All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.redisson.api.mapreduce.RMapReduce Maven / Gradle / Ivy

Go to download

Easy Redis Java client and Real-Time Data Platform. Valkey compatible. Sync/Async/RxJava3/Reactive API. Client side caching. Over 50 Redis based Java objects and services: JCache API, Apache Tomcat, Hibernate, Spring, Set, Multimap, SortedSet, Map, List, Queue, Deque, Semaphore, Lock, AtomicLong, Map Reduce, Bloom filter, Scheduler, RPC

There is a newer version: 3.43.0
Show newest version
/**
 * Copyright (c) 2013-2020 Nikita Koksharov
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.redisson.api.mapreduce;

import java.util.concurrent.TimeUnit;

/**
 * 
 * MapReduce allows to process large amount of data stored in Redis map 
 * using Mapper, Reducer and/or Collator tasks launched across Redisson Nodes. 
 * 

* Usage example: * *

 *   public class WordMapper implements RMapper<String, String, String, Integer> {
 *
 *       public void map(String key, String value, RCollector<String, Integer> collector) {
 *           String[] words = value.split("[^a-zA-Z]");
 *           for (String word : words) {
 *               collector.emit(word, 1);
 *           }
 *       }
 *       
 *   }
 *   
 *   public class WordReducer implements RReducer<String, Integer> {
 *
 *       public Integer reduce(String reducedKey, Iterator<Integer> iter) {
 *           int sum = 0;
 *           while (iter.hasNext()) {
 *              Integer i = (Integer) iter.next();
 *              sum += i;
 *           }
 *           return sum;
 *       }
 *       
 *   }
 *
 *   public class WordCollator implements RCollator<String, Integer, Integer> {
 *
 *       public Integer collate(Map<String, Integer> resultMap) {
 *           int result = 0;
 *           for (Integer count : resultMap.values()) {
 *               result += count;
 *           }
 *           return result;
 *       }
 *       
 *   }
 *   
 *   RMap<String, String> map = redisson.getMap("myWords");
 *   
 *   Map<String, Integer> wordsCount = map.<String, Integer>mapReduce()
 *     .mapper(new WordMapper())
 *     .reducer(new WordReducer())
 *     .execute();
 *
 *   Integer totalCount = map.<String, Integer>mapReduce()
 *     .mapper(new WordMapper())
 *     .reducer(new WordReducer())
 *     .execute(new WordCollator());
 *
 * 
* * @author Nikita Koksharov * * @param input key * @param input value * @param output key * @param output value */ public interface RMapReduce extends RMapReduceExecutor { /** * Defines timeout for MapReduce process. * 0 means infinity timeout. * * @param timeout for process * @param unit of timeout * @return self instance */ RMapReduce timeout(long timeout, TimeUnit unit); /** * Setup Mapper object * * @param mapper used during MapReduce * @return self instance */ RMapReduce mapper(RMapper mapper); /** * Setup Reducer object * * @param reducer used during MapReduce * @return self instance */ RMapReduce reducer(RReducer reducer); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy