } done = true; ReplayBuffer b = buffer; b.error(t); for (ReplaySubscription rs : subscribers.getAndSet(TERMINATED)) { b.replay(rs); } } @SuppressWarnings("unchecked") @Override public void onComplete() { if (done) { return; } done = true; ReplayBuffer b = buffer; b.complete(); for (ReplaySubscription rs : subscribers.getAndSet(TERMINATED)) { b.replay(rs); } } @Override @CheckReturnValue public boolean hasSubscribers() { return subscribers.get().length != 0; } @CheckReturnValue /* test */ int subscriberCount() { return subscribers.get().length; } @Override @Nullable @CheckReturnValue public Throwable getThrowable() { ReplayBuffer b = buffer; if (b.isDone()) { return b.getError(); } return null; } /** * Makes sure the item cached by the head node in a bounded * ReplayProcessor is released (as it is never part of a replay). *

* By default, live bounded buffers will remember one item before * the currently receivable one to ensure subscribers can always * receive a continuous sequence of items. A terminated ReplayProcessor * automatically releases this inaccessible item. *

* The method must be called sequentially, similar to the standard * {@code onXXX} methods. *

History: 2.1.11 - experimental * @since 2.2 */ public void cleanupBuffer() { buffer.trimHead(); } /** * Returns the latest value this processor has or null if no such value exists. *

The method is thread-safe. * @return the latest value this processor currently has or null if no such value exists */ @CheckReturnValue public T getValue() { return buffer.getValue(); } /** * Returns an Object array containing snapshot all values of this processor. *

The method is thread-safe. * @return the array containing the snapshot of all values of this processor */ @CheckReturnValue public Object[] getValues() { @SuppressWarnings("unchecked") T[] a = (T[])EMPTY_ARRAY; T[] b = getValues(a); if (b == EMPTY_ARRAY) { return new Object[0]; } return b; } /** * Returns a typed array containing a snapshot of all values of this processor. *

The method follows the conventions of Collection.toArray by setting the array element * after the last value to null (if the capacity permits). *

The method is thread-safe. * @param array the target array to copy values into if it fits * @return the given array if the values fit into it or a new array containing all values */ @CheckReturnValue public T[] getValues(T[] array) { return buffer.getValues(array); } @Override @CheckReturnValue public boolean hasComplete() { ReplayBuffer b = buffer; return b.isDone() && b.getError() == null; } @Override @CheckReturnValue public boolean hasThrowable() { ReplayBuffer b = buffer; return b.isDone() && b.getError() != null; } /** * Returns true if this processor has any value. *

The method is thread-safe. * @return true if the processor has any value */ @CheckReturnValue public boolean hasValue() { return buffer.size() != 0; // NOPMD } @CheckReturnValue /* test*/ int size() { return buffer.size(); } boolean add(ReplaySubscription rs) { for (;;) { ReplaySubscription[] a = subscribers.get(); if (a == TERMINATED) { return false; } int len = a.length; @SuppressWarnings("unchecked") ReplaySubscription[] b = new ReplaySubscription[len + 1]; System.arraycopy(a, 0, b, 0, len); b[len] = rs; if (subscribers.compareAndSet(a, b)) { return true; } } } @SuppressWarnings("unchecked") void remove(ReplaySubscription rs) { for (;;) { ReplaySubscription[] a = subscribers.get(); if (a == TERMINATED || a == EMPTY) { return; } int len = a.length; int j = -1; for (int i = 0; i < len; i++) { if (a[i] == rs) { j = i; break; } } if (j < 0) { return; } ReplaySubscription[] b; if (len == 1) { b = EMPTY; } else { b = new ReplaySubscription[len - 1]; System.arraycopy(a, 0, b, 0, j); System.arraycopy(a, j + 1, b, j, len - j - 1); } if (subscribers.compareAndSet(a, b)) { return; } } } /** * Abstraction over a buffer that receives events and replays them to * individual Subscribers. * * @param the value type */ interface ReplayBuffer { void next(T value); void error(Throwable ex); void complete(); void replay(ReplaySubscription rs); int size(); @Nullable T getValue(); T[] getValues(T[] array); boolean isDone(); Throwable getError(); /** * Make sure an old inaccessible head value is released * in a bounded buffer. */ void trimHead(); } static final class ReplaySubscription extends AtomicInteger implements Subscription { private static final long serialVersionUID = 466549804534799122L; final Subscriber<@NonNull ? super T> downstream; final ReplayProcessor state; Object index; final AtomicLong requested; volatile boolean cancelled; long emitted; ReplaySubscription(Subscriber<@NonNull ? super T> actual, ReplayProcessor state) { this.downstream = actual; this.state = state; this.requested = new AtomicLong(); } @Override public void request(long n) { if (SubscriptionHelper.validate(n)) { BackpressureHelper.add(requested, n); state.buffer.replay(this); } } @Override public void cancel() { if (!cancelled) { cancelled = true; state.remove(this); } } } static final class UnboundedReplayBuffer implements ReplayBuffer { final List buffer; Throwable error; volatile boolean done; volatile int size; UnboundedReplayBuffer(int capacityHint) { this.buffer = new ArrayList<>(capacityHint); } @Override public void next(T value) { buffer.add(value); size++; } @Override public void error(Throwable ex) { error = ex; done = true; } @Override public void complete() { done = true; } @Override public void trimHead() { // not applicable for an unbounded buffer } @Override @Nullable public T getValue() { int s = size; if (s == 0) { return null; } return buffer.get(s - 1); } @Override @SuppressWarnings("unchecked") public T[] getValues(T[] array) { int s = size; if (s == 0) { if (array.length != 0) { array[0] = null; } return array; } List b = buffer; if (array.length < s) { array = (T[])Array.newInstance(array.getClass().getComponentType(), s); } for (int i = 0; i < s; i++) { array[i] = b.get(i); } if (array.length > s) { array[s] = null; } return array; } @Override public void replay(ReplaySubscription rs) { if (rs.getAndIncrement() != 0) { return; } int missed = 1; final List b = buffer; final Subscriber<@NonNull ? super T> a = rs.downstream; Integer indexObject = (Integer)rs.index; int index; if (indexObject != null) { index = indexObject; } else { index = 0; rs.index = 0; } long e = rs.emitted; for (;;) { long r = rs.requested.get(); while (e != r) { if (rs.cancelled) { rs.index = null; return; } boolean d = done; int s = size; if (d && index == s) { rs.index = null; rs.cancelled = true; Throwable ex = error; if (ex == null) { a.onComplete(); } else { a.onError(ex); } return; } if (index == s) { break; } a.onNext(b.get(index)); index++; e++; } if (e == r) { if (rs.cancelled) { rs.index = null; return; } boolean d = done; int s = size; if (d && index == s) { rs.index = null; rs.cancelled = true; Throwable ex = error; if (ex == null) { a.onComplete(); } else { a.onError(ex); } return; } } rs.index = index; rs.emitted = e; missed = rs.addAndGet(-missed); if (missed == 0) { break; } } } @Override public int size() { return size; } @Override public boolean isDone() { return done; } @Override public Throwable getError() { return error; } } static final class Node extends AtomicReference> { private static final long serialVersionUID = 6404226426336033100L; final T value; Node(T value) { this.value = value; } } static final class TimedNode extends AtomicReference> { private static final long serialVersionUID = 6404226426336033100L; final T value; final long time; TimedNode(T value, long time) { this.value = value; this.time = time; } } static final class SizeBoundReplayBuffer implements ReplayBuffer { final int maxSize; int size; volatile Node head; Node tail; Throwable error; volatile boolean done; SizeBoundReplayBuffer(int maxSize) { this.maxSize = maxSize; Node h = new Node<>(null); this.tail = h; this.head = h; } void trim() { if (size > maxSize) { size--; Node h = head; head = h.get(); } } @Override public void next(T value) { Node n = new Node<>(value); Node t = tail; tail = n; size++; t.set(n); // releases both the tail and size trim(); } @Override public void error(Throwable ex) { error = ex; trimHead(); done = true; } @Override public void complete() { trimHead(); done = true; } @Override public void trimHead() { if (head.value != null) { Node n = new Node<>(null); n.lazySet(head.get()); head = n; } } @Override public boolean isDone() { return done; } @Override public Throwable getError() { return error; } @Override public T getValue() { Node h = head; for (;;) { Node n = h.get(); if (n == null) { return h.value; } h = n; } } @Override @SuppressWarnings("unchecked") public T[] getValues(T[] array) { int s = 0; Node h = head; Node h0 = h; for (;;) { Node next = h0.get(); if (next == null) { break; } s++; h0 = next; } if (array.length < s) { array = (T[])Array.newInstance(array.getClass().getComponentType(), s); } for (int j = 0; j < s; j++) { h = h.get(); array[j] = h.value; } if (array.length > s) { array[s] = null; } return array; } @Override @SuppressWarnings("unchecked") public void replay(ReplaySubscription rs) { if (rs.getAndIncrement() != 0) { return; } int missed = 1; final Subscriber<@NonNull ? super T> a = rs.downstream; Node index = (Node)rs.index; if (index == null) { index = head; } long e = rs.emitted; for (;;) { long r = rs.requested.get(); while (e != r) { if (rs.cancelled) { rs.index = null; return; } boolean d = done; Node next = index.get(); boolean empty = next == null; if (d && empty) { rs.index = null; rs.cancelled = true; Throwable ex = error; if (ex == null) { a.onComplete(); } else { a.onError(ex); } return; } if (empty) { break; } a.onNext(next.value); e++; index = next; } if (e == r) { if (rs.cancelled) { rs.index = null; return; } boolean d = done; if (d && index.get() == null) { rs.index = null; rs.cancelled = true; Throwable ex = error; if (ex == null) { a.onComplete(); } else { a.onError(ex); } return; } } rs.index = index; rs.emitted = e; missed = rs.addAndGet(-missed); if (missed == 0) { break; } } } @Override public int size() { int s = 0; Node h = head; while (s != Integer.MAX_VALUE) { Node next = h.get(); if (next == null) { break; } s++; h = next; } return s; } } static final class SizeAndTimeBoundReplayBuffer implements ReplayBuffer { final int maxSize; final long maxAge; final TimeUnit unit; final Scheduler scheduler; int size; volatile TimedNode head; TimedNode tail; Throwable error; volatile boolean done; SizeAndTimeBoundReplayBuffer(int maxSize, long maxAge, TimeUnit unit, Scheduler scheduler) { this.maxSize = maxSize; this.maxAge = maxAge; this.unit = unit; this.scheduler = scheduler; TimedNode h = new TimedNode<>(null, 0L); this.tail = h; this.head = h; } void trim() { if (size > maxSize) { size--; TimedNode h = head; head = h.get(); } long limit = scheduler.now(unit) - maxAge; TimedNode h = head; for (;;) { if (size <= 1) { head = h; break; } TimedNode next = h.get(); if (next.time > limit) { head = h; break; } h = next; size--; } } void trimFinal() { long limit = scheduler.now(unit) - maxAge; TimedNode h = head; for (;;) { TimedNode next = h.get(); if (next == null) { if (h.value != null) { head = new TimedNode<>(null, 0L); } else { head = h; } break; } if (next.time > limit) { if (h.value != null) { TimedNode n = new TimedNode<>(null, 0L); n.lazySet(h.get()); head = n; } else { head = h; } break; } h = next; } } @Override public void trimHead() { if (head.value != null) { TimedNode n = new TimedNode<>(null, 0L); n.lazySet(head.get()); head = n; } } @Override public void next(T value) { TimedNode n = new TimedNode<>(value, scheduler.now(unit)); TimedNode t = tail; tail = n; size++; t.set(n); // releases both the tail and size trim(); } @Override public void error(Throwable ex) { trimFinal(); error = ex; done = true; } @Override public void complete() { trimFinal(); done = true; } @Override @Nullable public T getValue() { TimedNode h = head; for (;;) { TimedNode next = h.get(); if (next == null) { break; } h = next; } long limit = scheduler.now(unit) - maxAge; if (h.time < limit) { return null; } return h.value; } @Override @SuppressWarnings("unchecked") public T[] getValues(T[] array) { TimedNode h = getHead(); int s = size(h); if (s == 0) { if (array.length != 0) { array[0] = null; } } else { if (array.length < s) { array = (T[])Array.newInstance(array.getClass().getComponentType(), s); } int i = 0; while (i != s) { TimedNode next = h.get(); array[i] = next.value; i++; h = next; } if (array.length > s) { array[s] = null; } } return array; } TimedNode getHead() { TimedNode index = head; // skip old entries long limit = scheduler.now(unit) - maxAge; TimedNode next = index.get(); while (next != null) { long ts = next.time; if (ts > limit) { break; } index = next; next = index.get(); } return index; } @Override @SuppressWarnings("unchecked") public void replay(ReplaySubscription rs) { if (rs.getAndIncrement() != 0) { return; } int missed = 1; final Subscriber<@NonNull ? super T> a = rs.downstream; TimedNode index = (TimedNode)rs.index; if (index == null) { index = getHead(); } long e = rs.emitted; for (;;) { long r = rs.requested.get(); while (e != r) { if (rs.cancelled) { rs.index = null; return; } boolean d = done; TimedNode next = index.get(); boolean empty = next == null; if (d && empty) { rs.index = null; rs.cancelled = true; Throwable ex = error; if (ex == null) { a.onComplete(); } else { a.onError(ex); } return; } if (empty) { break; } a.onNext(next.value); e++; index = next; } if (e == r) { if (rs.cancelled) { rs.index = null; return; } boolean d = done; if (d && index.get() == null) { rs.index = null; rs.cancelled = true; Throwable ex = error; if (ex == null) { a.onComplete(); } else { a.onError(ex); } return; } } rs.index = index; rs.emitted = e; missed = rs.addAndGet(-missed); if (missed == 0) { break; } } } @Override public int size() { return size(getHead()); } int size(TimedNode h) { int s = 0; while (s != Integer.MAX_VALUE) { TimedNode next = h.get(); if (next == null) { break; } s++; h = next; } return s; } @Override public Throwable getError() { return error; } @Override public boolean isDone() { return done; } } }