src.android.media.MediaCodec Maven / Gradle / Ivy
Show all versions of android-all Show documentation
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.media;
import android.annotation.IntDef;
import android.annotation.NonNull;
import android.annotation.Nullable;
import android.compat.annotation.UnsupportedAppUsage;
import android.graphics.ImageFormat;
import android.graphics.Rect;
import android.graphics.SurfaceTexture;
import android.hardware.HardwareBuffer;
import android.media.MediaCodecInfo.CodecCapabilities;
import android.os.Build;
import android.os.Bundle;
import android.os.Handler;
import android.os.IHwBinder;
import android.os.Looper;
import android.os.Message;
import android.os.PersistableBundle;
import android.view.Surface;
import java.io.IOException;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.ReadOnlyBufferException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Set;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
MediaCodec class can be used to access low-level media codecs, i.e. encoder/decoder components.
It is part of the Android low-level multimedia support infrastructure (normally used together
with {@link MediaExtractor}, {@link MediaSync}, {@link MediaMuxer}, {@link MediaCrypto},
{@link MediaDrm}, {@link Image}, {@link Surface}, and {@link AudioTrack}.)
In broad terms, a codec processes input data to generate output data. It processes data
asynchronously and uses a set of input and output buffers. At a simplistic level, you request
(or receive) an empty input buffer, fill it up with data and send it to the codec for
processing. The codec uses up the data and transforms it into one of its empty output buffers.
Finally, you request (or receive) a filled output buffer, consume its contents and release it
back to the codec.
Minimum Quality Floor for Video Encoding
Beginning with {@link android.os.Build.VERSION_CODES#S}, Android's Video MediaCodecs enforce a
minimum quality floor. The intent is to eliminate poor quality video encodings. This quality
floor is applied when the codec is in Variable Bitrate (VBR) mode; it is not applied when
the codec is in Constant Bitrate (CBR) mode. The quality floor enforcement is also restricted
to a particular size range; this size range is currently for video resolutions
larger than 320x240 up through 1920x1080.
When this quality floor is in effect, the codec and supporting framework code will work to
ensure that the generated video is of at least a "fair" or "good" quality. The metric
used to choose these targets is the VMAF (Video Multi-method Assessment Function) with a
target score of 70 for selected test sequences.
The typical effect is that
some videos will generate a higher bitrate than originally configured. This will be most
notable for videos which were configured with very low bitrates; the codec will use a bitrate
that is determined to be more likely to generate an "fair" or "good" quality video. Another
situation is where a video includes very complicated content (lots of motion and detail);
in such configurations, the codec will use extra bitrate as needed to avoid losing all of
the content's finer detail.
This quality floor will not impact content captured at high bitrates (a high bitrate should
already provide the codec with sufficient capacity to encode all of the detail).
The quality floor does not operate on CBR encodings.
The quality floor currently does not operate on resolutions of 320x240 or lower, nor on
videos with resolution above 1920x1080.
Data Types
Codecs operate on three kinds of data: compressed data, raw audio data and raw video data.
All three kinds of data can be processed using {@link ByteBuffer ByteBuffers}, but you should use
a {@link Surface} for raw video data to improve codec performance. Surface uses native video
buffers without mapping or copying them to ByteBuffers; thus, it is much more efficient.
You normally cannot access the raw video data when using a Surface, but you can use the
{@link ImageReader} class to access unsecured decoded (raw) video frames. This may still be more
efficient than using ByteBuffers, as some native buffers may be mapped into {@linkplain
ByteBuffer#isDirect direct} ByteBuffers. When using ByteBuffer mode, you can access raw video
frames using the {@link Image} class and {@link #getInputImage getInput}/{@link #getOutputImage
OutputImage(int)}.
Compressed Buffers
Input buffers (for decoders) and output buffers (for encoders) contain compressed data according
to the {@linkplain MediaFormat#KEY_MIME format's type}. For video types this is normally a single
compressed video frame. For audio data this is normally a single access unit (an encoded audio
segment typically containing a few milliseconds of audio as dictated by the format type), but
this requirement is slightly relaxed in that a buffer may contain multiple encoded access units
of audio. In either case, buffers do not start or end on arbitrary byte boundaries, but rather on
frame/access unit boundaries unless they are flagged with {@link #BUFFER_FLAG_PARTIAL_FRAME}.
Raw Audio Buffers
Raw audio buffers contain entire frames of PCM audio data, which is one sample for each channel
in channel order. Each PCM audio sample is either a 16 bit signed integer or a float,
in native byte order.
Raw audio buffers in the float PCM encoding are only possible
if the MediaFormat's {@linkplain MediaFormat#KEY_PCM_ENCODING}
is set to {@linkplain AudioFormat#ENCODING_PCM_FLOAT} during MediaCodec
{@link #configure configure(…)}
and confirmed by {@link #getOutputFormat} for decoders
or {@link #getInputFormat} for encoders.
A sample method to check for float PCM in the MediaFormat is as follows:
static boolean isPcmFloat(MediaFormat format) {
return format.getInteger(MediaFormat.KEY_PCM_ENCODING, AudioFormat.ENCODING_PCM_16BIT)
== AudioFormat.ENCODING_PCM_FLOAT;
}
In order to extract, in a short array,
one channel of a buffer containing 16 bit signed integer audio data,
the following code may be used:
// Assumes the buffer PCM encoding is 16 bit.
short[] getSamplesForChannel(MediaCodec codec, int bufferId, int channelIx) {
ByteBuffer outputBuffer = codec.getOutputBuffer(bufferId);
MediaFormat format = codec.getOutputFormat(bufferId);
ShortBuffer samples = outputBuffer.order(ByteOrder.nativeOrder()).asShortBuffer();
int numChannels = format.getInteger(MediaFormat.KEY_CHANNEL_COUNT);
if (channelIx < 0 || channelIx >= numChannels) {
return null;
}
short[] res = new short[samples.remaining() / numChannels];
for (int i = 0; i < res.length; ++i) {
res[i] = samples.get(i * numChannels + channelIx);
}
return res;
}
Raw Video Buffers
In ByteBuffer mode video buffers are laid out according to their {@linkplain
MediaFormat#KEY_COLOR_FORMAT color format}. You can get the supported color formats as an array
from {@link #getCodecInfo}{@code .}{@link MediaCodecInfo#getCapabilitiesForType
getCapabilitiesForType(…)}{@code .}{@link CodecCapabilities#colorFormats colorFormats}.
Video codecs may support three kinds of color formats:
- native raw video format: This is marked by {@link
CodecCapabilities#COLOR_FormatSurface} and it can be used with an input or output Surface.
- flexible YUV buffers (such as {@link
CodecCapabilities#COLOR_FormatYUV420Flexible}): These can be used with an input/output Surface,
as well as in ByteBuffer mode, by using {@link #getInputImage getInput}/{@link #getOutputImage
OutputImage(int)}.
- other, specific formats: These are normally only supported in ByteBuffer
mode. Some color formats are vendor specific. Others are defined in {@link CodecCapabilities}.
For color formats that are equivalent to a flexible format, you can still use {@link
#getInputImage getInput}/{@link #getOutputImage OutputImage(int)}.
All video codecs support flexible YUV 4:2:0 buffers since {@link
android.os.Build.VERSION_CODES#LOLLIPOP_MR1}.
Accessing Raw Video ByteBuffers on Older Devices
Prior to {@link android.os.Build.VERSION_CODES#LOLLIPOP} and {@link Image} support, you need to
use the {@link MediaFormat#KEY_STRIDE} and {@link MediaFormat#KEY_SLICE_HEIGHT} output format
values to understand the layout of the raw output buffers.
Note that on some devices the slice-height is advertised as 0. This could mean either that the
slice-height is the same as the frame height, or that the slice-height is the frame height
aligned to some value (usually a power of 2). Unfortunately, there is no standard and simple way
to tell the actual slice height in this case. Furthermore, the vertical stride of the {@code U}
plane in planar formats is also not specified or defined, though usually it is half of the slice
height.
The {@link MediaFormat#KEY_WIDTH} and {@link MediaFormat#KEY_HEIGHT} keys specify the size of the
video frames; however, for most encondings the video (picture) only occupies a portion of the
video frame. This is represented by the 'crop rectangle'.
You need to use the following keys to get the crop rectangle of raw output images from the
{@linkplain #getOutputFormat output format}. If these keys are not present, the video occupies the
entire video frame.The crop rectangle is understood in the context of the output frame
before applying any {@linkplain MediaFormat#KEY_ROTATION rotation}.
Format Key
Type
Description
{@code "crop-left"}
Integer
The left-coordinate (x) of the crop rectangle
{@code "crop-top"}
Integer
The top-coordinate (y) of the crop rectangle
{@code "crop-right"}
Integer
The right-coordinate (x) MINUS 1 of the crop rectangle
{@code "crop-bottom"}
Integer
The bottom-coordinate (y) MINUS 1 of the crop rectangle
The right and bottom coordinates can be understood as the coordinates of the right-most
valid column/bottom-most valid row of the cropped output image.
The size of the video frame (before rotation) can be calculated as such:
MediaFormat format = decoder.getOutputFormat(…);
int width = format.getInteger(MediaFormat.KEY_WIDTH);
if (format.containsKey("crop-left") && format.containsKey("crop-right")) {
width = format.getInteger("crop-right") + 1 - format.getInteger("crop-left");
}
int height = format.getInteger(MediaFormat.KEY_HEIGHT);
if (format.containsKey("crop-top") && format.containsKey("crop-bottom")) {
height = format.getInteger("crop-bottom") + 1 - format.getInteger("crop-top");
}
Also note that the meaning of {@link BufferInfo#offset BufferInfo.offset} was not consistent across
devices. On some devices the offset pointed to the top-left pixel of the crop rectangle, while on
most devices it pointed to the top-left pixel of the entire frame.
States
During its life a codec conceptually exists in one of three states: Stopped, Executing or
Released. The Stopped collective state is actually the conglomeration of three states:
Uninitialized, Configured and Error, whereas the Executing state conceptually progresses through
three sub-states: Flushed, Running and End-of-Stream.
When you create a codec using one of the factory methods, the codec is in the Uninitialized
state. First, you need to configure it via {@link #configure configure(…)}, which brings
it to the Configured state, then call {@link #start} to move it to the Executing state. In this
state you can process data through the buffer queue manipulation described above.
The Executing state has three sub-states: Flushed, Running and End-of-Stream. Immediately after
{@link #start} the codec is in the Flushed sub-state, where it holds all the buffers. As soon
as the first input buffer is dequeued, the codec moves to the Running sub-state, where it spends
most of its life. When you queue an input buffer with the {@linkplain #BUFFER_FLAG_END_OF_STREAM
end-of-stream marker}, the codec transitions to the End-of-Stream sub-state. In this state the
codec no longer accepts further input buffers, but still generates output buffers until the
end-of-stream is reached on the output. You can move back to the Flushed sub-state at any time
while in the Executing state using {@link #flush}.
Call {@link #stop} to return the codec to the Uninitialized state, whereupon it may be configured
again. When you are done using a codec, you must release it by calling {@link #release}.
On rare occasions the codec may encounter an error and move to the Error state. This is
communicated using an invalid return value from a queuing operation, or sometimes via an
exception. Call {@link #reset} to make the codec usable again. You can call it from any state to
move the codec back to the Uninitialized state. Otherwise, call {@link #release} to move to the
terminal Released state.
Creation
Use {@link MediaCodecList} to create a MediaCodec for a specific {@link MediaFormat}. When
decoding a file or a stream, you can get the desired format from {@link
MediaExtractor#getTrackFormat MediaExtractor.getTrackFormat}. Inject any specific features that
you want to add using {@link MediaFormat#setFeatureEnabled MediaFormat.setFeatureEnabled}, then
call {@link MediaCodecList#findDecoderForFormat MediaCodecList.findDecoderForFormat} to get the
name of a codec that can handle that specific media format. Finally, create the codec using
{@link #createByCodecName}.
Note: On {@link android.os.Build.VERSION_CODES#LOLLIPOP}, the format to
{@code MediaCodecList.findDecoder}/{@code EncoderForFormat} must not contain a {@linkplain
MediaFormat#KEY_FRAME_RATE frame rate}. Use
format.setString(MediaFormat.KEY_FRAME_RATE, null)
to clear any existing frame rate setting in the format.
You can also create the preferred codec for a specific MIME type using {@link
#createDecoderByType createDecoder}/{@link #createEncoderByType EncoderByType(String)}.
This, however, cannot be used to inject features, and may create a codec that cannot handle the
specific desired media format.
Creating secure decoders
On versions {@link android.os.Build.VERSION_CODES#KITKAT_WATCH} and earlier, secure codecs might
not be listed in {@link MediaCodecList}, but may still be available on the system. Secure codecs
that exist can be instantiated by name only, by appending {@code ".secure"} to the name of a
regular codec (the name of all secure codecs must end in {@code ".secure"}.) {@link
#createByCodecName} will throw an {@code IOException} if the codec is not present on the system.
From {@link android.os.Build.VERSION_CODES#LOLLIPOP} onwards, you should use the {@link
CodecCapabilities#FEATURE_SecurePlayback} feature in the media format to create a secure decoder.
Initialization
After creating the codec, you can set a callback using {@link #setCallback setCallback} if you
want to process data asynchronously. Then, {@linkplain #configure configure} the codec using the
specific media format. This is when you can specify the output {@link Surface} for video
producers – codecs that generate raw video data (e.g. video decoders). This is also when
you can set the decryption parameters for secure codecs (see {@link MediaCrypto}). Finally, since
some codecs can operate in multiple modes, you must specify whether you want it to work as a
decoder or an encoder.
Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, you can query the resulting input and
output format in the Configured state. You can use this to verify the resulting configuration,
e.g. color formats, before starting the codec.
If you want to process raw input video buffers natively with a video consumer – a codec
that processes raw video input, such as a video encoder – create a destination Surface for
your input data using {@link #createInputSurface} after configuration. Alternately, set up the
codec to use a previously created {@linkplain #createPersistentInputSurface persistent input
surface} by calling {@link #setInputSurface}.
Codec-specific Data
Some formats, notably AAC audio and MPEG4, H.264 and H.265 video formats require the actual data
to be prefixed by a number of buffers containing setup data, or codec specific data. When
processing such compressed formats, this data must be submitted to the codec after {@link
#start} and before any frame data. Such data must be marked using the flag {@link
#BUFFER_FLAG_CODEC_CONFIG} in a call to {@link #queueInputBuffer queueInputBuffer}.
Codec-specific data can also be included in the format passed to {@link #configure configure} in
ByteBuffer entries with keys "csd-0", "csd-1", etc. These keys are always included in the track
{@link MediaFormat} obtained from the {@link MediaExtractor#getTrackFormat MediaExtractor}.
Codec-specific data in the format is automatically submitted to the codec upon {@link #start};
you MUST NOT submit this data explicitly. If the format did not contain codec
specific data, you can choose to submit it using the specified number of buffers in the correct
order, according to the format requirements. In case of H.264 AVC, you can also concatenate all
codec-specific data and submit it as a single codec-config buffer.
Android uses the following codec-specific data buffers. These are also required to be set in
the track format for proper {@link MediaMuxer} track configuration. Each parameter set and the
codec-specific-data sections marked with (*) must start with a start code of
{@code "\x00\x00\x00\x01"}.
Format
CSD buffer #0
CSD buffer #1
CSD buffer #2
AAC
Decoder-specific information from ESDS*
Not Used
Not Used
VORBIS
Identification header
Setup header
Not Used
OPUS
Identification header
Pre-skip in nanosecs
(unsigned 64-bit {@linkplain ByteOrder#nativeOrder native-order} integer.)
This overrides the pre-skip value in the identification header.
Seek Pre-roll in nanosecs
(unsigned 64-bit {@linkplain ByteOrder#nativeOrder native-order} integer.)
FLAC
"fLaC", the FLAC stream marker in ASCII,
followed by the STREAMINFO block (the mandatory metadata block),
optionally followed by any number of other metadata blocks
Not Used
Not Used
MPEG-4
Decoder-specific information from ESDS*
Not Used
Not Used
H.264 AVC
SPS (Sequence Parameter Sets*)
PPS (Picture Parameter Sets*)
Not Used
H.265 HEVC
VPS (Video Parameter Sets*) +
SPS (Sequence Parameter Sets*) +
PPS (Picture Parameter Sets*)
Not Used
Not Used
VP9
VP9 CodecPrivate Data
(optional)
Not Used
Not Used
Note: care must be taken if the codec is flushed immediately or shortly
after start, before any output buffer or output format change has been returned, as the codec
specific data may be lost during the flush. You must resubmit the data using buffers marked with
{@link #BUFFER_FLAG_CODEC_CONFIG} after such flush to ensure proper codec operation.
Encoders (or codecs that generate compressed data) will create and return the codec specific data
before any valid output buffer in output buffers marked with the {@linkplain
#BUFFER_FLAG_CODEC_CONFIG codec-config flag}. Buffers containing codec-specific-data have no
meaningful timestamps.
Data Processing
Each codec maintains a set of input and output buffers that are referred to by a buffer-ID in
API calls. After a successful call to {@link #start} the client "owns" neither input nor output
buffers. In synchronous mode, call {@link #dequeueInputBuffer dequeueInput}/{@link
#dequeueOutputBuffer OutputBuffer(…)} to obtain (get ownership of) an input or output
buffer from the codec. In asynchronous mode, you will automatically receive available buffers via
the {@link Callback#onInputBufferAvailable MediaCodec.Callback.onInput}/{@link
Callback#onOutputBufferAvailable OutputBufferAvailable(…)} callbacks.
Upon obtaining an input buffer, fill it with data and submit it to the codec using {@link
#queueInputBuffer queueInputBuffer} – or {@link #queueSecureInputBuffer
queueSecureInputBuffer} if using decryption. Do not submit multiple input buffers with the same
timestamp (unless it is codec-specific data marked as such).
The codec in turn will return a read-only output buffer via the {@link
Callback#onOutputBufferAvailable onOutputBufferAvailable} callback in asynchronous mode, or in
response to a {@link #dequeueOutputBuffer dequeueOutputBuffer} call in synchronous mode. After the
output buffer has been processed, call one of the {@link #releaseOutputBuffer
releaseOutputBuffer} methods to return the buffer to the codec.
While you are not required to resubmit/release buffers immediately to the codec, holding onto
input and/or output buffers may stall the codec, and this behavior is device dependent.
Specifically, it is possible that a codec may hold off on generating output buffers until
all outstanding buffers have been released/resubmitted. Therefore, try to
hold onto to available buffers as little as possible.
Depending on the API version, you can process data in three ways:
Processing Mode
API version <= 20
Jelly Bean/KitKat
API version >= 21
Lollipop and later
Synchronous API using buffer arrays
Supported
Deprecated
Synchronous API using buffers
Not Available
Supported
Asynchronous API using buffers
Not Available
Supported
Asynchronous Processing using Buffers
Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, the preferred method is to process data
asynchronously by setting a callback before calling {@link #configure configure}. Asynchronous
mode changes the state transitions slightly, because you must call {@link #start} after {@link
#flush} to transition the codec to the Running sub-state and start receiving input buffers.
Similarly, upon an initial call to {@code start} the codec will move directly to the Running
sub-state and start passing available input buffers via the callback.
MediaCodec is typically used like this in asynchronous mode:
MediaCodec codec = MediaCodec.createByCodecName(name);
MediaFormat mOutputFormat; // member variable
codec.setCallback(new MediaCodec.Callback() {
{@literal @Override}
void onInputBufferAvailable(MediaCodec mc, int inputBufferId) {
ByteBuffer inputBuffer = codec.getInputBuffer(inputBufferId);
// fill inputBuffer with valid data
…
codec.queueInputBuffer(inputBufferId, …);
}
{@literal @Override}
void onOutputBufferAvailable(MediaCodec mc, int outputBufferId, …) {
ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
// bufferFormat is equivalent to mOutputFormat
// outputBuffer is ready to be processed or rendered.
…
codec.releaseOutputBuffer(outputBufferId, …);
}
{@literal @Override}
void onOutputFormatChanged(MediaCodec mc, MediaFormat format) {
// Subsequent data will conform to new format.
// Can ignore if using getOutputFormat(outputBufferId)
mOutputFormat = format; // option B
}
{@literal @Override}
void onError(…) {
…
}
});
codec.configure(format, …);
mOutputFormat = codec.getOutputFormat(); // option B
codec.start();
// wait for processing to complete
codec.stop();
codec.release();
Synchronous Processing using Buffers
Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, you should retrieve input and output
buffers using {@link #getInputBuffer getInput}/{@link #getOutputBuffer OutputBuffer(int)} and/or
{@link #getInputImage getInput}/{@link #getOutputImage OutputImage(int)} even when using the
codec in synchronous mode. This allows certain optimizations by the framework, e.g. when
processing dynamic content. This optimization is disabled if you call {@link #getInputBuffers
getInput}/{@link #getOutputBuffers OutputBuffers()}.
Note: do not mix the methods of using buffers and buffer arrays at the same
time. Specifically, only call {@code getInput}/{@code OutputBuffers} directly after {@link
#start} or after having dequeued an output buffer ID with the value of {@link
#INFO_OUTPUT_FORMAT_CHANGED}.
MediaCodec is typically used like this in synchronous mode:
MediaCodec codec = MediaCodec.createByCodecName(name);
codec.configure(format, …);
MediaFormat outputFormat = codec.getOutputFormat(); // option B
codec.start();
for (;;) {
int inputBufferId = codec.dequeueInputBuffer(timeoutUs);
if (inputBufferId >= 0) {
ByteBuffer inputBuffer = codec.getInputBuffer(…);
// fill inputBuffer with valid data
…
codec.queueInputBuffer(inputBufferId, …);
}
int outputBufferId = codec.dequeueOutputBuffer(…);
if (outputBufferId >= 0) {
ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
// bufferFormat is identical to outputFormat
// outputBuffer is ready to be processed or rendered.
…
codec.releaseOutputBuffer(outputBufferId, …);
} else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
// Subsequent data will conform to new format.
// Can ignore if using getOutputFormat(outputBufferId)
outputFormat = codec.getOutputFormat(); // option B
}
}
codec.stop();
codec.release();
Synchronous Processing using Buffer Arrays (deprecated)
In versions {@link android.os.Build.VERSION_CODES#KITKAT_WATCH} and before, the set of input and
output buffers are represented by the {@code ByteBuffer[]} arrays. After a successful call to
{@link #start}, retrieve the buffer arrays using {@link #getInputBuffers getInput}/{@link
#getOutputBuffers OutputBuffers()}. Use the buffer ID-s as indices into these arrays (when
non-negative), as demonstrated in the sample below. Note that there is no inherent correlation
between the size of the arrays and the number of input and output buffers used by the system,
although the array size provides an upper bound.
MediaCodec codec = MediaCodec.createByCodecName(name);
codec.configure(format, …);
codec.start();
ByteBuffer[] inputBuffers = codec.getInputBuffers();
ByteBuffer[] outputBuffers = codec.getOutputBuffers();
for (;;) {
int inputBufferId = codec.dequeueInputBuffer(…);
if (inputBufferId >= 0) {
// fill inputBuffers[inputBufferId] with valid data
…
codec.queueInputBuffer(inputBufferId, …);
}
int outputBufferId = codec.dequeueOutputBuffer(…);
if (outputBufferId >= 0) {
// outputBuffers[outputBufferId] is ready to be processed or rendered.
…
codec.releaseOutputBuffer(outputBufferId, …);
} else if (outputBufferId == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
outputBuffers = codec.getOutputBuffers();
} else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
// Subsequent data will conform to new format.
MediaFormat format = codec.getOutputFormat();
}
}
codec.stop();
codec.release();
End-of-stream Handling
When you reach the end of the input data, you must signal it to the codec by specifying the
{@link #BUFFER_FLAG_END_OF_STREAM} flag in the call to {@link #queueInputBuffer
queueInputBuffer}. You can do this on the last valid input buffer, or by submitting an additional
empty input buffer with the end-of-stream flag set. If using an empty buffer, the timestamp will
be ignored.
The codec will continue to return output buffers until it eventually signals the end of the
output stream by specifying the same end-of-stream flag in the {@link BufferInfo} set in {@link
#dequeueOutputBuffer dequeueOutputBuffer} or returned via {@link Callback#onOutputBufferAvailable
onOutputBufferAvailable}. This can be set on the last valid output buffer, or on an empty buffer
after the last valid output buffer. The timestamp of such empty buffer should be ignored.
Do not submit additional input buffers after signaling the end of the input stream, unless the
codec has been flushed, or stopped and restarted.
Using an Output Surface
The data processing is nearly identical to the ByteBuffer mode when using an output {@link
Surface}; however, the output buffers will not be accessible, and are represented as {@code null}
values. E.g. {@link #getOutputBuffer getOutputBuffer}/{@link #getOutputImage Image(int)} will
return {@code null} and {@link #getOutputBuffers} will return an array containing only {@code
null}-s.
When using an output Surface, you can select whether or not to render each output buffer on the
surface. You have three choices:
- Do not render the buffer: Call {@link #releaseOutputBuffer(int, boolean)
releaseOutputBuffer(bufferId, false)}.
- Render the buffer with the default timestamp: Call {@link
#releaseOutputBuffer(int, boolean) releaseOutputBuffer(bufferId, true)}.
- Render the buffer with a specific timestamp: Call {@link
#releaseOutputBuffer(int, long) releaseOutputBuffer(bufferId, timestamp)}.
Since {@link android.os.Build.VERSION_CODES#M}, the default timestamp is the {@linkplain
BufferInfo#presentationTimeUs presentation timestamp} of the buffer (converted to nanoseconds).
It was not defined prior to that.
Also since {@link android.os.Build.VERSION_CODES#M}, you can change the output Surface
dynamically using {@link #setOutputSurface setOutputSurface}.
When rendering output to a Surface, the Surface may be configured to drop excessive frames (that
are not consumed by the Surface in a timely manner). Or it may be configured to not drop excessive
frames. In the latter mode if the Surface is not consuming output frames fast enough, it will
eventually block the decoder. Prior to {@link android.os.Build.VERSION_CODES#Q} the exact behavior
was undefined, with the exception that View surfaces (SurfaceView or TextureView) always dropped
excessive frames. Since {@link android.os.Build.VERSION_CODES#Q} the default behavior is to drop
excessive frames. Applications can opt out of this behavior for non-View surfaces (such as
ImageReader or SurfaceTexture) by targeting SDK {@link android.os.Build.VERSION_CODES#Q} and
setting the key {@link MediaFormat#KEY_ALLOW_FRAME_DROP} to {@code 0}
in their configure format.
Transformations When Rendering onto Surface
If the codec is configured into Surface mode, any crop rectangle, {@linkplain
MediaFormat#KEY_ROTATION rotation} and {@linkplain #setVideoScalingMode video scaling
mode} will be automatically applied with one exception:
Prior to the {@link android.os.Build.VERSION_CODES#M} release, software decoders may not
have applied the rotation when being rendered onto a Surface. Unfortunately, there is no standard
and simple way to identify software decoders, or if they apply the rotation other than by trying
it out.
There are also some caveats.
Note that the pixel aspect ratio is not considered when displaying the output onto the
Surface. This means that if you are using {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT} mode, you
must position the output Surface so that it has the proper final display aspect ratio. Conversely,
you can only use {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING} mode for content with
square pixels (pixel aspect ratio or 1:1).
Note also that as of {@link android.os.Build.VERSION_CODES#N} release, {@link
#VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING} mode may not work correctly for videos rotated
by 90 or 270 degrees.
When setting the video scaling mode, note that it must be reset after each time the output
buffers change. Since the {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is deprecated, you can
do this after each time the output format changes.
Using an Input Surface
When using an input Surface, there are no accessible input buffers, as buffers are automatically
passed from the input surface to the codec. Calling {@link #dequeueInputBuffer
dequeueInputBuffer} will throw an {@code IllegalStateException}, and {@link #getInputBuffers}
returns a bogus {@code ByteBuffer[]} array that MUST NOT be written into.
Call {@link #signalEndOfInputStream} to signal end-of-stream. The input surface will stop
submitting data to the codec immediately after this call.
Seeking & Adaptive Playback Support
Video decoders (and in general codecs that consume compressed video data) behave differently
regarding seek and format change whether or not they support and are configured for adaptive
playback. You can check if a decoder supports {@linkplain
CodecCapabilities#FEATURE_AdaptivePlayback adaptive playback} via {@link
CodecCapabilities#isFeatureSupported CodecCapabilities.isFeatureSupported(String)}. Adaptive
playback support for video decoders is only activated if you configure the codec to decode onto a
{@link Surface}.
Stream Boundary and Key Frames
It is important that the input data after {@link #start} or {@link #flush} starts at a suitable
stream boundary: the first frame must a key frame. A key frame can be decoded
completely on its own (for most codecs this means an I-frame), and no frames that are to be
displayed after a key frame refer to frames before the key frame.
The following table summarizes suitable key frames for various video formats.
Format
Suitable key frame
VP9/VP8
a suitable intraframe where no subsequent frames refer to frames prior to this frame.
(There is no specific name for such key frame.)
H.265 HEVC
IDR or CRA
H.264 AVC
IDR
MPEG-4
H.263
MPEG-2
a suitable I-frame where no subsequent frames refer to frames prior to this frame.
(There is no specific name for such key frame.)
For decoders that do not support adaptive playback (including when not decoding onto a
Surface)
In order to start decoding data that is not adjacent to previously submitted data (i.e. after a
seek) you MUST flush the decoder. Since all output buffers are immediately
revoked at the point of the flush, you may want to first signal then wait for the end-of-stream
before you call {@code flush}. It is important that the input data after a flush starts at a
suitable stream boundary/key frame.
Note: the format of the data submitted after a flush must not change; {@link
#flush} does not support format discontinuities; for that, a full {@link #stop} - {@link
#configure configure(…)} - {@link #start} cycle is necessary.
Also note: if you flush the codec too soon after {@link #start} –
generally, before the first output buffer or output format change is received – you
will need to resubmit the codec-specific-data to the codec. See the codec-specific-data section for more info.
For decoders that support and are configured for adaptive playback
In order to start decoding data that is not adjacent to previously submitted data (i.e. after a
seek) it is not necessary to flush the decoder; however, input data after the
discontinuity must start at a suitable stream boundary/key frame.
For some video formats - namely H.264, H.265, VP8 and VP9 - it is also possible to change the
picture size or configuration mid-stream. To do this you must package the entire new
codec-specific configuration data together with the key frame into a single buffer (including
any start codes), and submit it as a regular input buffer.
You will receive an {@link #INFO_OUTPUT_FORMAT_CHANGED} return value from {@link
#dequeueOutputBuffer dequeueOutputBuffer} or a {@link Callback#onOutputBufferAvailable
onOutputFormatChanged} callback just after the picture-size change takes place and before any
frames with the new size have been returned.
Note: just as the case for codec-specific data, be careful when calling
{@link #flush} shortly after you have changed the picture size. If you have not received
confirmation of the picture size change, you will need to repeat the request for the new picture
size.
Error handling
The factory methods {@link #createByCodecName createByCodecName} and {@link #createDecoderByType
createDecoder}/{@link #createEncoderByType EncoderByType} throw {@code IOException} on failure
which you must catch or declare to pass up. MediaCodec methods throw {@code
IllegalStateException} when the method is called from a codec state that does not allow it; this
is typically due to incorrect application API usage. Methods involving secure buffers may throw
{@link CryptoException}, which has further error information obtainable from {@link
CryptoException#getErrorCode}.
Internal codec errors result in a {@link CodecException}, which may be due to media content
corruption, hardware failure, resource exhaustion, and so forth, even when the application is
correctly using the API. The recommended action when receiving a {@code CodecException}
can be determined by calling {@link CodecException#isRecoverable} and {@link
CodecException#isTransient}:
- recoverable errors: If {@code isRecoverable()} returns true, then call
{@link #stop}, {@link #configure configure(…)}, and {@link #start} to recover.
- transient errors: If {@code isTransient()} returns true, then resources are
temporarily unavailable and the method may be retried at a later time.
- fatal errors: If both {@code isRecoverable()} and {@code isTransient()}
return false, then the {@code CodecException} is fatal and the codec must be {@linkplain #reset
reset} or {@linkplain #release released}.
Both {@code isRecoverable()} and {@code isTransient()} do not return true at the same time.
Valid API Calls and API History
This sections summarizes the valid API calls in each state and the API history of the MediaCodec
class. For API version numbers, see {@link android.os.Build.VERSION_CODES}.
Symbol Meaning
● Supported
⁕ Semantics changed
○ Experimental support
[ ] Deprecated
⎋ Restricted to surface input mode
⎆ Restricted to surface output mode
▧ Restricted to ByteBuffer input mode
↩ Restricted to synchronous mode
⇄ Restricted to asynchronous mode
( ) Can be called, but shouldn't
Uninitialized
Configured
Flushed
Running
End of Stream
Error
Released
SDK Version
State
Method
16
17
18
19
20
21
22
23
{@link #createByCodecName createByCodecName}
●
●
●
●
●
●
●
●
{@link #createDecoderByType createDecoderByType}
●
●
●
●
●
●
●
●
{@link #createEncoderByType createEncoderByType}
●
●
●
●
●
●
●
●
{@link #createPersistentInputSurface createPersistentInputSurface}
●
16+
-
-
-
-
-
-
{@link #configure configure}
●
●
●
●
●
⁕
●
●
-
18+
-
-
-
-
-
{@link #createInputSurface createInputSurface}
⎋
⎋
⎋
⎋
⎋
⎋
-
-
16+
16+
(16+)
-
-
{@link #dequeueInputBuffer dequeueInputBuffer}
●
●
▧
▧
▧
⁕▧↩
▧↩
▧↩
-
-
16+
16+
16+
-
-
{@link #dequeueOutputBuffer dequeueOutputBuffer}
●
●
●
●
●
⁕↩
↩
↩
-
-
16+
16+
16+
-
-
{@link #flush flush}
●
●
●
●
●
●
●
●
18+
18+
18+
18+
18+
18+
-
{@link #getCodecInfo getCodecInfo}
●
●
●
●
●
●
-
-
(21+)
21+
(21+)
-
-
{@link #getInputBuffer getInputBuffer}
●
●
●
-
-
16+
(16+)
(16+)
-
-
{@link #getInputBuffers getInputBuffers}
●
●
●
●
●
[⁕↩]
[↩]
[↩]
-
21+
(21+)
(21+)
(21+)
-
-
{@link #getInputFormat getInputFormat}
●
●
●
-
-
(21+)
21+
(21+)
-
-
{@link #getInputImage getInputImage}
○
●
●
18+
18+
18+
18+
18+
18+
-
{@link #getName getName}
●
●
●
●
●
●
-
-
(21+)
21+
21+
-
-
{@link #getOutputBuffer getOutputBuffer}
●
●
●
-
-
16+
16+
16+
-
-
{@link #getOutputBuffers getOutputBuffers}
●
●
●
●
●
[⁕↩]
[↩]
[↩]
-
21+
16+
16+
16+
-
-
{@link #getOutputFormat()}
●
●
●
●
●
●
●
●
-
-
(21+)
21+
21+
-
-
{@link #getOutputFormat(int)}
●
●
●
-
-
(21+)
21+
21+
-
-
{@link #getOutputImage getOutputImage}
○
●
●
-
-
-
16+
(16+)
-
-
{@link #queueInputBuffer queueInputBuffer}
●
●
●
●
●
⁕
●
●
-
-
-
16+
(16+)
-
-
{@link #queueSecureInputBuffer queueSecureInputBuffer}
●
●
●
●
●
⁕
●
●
16+
16+
16+
16+
16+
16+
16+
{@link #release release}
●
●
●
●
●
●
●
●
-
-
-
16+
16+
-
-
{@link #releaseOutputBuffer(int, boolean)}
●
●
●
●
●
⁕
●
⁕
-
-
-
21+
21+
-
-
{@link #releaseOutputBuffer(int, long)}
⎆
⎆
⎆
21+
21+
21+
21+
21+
21+
-
{@link #reset reset}
●
●
●
21+
-
-
-
-
-
-
{@link #setCallback(Callback) setCallback}
●
●
{@link #setCallback(Callback, Handler) ⁕}
-
23+
-
-
-
-
-
{@link #setInputSurface setInputSurface}
⎋
23+
23+
23+
23+
23+
(23+)
(23+)
{@link #setOnFrameRenderedListener setOnFrameRenderedListener}
○ ⎆
-
23+
23+
23+
23+
-
-
{@link #setOutputSurface setOutputSurface}
⎆
19+
19+
19+
19+
19+
(19+)
-
{@link #setParameters setParameters}
●
●
●
●
●
-
(16+)
(16+)
16+
(16+)
(16+)
-
{@link #setVideoScalingMode setVideoScalingMode}
⎆
⎆
⎆
⎆
⎆
⎆
⎆
⎆
(29+)
29+
29+
29+
(29+)
(29+)
-
{@link #setAudioPresentation setAudioPresentation}
-
-
18+
18+
-
-
-
{@link #signalEndOfInputStream signalEndOfInputStream}
⎋
⎋
⎋
⎋
⎋
⎋
-
16+
21+(⇄)
-
-
-
-
{@link #start start}
●
●
●
●
●
⁕
●
●
-
-
16+
16+
16+
-
-
{@link #stop stop}
●
●
●
●
●
●
●
●
*/
final public class MediaCodec {
/**
* Per buffer metadata includes an offset and size specifying
* the range of valid data in the associated codec (output) buffer.
*/
public final static class BufferInfo {
/**
* Update the buffer metadata information.
*
* @param newOffset the start-offset of the data in the buffer.
* @param newSize the amount of data (in bytes) in the buffer.
* @param newTimeUs the presentation timestamp in microseconds.
* @param newFlags buffer flags associated with the buffer. This
* should be a combination of {@link #BUFFER_FLAG_KEY_FRAME} and
* {@link #BUFFER_FLAG_END_OF_STREAM}.
*/
public void set(
int newOffset, int newSize, long newTimeUs, @BufferFlag int newFlags) {
offset = newOffset;
size = newSize;
presentationTimeUs = newTimeUs;
flags = newFlags;
}
/**
* The start-offset of the data in the buffer.
*/
public int offset;
/**
* The amount of data (in bytes) in the buffer. If this is {@code 0},
* the buffer has no data in it and can be discarded. The only
* use of a 0-size buffer is to carry the end-of-stream marker.
*/
public int size;
/**
* The presentation timestamp in microseconds for the buffer.
* This is derived from the presentation timestamp passed in
* with the corresponding input buffer. This should be ignored for
* a 0-sized buffer.
*/
public long presentationTimeUs;
/**
* Buffer flags associated with the buffer. A combination of
* {@link #BUFFER_FLAG_KEY_FRAME} and {@link #BUFFER_FLAG_END_OF_STREAM}.
*
* Encoded buffers that are key frames are marked with
* {@link #BUFFER_FLAG_KEY_FRAME}.
*
*
The last output buffer corresponding to the input buffer
* marked with {@link #BUFFER_FLAG_END_OF_STREAM} will also be marked
* with {@link #BUFFER_FLAG_END_OF_STREAM}. In some cases this could
* be an empty buffer, whose sole purpose is to carry the end-of-stream
* marker.
*/
@BufferFlag
public int flags;
/** @hide */
@NonNull
public BufferInfo dup() {
BufferInfo copy = new BufferInfo();
copy.set(offset, size, presentationTimeUs, flags);
return copy;
}
};
// The follow flag constants MUST stay in sync with their equivalents
// in MediaCodec.h !
/**
* This indicates that the (encoded) buffer marked as such contains
* the data for a key frame.
*
* @deprecated Use {@link #BUFFER_FLAG_KEY_FRAME} instead.
*/
public static final int BUFFER_FLAG_SYNC_FRAME = 1;
/**
* This indicates that the (encoded) buffer marked as such contains
* the data for a key frame.
*/
public static final int BUFFER_FLAG_KEY_FRAME = 1;
/**
* This indicated that the buffer marked as such contains codec
* initialization / codec specific data instead of media data.
*/
public static final int BUFFER_FLAG_CODEC_CONFIG = 2;
/**
* This signals the end of stream, i.e. no buffers will be available
* after this, unless of course, {@link #flush} follows.
*/
public static final int BUFFER_FLAG_END_OF_STREAM = 4;
/**
* This indicates that the buffer only contains part of a frame,
* and the decoder should batch the data until a buffer without
* this flag appears before decoding the frame.
*/
public static final int BUFFER_FLAG_PARTIAL_FRAME = 8;
/**
* This indicates that the buffer contains non-media data for the
* muxer to process.
*
* All muxer data should start with a FOURCC header that determines the type of data.
*
* For example, when it contains Exif data sent to a MediaMuxer track of
* {@link MediaFormat#MIMETYPE_IMAGE_ANDROID_HEIC} type, the data must start with
* Exif header ("Exif\0\0"), followed by the TIFF header (See JEITA CP-3451C Section 4.5.2.)
*
* @hide
*/
public static final int BUFFER_FLAG_MUXER_DATA = 16;
/** @hide */
@IntDef(
flag = true,
value = {
BUFFER_FLAG_SYNC_FRAME,
BUFFER_FLAG_KEY_FRAME,
BUFFER_FLAG_CODEC_CONFIG,
BUFFER_FLAG_END_OF_STREAM,
BUFFER_FLAG_PARTIAL_FRAME,
BUFFER_FLAG_MUXER_DATA,
})
@Retention(RetentionPolicy.SOURCE)
public @interface BufferFlag {}
private EventHandler mEventHandler;
private EventHandler mOnFirstTunnelFrameReadyHandler;
private EventHandler mOnFrameRenderedHandler;
private EventHandler mCallbackHandler;
private Callback mCallback;
private OnFirstTunnelFrameReadyListener mOnFirstTunnelFrameReadyListener;
private OnFrameRenderedListener mOnFrameRenderedListener;
private final Object mListenerLock = new Object();
private MediaCodecInfo mCodecInfo;
private final Object mCodecInfoLock = new Object();
private MediaCrypto mCrypto;
private static final int EVENT_CALLBACK = 1;
private static final int EVENT_SET_CALLBACK = 2;
private static final int EVENT_FRAME_RENDERED = 3;
private static final int EVENT_FIRST_TUNNEL_FRAME_READY = 4;
private static final int CB_INPUT_AVAILABLE = 1;
private static final int CB_OUTPUT_AVAILABLE = 2;
private static final int CB_ERROR = 3;
private static final int CB_OUTPUT_FORMAT_CHANGE = 4;
private class EventHandler extends Handler {
private MediaCodec mCodec;
public EventHandler(@NonNull MediaCodec codec, @NonNull Looper looper) {
super(looper);
mCodec = codec;
}
@Override
public void handleMessage(@NonNull Message msg) {
switch (msg.what) {
case EVENT_CALLBACK:
{
handleCallback(msg);
break;
}
case EVENT_SET_CALLBACK:
{
mCallback = (MediaCodec.Callback) msg.obj;
break;
}
case EVENT_FRAME_RENDERED:
Map map = (Map)msg.obj;
for (int i = 0; ; ++i) {
Object mediaTimeUs = map.get(i + "-media-time-us");
Object systemNano = map.get(i + "-system-nano");
OnFrameRenderedListener onFrameRenderedListener;
synchronized (mListenerLock) {
onFrameRenderedListener = mOnFrameRenderedListener;
}
if (mediaTimeUs == null || systemNano == null
|| onFrameRenderedListener == null) {
break;
}
onFrameRenderedListener.onFrameRendered(
mCodec, (long)mediaTimeUs, (long)systemNano);
}
break;
case EVENT_FIRST_TUNNEL_FRAME_READY:
OnFirstTunnelFrameReadyListener onFirstTunnelFrameReadyListener;
synchronized (mListenerLock) {
onFirstTunnelFrameReadyListener = mOnFirstTunnelFrameReadyListener;
}
if (onFirstTunnelFrameReadyListener == null) {
break;
}
onFirstTunnelFrameReadyListener.onFirstTunnelFrameReady(mCodec);
break;
default:
{
break;
}
}
}
private void handleCallback(@NonNull Message msg) {
if (mCallback == null) {
return;
}
switch (msg.arg1) {
case CB_INPUT_AVAILABLE:
{
int index = msg.arg2;
synchronized(mBufferLock) {
switch (mBufferMode) {
case BUFFER_MODE_LEGACY:
validateInputByteBuffer(mCachedInputBuffers, index);
break;
case BUFFER_MODE_BLOCK:
while (mQueueRequests.size() <= index) {
mQueueRequests.add(null);
}
QueueRequest request = mQueueRequests.get(index);
if (request == null) {
request = new QueueRequest(mCodec, index);
mQueueRequests.set(index, request);
}
request.setAccessible(true);
break;
default:
throw new IllegalStateException(
"Unrecognized buffer mode: " + mBufferMode);
}
}
mCallback.onInputBufferAvailable(mCodec, index);
break;
}
case CB_OUTPUT_AVAILABLE:
{
int index = msg.arg2;
BufferInfo info = (MediaCodec.BufferInfo) msg.obj;
synchronized(mBufferLock) {
switch (mBufferMode) {
case BUFFER_MODE_LEGACY:
validateOutputByteBuffer(mCachedOutputBuffers, index, info);
break;
case BUFFER_MODE_BLOCK:
while (mOutputFrames.size() <= index) {
mOutputFrames.add(null);
}
OutputFrame frame = mOutputFrames.get(index);
if (frame == null) {
frame = new OutputFrame(index);
mOutputFrames.set(index, frame);
}
frame.setBufferInfo(info);
frame.setAccessible(true);
break;
default:
throw new IllegalStateException(
"Unrecognized buffer mode: " + mBufferMode);
}
}
mCallback.onOutputBufferAvailable(
mCodec, index, info);
break;
}
case CB_ERROR:
{
mCallback.onError(mCodec, (MediaCodec.CodecException) msg.obj);
break;
}
case CB_OUTPUT_FORMAT_CHANGE:
{
mCallback.onOutputFormatChanged(mCodec,
new MediaFormat((Map) msg.obj));
break;
}
default:
{
break;
}
}
}
}
private boolean mHasSurface = false;
/**
* Instantiate the preferred decoder supporting input data of the given mime type.
*
* The following is a partial list of defined mime types and their semantics:
*
* - "video/x-vnd.on2.vp8" - VP8 video (i.e. video in .webm)
*
- "video/x-vnd.on2.vp9" - VP9 video (i.e. video in .webm)
*
- "video/avc" - H.264/AVC video
*
- "video/hevc" - H.265/HEVC video
*
- "video/mp4v-es" - MPEG4 video
*
- "video/3gpp" - H.263 video
*
- "audio/3gpp" - AMR narrowband audio
*
- "audio/amr-wb" - AMR wideband audio
*
- "audio/mpeg" - MPEG1/2 audio layer III
*
- "audio/mp4a-latm" - AAC audio (note, this is raw AAC packets, not packaged in LATM!)
*
- "audio/vorbis" - vorbis audio
*
- "audio/g711-alaw" - G.711 alaw audio
*
- "audio/g711-mlaw" - G.711 ulaw audio
*
*
* Note: It is preferred to use {@link MediaCodecList#findDecoderForFormat}
* and {@link #createByCodecName} to ensure that the resulting codec can handle a
* given format.
*
* @param type The mime type of the input data.
* @throws IOException if the codec cannot be created.
* @throws IllegalArgumentException if type is not a valid mime type.
* @throws NullPointerException if type is null.
*/
@NonNull
public static MediaCodec createDecoderByType(@NonNull String type)
throws IOException {
return new MediaCodec(type, true /* nameIsType */, false /* encoder */);
}
/**
* Instantiate the preferred encoder supporting output data of the given mime type.
*
* Note: It is preferred to use {@link MediaCodecList#findEncoderForFormat}
* and {@link #createByCodecName} to ensure that the resulting codec can handle a
* given format.
*
* @param type The desired mime type of the output data.
* @throws IOException if the codec cannot be created.
* @throws IllegalArgumentException if type is not a valid mime type.
* @throws NullPointerException if type is null.
*/
@NonNull
public static MediaCodec createEncoderByType(@NonNull String type)
throws IOException {
return new MediaCodec(type, true /* nameIsType */, true /* encoder */);
}
/**
* If you know the exact name of the component you want to instantiate
* use this method to instantiate it. Use with caution.
* Likely to be used with information obtained from {@link android.media.MediaCodecList}
* @param name The name of the codec to be instantiated.
* @throws IOException if the codec cannot be created.
* @throws IllegalArgumentException if name is not valid.
* @throws NullPointerException if name is null.
*/
@NonNull
public static MediaCodec createByCodecName(@NonNull String name)
throws IOException {
return new MediaCodec(
name, false /* nameIsType */, false /* unused */);
}
private MediaCodec(
@NonNull String name, boolean nameIsType, boolean encoder) {
Looper looper;
if ((looper = Looper.myLooper()) != null) {
mEventHandler = new EventHandler(this, looper);
} else if ((looper = Looper.getMainLooper()) != null) {
mEventHandler = new EventHandler(this, looper);
} else {
mEventHandler = null;
}
mCallbackHandler = mEventHandler;
mOnFirstTunnelFrameReadyHandler = mEventHandler;
mOnFrameRenderedHandler = mEventHandler;
mBufferLock = new Object();
// save name used at creation
mNameAtCreation = nameIsType ? null : name;
native_setup(name, nameIsType, encoder);
}
private String mNameAtCreation;
@Override
protected void finalize() {
native_finalize();
mCrypto = null;
}
/**
* Returns the codec to its initial (Uninitialized) state.
*
* Call this if an {@link MediaCodec.CodecException#isRecoverable unrecoverable}
* error has occured to reset the codec to its initial state after creation.
*
* @throws CodecException if an unrecoverable error has occured and the codec
* could not be reset.
* @throws IllegalStateException if in the Released state.
*/
public final void reset() {
freeAllTrackedBuffers(); // free buffers first
native_reset();
mCrypto = null;
}
private native final void native_reset();
/**
* Free up resources used by the codec instance.
*
* Make sure you call this when you're done to free up any opened
* component instance instead of relying on the garbage collector
* to do this for you at some point in the future.
*/
public final void release() {
freeAllTrackedBuffers(); // free buffers first
native_release();
mCrypto = null;
}
private native final void native_release();
/**
* If this codec is to be used as an encoder, pass this flag.
*/
public static final int CONFIGURE_FLAG_ENCODE = 1;
/**
* If this codec is to be used with {@link LinearBlock} and/or {@link
* HardwareBuffer}, pass this flag.
*
* When this flag is set, the following APIs throw {@link IncompatibleWithBlockModelException}.
*
* - {@link #getInputBuffer}
*
- {@link #getInputImage}
*
- {@link #getInputBuffers}
*
- {@link #getOutputBuffer}
*
- {@link #getOutputImage}
*
- {@link #getOutputBuffers}
*
- {@link #queueInputBuffer}
*
- {@link #queueSecureInputBuffer}
*
- {@link #dequeueInputBuffer}
*
- {@link #dequeueOutputBuffer}
*
*/
public static final int CONFIGURE_FLAG_USE_BLOCK_MODEL = 2;
/** @hide */
@IntDef(
flag = true,
value = {
CONFIGURE_FLAG_ENCODE,
CONFIGURE_FLAG_USE_BLOCK_MODEL,
})
@Retention(RetentionPolicy.SOURCE)
public @interface ConfigureFlag {}
/**
* Thrown when the codec is configured for block model and an incompatible API is called.
*/
public class IncompatibleWithBlockModelException extends RuntimeException {
IncompatibleWithBlockModelException() { }
IncompatibleWithBlockModelException(String message) {
super(message);
}
IncompatibleWithBlockModelException(String message, Throwable cause) {
super(message, cause);
}
IncompatibleWithBlockModelException(Throwable cause) {
super(cause);
}
}
/**
* Configures a component.
*
* @param format The format of the input data (decoder) or the desired
* format of the output data (encoder). Passing {@code null}
* as {@code format} is equivalent to passing an
* {@link MediaFormat#MediaFormat an empty mediaformat}.
* @param surface Specify a surface on which to render the output of this
* decoder. Pass {@code null} as {@code surface} if the
* codec does not generate raw video output (e.g. not a video
* decoder) and/or if you want to configure the codec for
* {@link ByteBuffer} output.
* @param crypto Specify a crypto object to facilitate secure decryption
* of the media data. Pass {@code null} as {@code crypto} for
* non-secure codecs.
* Please note that {@link MediaCodec} does NOT take ownership
* of the {@link MediaCrypto} object; it is the application's
* responsibility to properly cleanup the {@link MediaCrypto} object
* when not in use.
* @param flags Specify {@link #CONFIGURE_FLAG_ENCODE} to configure the
* component as an encoder.
* @throws IllegalArgumentException if the surface has been released (or is invalid),
* or the format is unacceptable (e.g. missing a mandatory key),
* or the flags are not set properly
* (e.g. missing {@link #CONFIGURE_FLAG_ENCODE} for an encoder).
* @throws IllegalStateException if not in the Uninitialized state.
* @throws CryptoException upon DRM error.
* @throws CodecException upon codec error.
*/
public void configure(
@Nullable MediaFormat format,
@Nullable Surface surface, @Nullable MediaCrypto crypto,
@ConfigureFlag int flags) {
configure(format, surface, crypto, null, flags);
}
/**
* Configure a component to be used with a descrambler.
* @param format The format of the input data (decoder) or the desired
* format of the output data (encoder). Passing {@code null}
* as {@code format} is equivalent to passing an
* {@link MediaFormat#MediaFormat an empty mediaformat}.
* @param surface Specify a surface on which to render the output of this
* decoder. Pass {@code null} as {@code surface} if the
* codec does not generate raw video output (e.g. not a video
* decoder) and/or if you want to configure the codec for
* {@link ByteBuffer} output.
* @param flags Specify {@link #CONFIGURE_FLAG_ENCODE} to configure the
* component as an encoder.
* @param descrambler Specify a descrambler object to facilitate secure
* descrambling of the media data, or null for non-secure codecs.
* @throws IllegalArgumentException if the surface has been released (or is invalid),
* or the format is unacceptable (e.g. missing a mandatory key),
* or the flags are not set properly
* (e.g. missing {@link #CONFIGURE_FLAG_ENCODE} for an encoder).
* @throws IllegalStateException if not in the Uninitialized state.
* @throws CryptoException upon DRM error.
* @throws CodecException upon codec error.
*/
public void configure(
@Nullable MediaFormat format, @Nullable Surface surface,
@ConfigureFlag int flags, @Nullable MediaDescrambler descrambler) {
configure(format, surface, null,
descrambler != null ? descrambler.getBinder() : null, flags);
}
private static final int BUFFER_MODE_INVALID = -1;
private static final int BUFFER_MODE_LEGACY = 0;
private static final int BUFFER_MODE_BLOCK = 1;
private int mBufferMode = BUFFER_MODE_INVALID;
private void configure(
@Nullable MediaFormat format, @Nullable Surface surface,
@Nullable MediaCrypto crypto, @Nullable IHwBinder descramblerBinder,
@ConfigureFlag int flags) {
if (crypto != null && descramblerBinder != null) {
throw new IllegalArgumentException("Can't use crypto and descrambler together!");
}
String[] keys = null;
Object[] values = null;
if (format != null) {
Map formatMap = format.getMap();
keys = new String[formatMap.size()];
values = new Object[formatMap.size()];
int i = 0;
for (Map.Entry entry: formatMap.entrySet()) {
if (entry.getKey().equals(MediaFormat.KEY_AUDIO_SESSION_ID)) {
int sessionId = 0;
try {
sessionId = (Integer)entry.getValue();
}
catch (Exception e) {
throw new IllegalArgumentException("Wrong Session ID Parameter!");
}
keys[i] = "audio-hw-sync";
values[i] = AudioSystem.getAudioHwSyncForSession(sessionId);
} else {
keys[i] = entry.getKey();
values[i] = entry.getValue();
}
++i;
}
}
mHasSurface = surface != null;
mCrypto = crypto;
synchronized (mBufferLock) {
if ((flags & CONFIGURE_FLAG_USE_BLOCK_MODEL) != 0) {
mBufferMode = BUFFER_MODE_BLOCK;
} else {
mBufferMode = BUFFER_MODE_LEGACY;
}
}
native_configure(keys, values, surface, crypto, descramblerBinder, flags);
}
/**
* Dynamically sets the output surface of a codec.
*
* This can only be used if the codec was configured with an output surface. The
* new output surface should have a compatible usage type to the original output surface.
* E.g. codecs may not support switching from a SurfaceTexture (GPU readable) output
* to ImageReader (software readable) output.
* @param surface the output surface to use. It must not be {@code null}.
* @throws IllegalStateException if the codec does not support setting the output
* surface in the current state.
* @throws IllegalArgumentException if the new surface is not of a suitable type for the codec.
*/
public void setOutputSurface(@NonNull Surface surface) {
if (!mHasSurface) {
throw new IllegalStateException("codec was not configured for an output surface");
}
native_setSurface(surface);
}
private native void native_setSurface(@NonNull Surface surface);
/**
* Create a persistent input surface that can be used with codecs that normally have an input
* surface, such as video encoders. A persistent input can be reused by subsequent
* {@link MediaCodec} or {@link MediaRecorder} instances, but can only be used by at
* most one codec or recorder instance concurrently.
*
* The application is responsible for calling release() on the Surface when done.
*
* @return an input surface that can be used with {@link #setInputSurface}.
*/
@NonNull
public static Surface createPersistentInputSurface() {
return native_createPersistentInputSurface();
}
static class PersistentSurface extends Surface {
@SuppressWarnings("unused")
PersistentSurface() {} // used by native
@Override
public void release() {
native_releasePersistentInputSurface(this);
super.release();
}
private long mPersistentObject;
};
/**
* Configures the codec (e.g. encoder) to use a persistent input surface in place of input
* buffers. This may only be called after {@link #configure} and before {@link #start}, in
* lieu of {@link #createInputSurface}.
* @param surface a persistent input surface created by {@link #createPersistentInputSurface}
* @throws IllegalStateException if not in the Configured state or does not require an input
* surface.
* @throws IllegalArgumentException if the surface was not created by
* {@link #createPersistentInputSurface}.
*/
public void setInputSurface(@NonNull Surface surface) {
if (!(surface instanceof PersistentSurface)) {
throw new IllegalArgumentException("not a PersistentSurface");
}
native_setInputSurface(surface);
}
@NonNull
private static native final PersistentSurface native_createPersistentInputSurface();
private static native final void native_releasePersistentInputSurface(@NonNull Surface surface);
private native final void native_setInputSurface(@NonNull Surface surface);
private native final void native_setCallback(@Nullable Callback cb);
private native final void native_configure(
@Nullable String[] keys, @Nullable Object[] values,
@Nullable Surface surface, @Nullable MediaCrypto crypto,
@Nullable IHwBinder descramblerBinder, @ConfigureFlag int flags);
/**
* Requests a Surface to use as the input to an encoder, in place of input buffers. This
* may only be called after {@link #configure} and before {@link #start}.
*
* The application is responsible for calling release() on the Surface when
* done.
*
* The Surface must be rendered with a hardware-accelerated API, such as OpenGL ES.
* {@link android.view.Surface#lockCanvas(android.graphics.Rect)} may fail or produce
* unexpected results.
* @throws IllegalStateException if not in the Configured state.
*/
@NonNull
public native final Surface createInputSurface();
/**
* After successfully configuring the component, call {@code start}.
*
* Call {@code start} also if the codec is configured in asynchronous mode,
* and it has just been flushed, to resume requesting input buffers.
* @throws IllegalStateException if not in the Configured state
* or just after {@link #flush} for a codec that is configured
* in asynchronous mode.
* @throws MediaCodec.CodecException upon codec error. Note that some codec errors
* for start may be attributed to future method calls.
*/
public final void start() {
native_start();
synchronized(mBufferLock) {
cacheBuffers(true /* input */);
cacheBuffers(false /* input */);
}
}
private native final void native_start();
/**
* Finish the decode/encode session, note that the codec instance
* remains active and ready to be {@link #start}ed again.
* To ensure that it is available to other client call {@link #release}
* and don't just rely on garbage collection to eventually do this for you.
* @throws IllegalStateException if in the Released state.
*/
public final void stop() {
native_stop();
freeAllTrackedBuffers();
synchronized (mListenerLock) {
if (mCallbackHandler != null) {
mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
mCallbackHandler.removeMessages(EVENT_CALLBACK);
}
if (mOnFirstTunnelFrameReadyHandler != null) {
mOnFirstTunnelFrameReadyHandler.removeMessages(EVENT_FIRST_TUNNEL_FRAME_READY);
}
if (mOnFrameRenderedHandler != null) {
mOnFrameRenderedHandler.removeMessages(EVENT_FRAME_RENDERED);
}
}
}
private native final void native_stop();
/**
* Flush both input and output ports of the component.
*
* Upon return, all indices previously returned in calls to {@link #dequeueInputBuffer
* dequeueInputBuffer} and {@link #dequeueOutputBuffer dequeueOutputBuffer} — or obtained
* via {@link Callback#onInputBufferAvailable onInputBufferAvailable} or
* {@link Callback#onOutputBufferAvailable onOutputBufferAvailable} callbacks — become
* invalid, and all buffers are owned by the codec.
*
* If the codec is configured in asynchronous mode, call {@link #start}
* after {@code flush} has returned to resume codec operations. The codec
* will not request input buffers until this has happened.
* Note, however, that there may still be outstanding {@code onOutputBufferAvailable}
* callbacks that were not handled prior to calling {@code flush}.
* The indices returned via these callbacks also become invalid upon calling {@code flush} and
* should be discarded.
*
* If the codec is configured in synchronous mode, codec will resume
* automatically if it is configured with an input surface. Otherwise, it
* will resume when {@link #dequeueInputBuffer dequeueInputBuffer} is called.
*
* @throws IllegalStateException if not in the Executing state.
* @throws MediaCodec.CodecException upon codec error.
*/
public final void flush() {
synchronized(mBufferLock) {
invalidateByteBuffers(mCachedInputBuffers);
invalidateByteBuffers(mCachedOutputBuffers);
mDequeuedInputBuffers.clear();
mDequeuedOutputBuffers.clear();
}
native_flush();
}
private native final void native_flush();
/**
* Thrown when an internal codec error occurs.
*/
public final static class CodecException extends IllegalStateException {
@UnsupportedAppUsage
CodecException(int errorCode, int actionCode, @Nullable String detailMessage) {
super(detailMessage);
mErrorCode = errorCode;
mActionCode = actionCode;
// TODO get this from codec
final String sign = errorCode < 0 ? "neg_" : "";
mDiagnosticInfo =
"android.media.MediaCodec.error_" + sign + Math.abs(errorCode);
}
/**
* Returns true if the codec exception is a transient issue,
* perhaps due to resource constraints, and that the method
* (or encoding/decoding) may be retried at a later time.
*/
public boolean isTransient() {
return mActionCode == ACTION_TRANSIENT;
}
/**
* Returns true if the codec cannot proceed further,
* but can be recovered by stopping, configuring,
* and starting again.
*/
public boolean isRecoverable() {
return mActionCode == ACTION_RECOVERABLE;
}
/**
* Retrieve the error code associated with a CodecException
*/
public int getErrorCode() {
return mErrorCode;
}
/**
* Retrieve a developer-readable diagnostic information string
* associated with the exception. Do not show this to end-users,
* since this string will not be localized or generally
* comprehensible to end-users.
*/
public @NonNull String getDiagnosticInfo() {
return mDiagnosticInfo;
}
/**
* This indicates required resource was not able to be allocated.
*/
public static final int ERROR_INSUFFICIENT_RESOURCE = 1100;
/**
* This indicates the resource manager reclaimed the media resource used by the codec.
*
* With this exception, the codec must be released, as it has moved to terminal state.
*/
public static final int ERROR_RECLAIMED = 1101;
/** @hide */
@IntDef({
ERROR_INSUFFICIENT_RESOURCE,
ERROR_RECLAIMED,
})
@Retention(RetentionPolicy.SOURCE)
public @interface ReasonCode {}
/* Must be in sync with android_media_MediaCodec.cpp */
private final static int ACTION_TRANSIENT = 1;
private final static int ACTION_RECOVERABLE = 2;
private final String mDiagnosticInfo;
private final int mErrorCode;
private final int mActionCode;
}
/**
* Thrown when a crypto error occurs while queueing a secure input buffer.
*/
public final static class CryptoException extends RuntimeException {
public CryptoException(int errorCode, @Nullable String detailMessage) {
super(detailMessage);
mErrorCode = errorCode;
}
/**
* This indicates that the requested key was not found when trying to
* perform a decrypt operation. The operation can be retried after adding
* the correct decryption key.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_NO_KEY}.
*/
public static final int ERROR_NO_KEY = MediaDrm.ErrorCodes.ERROR_NO_KEY;
/**
* This indicates that the key used for decryption is no longer
* valid due to license term expiration. The operation can be retried
* after updating the expired keys.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_KEY_EXPIRED}.
*/
public static final int ERROR_KEY_EXPIRED = MediaDrm.ErrorCodes.ERROR_KEY_EXPIRED;
/**
* This indicates that a required crypto resource was not able to be
* allocated while attempting the requested operation. The operation
* can be retried if the app is able to release resources.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_RESOURCE_BUSY}
*/
public static final int ERROR_RESOURCE_BUSY = MediaDrm.ErrorCodes.ERROR_RESOURCE_BUSY;
/**
* This indicates that the output protection levels supported by the
* device are not sufficient to meet the requirements set by the
* content owner in the license policy.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_INSUFFICIENT_OUTPUT_PROTECTION}
*/
public static final int ERROR_INSUFFICIENT_OUTPUT_PROTECTION =
MediaDrm.ErrorCodes.ERROR_INSUFFICIENT_OUTPUT_PROTECTION;
/**
* This indicates that decryption was attempted on a session that is
* not opened, which could be due to a failure to open the session,
* closing the session prematurely, or the session being reclaimed
* by the resource manager.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_SESSION_NOT_OPENED}
*/
public static final int ERROR_SESSION_NOT_OPENED =
MediaDrm.ErrorCodes.ERROR_SESSION_NOT_OPENED;
/**
* This indicates that an operation was attempted that could not be
* supported by the crypto system of the device in its current
* configuration. It may occur when the license policy requires
* device security features that aren't supported by the device,
* or due to an internal error in the crypto system that prevents
* the specified security policy from being met.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_UNSUPPORTED_OPERATION}
*/
public static final int ERROR_UNSUPPORTED_OPERATION =
MediaDrm.ErrorCodes.ERROR_UNSUPPORTED_OPERATION;
/**
* This indicates that the security level of the device is not
* sufficient to meet the requirements set by the content owner
* in the license policy.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_INSUFFICIENT_SECURITY}
*/
public static final int ERROR_INSUFFICIENT_SECURITY =
MediaDrm.ErrorCodes.ERROR_INSUFFICIENT_SECURITY;
/**
* This indicates that the video frame being decrypted exceeds
* the size of the device's protected output buffers. When
* encountering this error the app should try playing content
* of a lower resolution.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_FRAME_TOO_LARGE}
*/
public static final int ERROR_FRAME_TOO_LARGE = MediaDrm.ErrorCodes.ERROR_FRAME_TOO_LARGE;
/**
* This error indicates that session state has been
* invalidated. It can occur on devices that are not capable
* of retaining crypto session state across device
* suspend/resume. The session must be closed and a new
* session opened to resume operation.
* @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_LOST_STATE}
*/
public static final int ERROR_LOST_STATE = MediaDrm.ErrorCodes.ERROR_LOST_STATE;
/** @hide */
@IntDef({
MediaDrm.ErrorCodes.ERROR_NO_KEY,
MediaDrm.ErrorCodes.ERROR_KEY_EXPIRED,
MediaDrm.ErrorCodes.ERROR_RESOURCE_BUSY,
MediaDrm.ErrorCodes.ERROR_INSUFFICIENT_OUTPUT_PROTECTION,
MediaDrm.ErrorCodes.ERROR_SESSION_NOT_OPENED,
MediaDrm.ErrorCodes.ERROR_UNSUPPORTED_OPERATION,
MediaDrm.ErrorCodes.ERROR_INSUFFICIENT_SECURITY,
MediaDrm.ErrorCodes.ERROR_FRAME_TOO_LARGE,
MediaDrm.ErrorCodes.ERROR_LOST_STATE,
MediaDrm.ErrorCodes.ERROR_GENERIC_OEM,
MediaDrm.ErrorCodes.ERROR_GENERIC_PLUGIN,
MediaDrm.ErrorCodes.ERROR_LICENSE_PARSE,
MediaDrm.ErrorCodes.ERROR_MEDIA_FRAMEWORK,
MediaDrm.ErrorCodes.ERROR_ZERO_SUBSAMPLES
})
@Retention(RetentionPolicy.SOURCE)
public @interface CryptoErrorCode {}
/**
* Returns error code associated with this {@link CryptoException}.
*
* Please refer to {@link MediaDrm.ErrorCodes} for the general error
* handling strategy and details about each possible return value.
*
* @return an error code defined in {@link MediaDrm.ErrorCodes}.
*/
@CryptoErrorCode
public int getErrorCode() {
return mErrorCode;
}
private int mErrorCode;
}
/**
* After filling a range of the input buffer at the specified index
* submit it to the component. Once an input buffer is queued to
* the codec, it MUST NOT be used until it is later retrieved by
* {@link #getInputBuffer} in response to a {@link #dequeueInputBuffer}
* return value or a {@link Callback#onInputBufferAvailable}
* callback.
*
* Many decoders require the actual compressed data stream to be
* preceded by "codec specific data", i.e. setup data used to initialize
* the codec such as PPS/SPS in the case of AVC video or code tables
* in the case of vorbis audio.
* The class {@link android.media.MediaExtractor} provides codec
* specific data as part of
* the returned track format in entries named "csd-0", "csd-1" ...
*
* These buffers can be submitted directly after {@link #start} or
* {@link #flush} by specifying the flag {@link
* #BUFFER_FLAG_CODEC_CONFIG}. However, if you configure the
* codec with a {@link MediaFormat} containing these keys, they
* will be automatically submitted by MediaCodec directly after
* start. Therefore, the use of {@link
* #BUFFER_FLAG_CODEC_CONFIG} flag is discouraged and is
* recommended only for advanced users.
*
* To indicate that this is the final piece of input data (or rather that
* no more input data follows unless the decoder is subsequently flushed)
* specify the flag {@link #BUFFER_FLAG_END_OF_STREAM}.
*
* Note: Prior to {@link android.os.Build.VERSION_CODES#M},
* {@code presentationTimeUs} was not propagated to the frame timestamp of (rendered)
* Surface output buffers, and the resulting frame timestamp was undefined.
* Use {@link #releaseOutputBuffer(int, long)} to ensure a specific frame timestamp is set.
* Similarly, since frame timestamps can be used by the destination surface for rendering
* synchronization, care must be taken to normalize presentationTimeUs so as to not be
* mistaken for a system time. (See {@linkplain #releaseOutputBuffer(int, long)
* SurfaceView specifics}).
*
* @param index The index of a client-owned input buffer previously returned
* in a call to {@link #dequeueInputBuffer}.
* @param offset The byte offset into the input buffer at which the data starts.
* @param size The number of bytes of valid input data.
* @param presentationTimeUs The presentation timestamp in microseconds for this
* buffer. This is normally the media time at which this
* buffer should be presented (rendered). When using an output
* surface, this will be propagated as the {@link
* SurfaceTexture#getTimestamp timestamp} for the frame (after
* conversion to nanoseconds).
* @param flags A bitmask of flags
* {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
* While not prohibited, most codecs do not use the
* {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
* @throws IllegalStateException if not in the Executing state.
* @throws MediaCodec.CodecException upon codec error.
* @throws CryptoException if a crypto object has been specified in
* {@link #configure}
*/
public final void queueInputBuffer(
int index,
int offset, int size, long presentationTimeUs, int flags)
throws CryptoException {
synchronized(mBufferLock) {
if (mBufferMode == BUFFER_MODE_BLOCK) {
throw new IncompatibleWithBlockModelException("queueInputBuffer() "
+ "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
+ "Please use getQueueRequest() to queue buffers");
}
invalidateByteBuffer(mCachedInputBuffers, index);
mDequeuedInputBuffers.remove(index);
}
try {
native_queueInputBuffer(
index, offset, size, presentationTimeUs, flags);
} catch (CryptoException | IllegalStateException e) {
revalidateByteBuffer(mCachedInputBuffers, index);
throw e;
}
}
private native final void native_queueInputBuffer(
int index,
int offset, int size, long presentationTimeUs, int flags)
throws CryptoException;
public static final int CRYPTO_MODE_UNENCRYPTED = 0;
public static final int CRYPTO_MODE_AES_CTR = 1;
public static final int CRYPTO_MODE_AES_CBC = 2;
/**
* Metadata describing the structure of an encrypted input sample.
*
* A buffer's data is considered to be partitioned into "subSamples". Each subSample starts with
* a run of plain, unencrypted bytes followed by a run of encrypted bytes. Either of these runs
* may be empty. If pattern encryption applies, each of the encrypted runs is encrypted only
* partly, according to a repeating pattern of "encrypt" and "skip" blocks.
* {@link #numBytesOfClearData} can be null to indicate that all data is encrypted, and
* {@link #numBytesOfEncryptedData} can be null to indicate that all data is clear. At least one
* of {@link #numBytesOfClearData} and {@link #numBytesOfEncryptedData} must be non-null.
*
* This information encapsulates per-sample metadata as outlined in ISO/IEC FDIS 23001-7:2016
* "Common encryption in ISO base media file format files".
*
*
ISO-CENC Schemes
* ISO/IEC FDIS 23001-7:2016 defines four possible schemes by which media may be encrypted,
* corresponding to each possible combination of an AES mode with the presence or absence of
* patterned encryption.
*
*
*
*
*
* AES-CTR
* AES-CBC
*
*
*
*
* Without Patterns
* cenc
* cbc1
*
* With Patterns
* cens
* cbcs
*
*
*
*
* For {@code CryptoInfo}, the scheme is selected implicitly by the combination of the
* {@link #mode} field and the value set with {@link #setPattern}. For the pattern, setting the
* pattern to all zeroes (that is, both {@code blocksToEncrypt} and {@code blocksToSkip} are
* zero) is interpreted as turning patterns off completely. A scheme that does not use patterns
* will be selected, either cenc or cbc1. Setting the pattern to any nonzero value will choose
* one of the pattern-supporting schemes, cens or cbcs. The default pattern if
* {@link #setPattern} is never called is all zeroes.
*
*
HLS SAMPLE-AES Audio
* HLS SAMPLE-AES audio is encrypted in a manner compatible with the cbcs scheme, except that it
* does not use patterned encryption. However, if {@link #setPattern} is used to set the pattern
* to all zeroes, this will be interpreted as selecting the cbc1 scheme. The cbc1 scheme cannot
* successfully decrypt HLS SAMPLE-AES audio because of differences in how the IVs are handled.
* For this reason, it is recommended that a pattern of {@code 1} encrypted block and {@code 0}
* skip blocks be used with HLS SAMPLE-AES audio. This will trigger decryption to use cbcs mode
* while still decrypting every block.
*/
public final static class CryptoInfo {
/**
* The number of subSamples that make up the buffer's contents.
*/
public int numSubSamples;
/**
* The number of leading unencrypted bytes in each subSample. If null, all bytes are treated
* as encrypted and {@link #numBytesOfEncryptedData} must be specified.
*/
public int[] numBytesOfClearData;
/**
* The number of trailing encrypted bytes in each subSample. If null, all bytes are treated
* as clear and {@link #numBytesOfClearData} must be specified.
*/
public int[] numBytesOfEncryptedData;
/**
* A 16-byte key id
*/
public byte[] key;
/**
* A 16-byte initialization vector
*/
public byte[] iv;
/**
* The type of encryption that has been applied,
* see {@link #CRYPTO_MODE_UNENCRYPTED}, {@link #CRYPTO_MODE_AES_CTR}
* and {@link #CRYPTO_MODE_AES_CBC}
*/
public int mode;
/**
* Metadata describing an encryption pattern for the protected bytes in a subsample. An
* encryption pattern consists of a repeating sequence of crypto blocks comprised of a
* number of encrypted blocks followed by a number of unencrypted, or skipped, blocks.
*/
public final static class Pattern {
/**
* Number of blocks to be encrypted in the pattern. If both this and
* {@link #mSkipBlocks} are zero, pattern encryption is inoperative.
*/
private int mEncryptBlocks;
/**
* Number of blocks to be skipped (left clear) in the pattern. If both this and
* {@link #mEncryptBlocks} are zero, pattern encryption is inoperative.
*/
private int mSkipBlocks;
/**
* Construct a sample encryption pattern given the number of blocks to encrypt and skip
* in the pattern. If both parameters are zero, pattern encryption is inoperative.
*/
public Pattern(int blocksToEncrypt, int blocksToSkip) {
set(blocksToEncrypt, blocksToSkip);
}
/**
* Set the number of blocks to encrypt and skip in a sample encryption pattern. If both
* parameters are zero, pattern encryption is inoperative.
*/
public void set(int blocksToEncrypt, int blocksToSkip) {
mEncryptBlocks = blocksToEncrypt;
mSkipBlocks = blocksToSkip;
}
/**
* Return the number of blocks to skip in a sample encryption pattern.
*/
public int getSkipBlocks() {
return mSkipBlocks;
}
/**
* Return the number of blocks to encrypt in a sample encryption pattern.
*/
public int getEncryptBlocks() {
return mEncryptBlocks;
}
};
private static final Pattern ZERO_PATTERN = new Pattern(0, 0);
/**
* The pattern applicable to the protected data in each subsample.
*/
private Pattern mPattern = ZERO_PATTERN;
/**
* Set the subsample count, clear/encrypted sizes, key, IV and mode fields of
* a {@link MediaCodec.CryptoInfo} instance.
*/
public void set(
int newNumSubSamples,
@NonNull int[] newNumBytesOfClearData,
@NonNull int[] newNumBytesOfEncryptedData,
@NonNull byte[] newKey,
@NonNull byte[] newIV,
int newMode) {
numSubSamples = newNumSubSamples;
numBytesOfClearData = newNumBytesOfClearData;
numBytesOfEncryptedData = newNumBytesOfEncryptedData;
key = newKey;
iv = newIV;
mode = newMode;
mPattern = ZERO_PATTERN;
}
/**
* Returns the {@link Pattern encryption pattern}.
*/
public @NonNull Pattern getPattern() {
return new Pattern(mPattern.getEncryptBlocks(), mPattern.getSkipBlocks());
}
/**
* Set the encryption pattern on a {@link MediaCodec.CryptoInfo} instance.
* See {@link Pattern}.
*/
public void setPattern(Pattern newPattern) {
if (newPattern == null) {
newPattern = ZERO_PATTERN;
}
setPattern(newPattern.getEncryptBlocks(), newPattern.getSkipBlocks());
}
// Accessed from android_media_MediaExtractor.cpp.
private void setPattern(int blocksToEncrypt, int blocksToSkip) {
mPattern = new Pattern(blocksToEncrypt, blocksToSkip);
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
builder.append(numSubSamples + " subsamples, key [");
String hexdigits = "0123456789abcdef";
for (int i = 0; i < key.length; i++) {
builder.append(hexdigits.charAt((key[i] & 0xf0) >> 4));
builder.append(hexdigits.charAt(key[i] & 0x0f));
}
builder.append("], iv [");
for (int i = 0; i < iv.length; i++) {
builder.append(hexdigits.charAt((iv[i] & 0xf0) >> 4));
builder.append(hexdigits.charAt(iv[i] & 0x0f));
}
builder.append("], clear ");
builder.append(Arrays.toString(numBytesOfClearData));
builder.append(", encrypted ");
builder.append(Arrays.toString(numBytesOfEncryptedData));
builder.append(", pattern (encrypt: ");
builder.append(mPattern.mEncryptBlocks);
builder.append(", skip: ");
builder.append(mPattern.mSkipBlocks);
builder.append(")");
return builder.toString();
}
};
/**
* Similar to {@link #queueInputBuffer queueInputBuffer} but submits a buffer that is
* potentially encrypted.
* Check out further notes at {@link #queueInputBuffer queueInputBuffer}.
*
* @param index The index of a client-owned input buffer previously returned
* in a call to {@link #dequeueInputBuffer}.
* @param offset The byte offset into the input buffer at which the data starts.
* @param info Metadata required to facilitate decryption, the object can be
* reused immediately after this call returns.
* @param presentationTimeUs The presentation timestamp in microseconds for this
* buffer. This is normally the media time at which this
* buffer should be presented (rendered).
* @param flags A bitmask of flags
* {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
* While not prohibited, most codecs do not use the
* {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
* @throws IllegalStateException if not in the Executing state.
* @throws MediaCodec.CodecException upon codec error.
* @throws CryptoException if an error occurs while attempting to decrypt the buffer.
* An error code associated with the exception helps identify the
* reason for the failure.
*/
public final void queueSecureInputBuffer(
int index,
int offset,
@NonNull CryptoInfo info,
long presentationTimeUs,
int flags) throws CryptoException {
synchronized(mBufferLock) {
if (mBufferMode == BUFFER_MODE_BLOCK) {
throw new IncompatibleWithBlockModelException("queueSecureInputBuffer() "
+ "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
+ "Please use getQueueRequest() to queue buffers");
}
invalidateByteBuffer(mCachedInputBuffers, index);
mDequeuedInputBuffers.remove(index);
}
try {
native_queueSecureInputBuffer(
index, offset, info, presentationTimeUs, flags);
} catch (CryptoException | IllegalStateException e) {
revalidateByteBuffer(mCachedInputBuffers, index);
throw e;
}
}
private native final void native_queueSecureInputBuffer(
int index,
int offset,
@NonNull CryptoInfo info,
long presentationTimeUs,
int flags) throws CryptoException;
/**
* Returns the index of an input buffer to be filled with valid data
* or -1 if no such buffer is currently available.
* This method will return immediately if timeoutUs == 0, wait indefinitely
* for the availability of an input buffer if timeoutUs < 0 or wait up
* to "timeoutUs" microseconds if timeoutUs > 0.
* @param timeoutUs The timeout in microseconds, a negative timeout indicates "infinite".
* @throws IllegalStateException if not in the Executing state,
* or codec is configured in asynchronous mode.
* @throws MediaCodec.CodecException upon codec error.
*/
public final int dequeueInputBuffer(long timeoutUs) {
synchronized (mBufferLock) {
if (mBufferMode == BUFFER_MODE_BLOCK) {
throw new IncompatibleWithBlockModelException("dequeueInputBuffer() "
+ "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
+ "Please use MediaCodec.Callback objectes to get input buffer slots.");
}
}
int res = native_dequeueInputBuffer(timeoutUs);
if (res >= 0) {
synchronized(mBufferLock) {
validateInputByteBuffer(mCachedInputBuffers, res);
}
}
return res;
}
private native final int native_dequeueInputBuffer(long timeoutUs);
/**
* Section of memory that represents a linear block. Applications may
* acquire a block via {@link LinearBlock#obtain} and queue all or part
* of the block as an input buffer to a codec, or get a block allocated by
* codec as an output buffer from {@link OutputFrame}.
*
* {@see QueueRequest#setLinearBlock}
* {@see QueueRequest#setEncryptedLinearBlock}
* {@see OutputFrame#getLinearBlock}
*/
public static final class LinearBlock {
// No public constructors.
private LinearBlock() {}
/**
* Returns true if the buffer is mappable.
* @throws IllegalStateException if invalid
*/
public boolean isMappable() {
synchronized (mLock) {
if (!mValid) {
throw new IllegalStateException("The linear block is invalid");
}
return mMappable;
}
}
/**
* Map the memory and return the mapped region.
*
* The returned memory region becomes inaccessible after
* {@link #recycle}, or the buffer is queued to the codecs and not
* returned to the client yet.
*
* @return mapped memory region as {@link ByteBuffer} object
* @throws IllegalStateException if not mappable or invalid
*/
public @NonNull ByteBuffer map() {
synchronized (mLock) {
if (!mValid) {
throw new IllegalStateException("The linear block is invalid");
}
if (!mMappable) {
throw new IllegalStateException("The linear block is not mappable");
}
if (mMapped == null) {
mMapped = native_map();
}
return mMapped;
}
}
private native ByteBuffer native_map();
/**
* Mark this block as ready to be recycled by the framework once it is
* no longer in use. All operations to this object after
* this call will cause exceptions, as well as attempt to access the
* previously mapped memory region. Caller should clear all references
* to this object after this call.
*
* To avoid excessive memory consumption, it is recommended that callers
* recycle buffers as soon as they no longer need the buffers
*
* @throws IllegalStateException if invalid
*/
public void recycle() {
synchronized (mLock) {
if (!mValid) {
throw new IllegalStateException("The linear block is invalid");
}
if (mMapped != null) {
mMapped.setAccessible(false);
mMapped = null;
}
native_recycle();
mValid = false;
mNativeContext = 0;
}
sPool.offer(this);
}
private native void native_recycle();
private native void native_obtain(int capacity, String[] codecNames);
@Override
protected void finalize() {
native_recycle();
}
/**
* Returns true if it is possible to allocate a linear block that can be
* passed to all listed codecs as input buffers without copying the
* content.
*
* Note that even if this function returns true, {@link #obtain} may
* still throw due to invalid arguments or allocation failure.
*
* @param codecNames list of codecs that the client wants to use a
* linear block without copying. Null entries are
* ignored.
*/
public static boolean isCodecCopyFreeCompatible(@NonNull String[] codecNames) {
return native_checkCompatible(codecNames);
}
private static native boolean native_checkCompatible(@NonNull String[] codecNames);
/**
* Obtain a linear block object no smaller than {@code capacity}.
* If {@link #isCodecCopyFreeCompatible} with the same
* {@code codecNames} returned true, the returned
* {@link LinearBlock} object can be queued to the listed codecs without
* copying. The returned {@link LinearBlock} object is always
* read/write mappable.
*
* @param capacity requested capacity of the linear block in bytes
* @param codecNames list of codecs that the client wants to use this
* linear block without copying. Null entries are
* ignored.
* @return a linear block object.
* @throws IllegalArgumentException if the capacity is invalid or
* codecNames contains invalid name
* @throws IOException if an error occurred while allocating a buffer
*/
public static @Nullable LinearBlock obtain(
int capacity, @NonNull String[] codecNames) {
LinearBlock buffer = sPool.poll();
if (buffer == null) {
buffer = new LinearBlock();
}
synchronized (buffer.mLock) {
buffer.native_obtain(capacity, codecNames);
}
return buffer;
}
// Called from native
private void setInternalStateLocked(long context, boolean isMappable) {
mNativeContext = context;
mMappable = isMappable;
mValid = (context != 0);
}
private static final BlockingQueue sPool =
new LinkedBlockingQueue<>();
private final Object mLock = new Object();
private boolean mValid = false;
private boolean mMappable = false;
private ByteBuffer mMapped = null;
private long mNativeContext = 0;
}
/**
* Map a {@link HardwareBuffer} object into {@link Image}, so that the content of the buffer is
* accessible. Depending on the usage and pixel format of the hardware buffer, it may not be
* mappable; this method returns null in that case.
*
* @param hardwareBuffer {@link HardwareBuffer} to map.
* @return Mapped {@link Image} object, or null if the buffer is not mappable.
*/
public static @Nullable Image mapHardwareBuffer(@NonNull HardwareBuffer hardwareBuffer) {
return native_mapHardwareBuffer(hardwareBuffer);
}
private static native @Nullable Image native_mapHardwareBuffer(
@NonNull HardwareBuffer hardwareBuffer);
private static native void native_closeMediaImage(long context);
/**
* Builder-like class for queue requests. Use this class to prepare a
* queue request and send it.
*/
public final class QueueRequest {
// No public constructor
private QueueRequest(@NonNull MediaCodec codec, int index) {
mCodec = codec;
mIndex = index;
}
/**
* Set a linear block to this queue request. Exactly one buffer must be
* set for a queue request before calling {@link #queue}. It is possible
* to use the same {@link LinearBlock} object for multiple queue
* requests. The behavior is undefined if the range of the buffer
* overlaps for multiple requests, or the application writes into the
* region being processed by the codec.
*
* @param block The linear block object
* @param offset The byte offset into the input buffer at which the data starts.
* @param size The number of bytes of valid input data.
* @return this object
* @throws IllegalStateException if a buffer is already set
*/
public @NonNull QueueRequest setLinearBlock(
@NonNull LinearBlock block,
int offset,
int size) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
if (mLinearBlock != null || mHardwareBuffer != null) {
throw new IllegalStateException("Cannot set block twice");
}
mLinearBlock = block;
mOffset = offset;
mSize = size;
mCryptoInfo = null;
return this;
}
/**
* Set an encrypted linear block to this queue request. Exactly one buffer must be
* set for a queue request before calling {@link #queue}. It is possible
* to use the same {@link LinearBlock} object for multiple queue
* requests. The behavior is undefined if the range of the buffer
* overlaps for multiple requests, or the application writes into the
* region being processed by the codec.
*
* @param block The linear block object
* @param offset The byte offset into the input buffer at which the data starts.
* @param size The number of bytes of valid input data.
* @param cryptoInfo Metadata describing the structure of the encrypted input sample.
* @return this object
* @throws IllegalStateException if a buffer is already set
*/
public @NonNull QueueRequest setEncryptedLinearBlock(
@NonNull LinearBlock block,
int offset,
int size,
@NonNull MediaCodec.CryptoInfo cryptoInfo) {
Objects.requireNonNull(cryptoInfo);
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
if (mLinearBlock != null || mHardwareBuffer != null) {
throw new IllegalStateException("Cannot set block twice");
}
mLinearBlock = block;
mOffset = offset;
mSize = size;
mCryptoInfo = cryptoInfo;
return this;
}
/**
* Set a harware graphic buffer to this queue request. Exactly one buffer must
* be set for a queue request before calling {@link #queue}.
*
* Note: buffers should have format {@link HardwareBuffer#YCBCR_420_888},
* a single layer, and an appropriate usage ({@link HardwareBuffer#USAGE_CPU_READ_OFTEN}
* for software codecs and {@link HardwareBuffer#USAGE_VIDEO_ENCODE} for hardware)
* for codecs to recognize. Codecs may throw exception if the buffer is not recognizable.
*
* @param buffer The hardware graphic buffer object
* @return this object
* @throws IllegalStateException if a buffer is already set
*/
public @NonNull QueueRequest setHardwareBuffer(
@NonNull HardwareBuffer buffer) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
if (mLinearBlock != null || mHardwareBuffer != null) {
throw new IllegalStateException("Cannot set block twice");
}
mHardwareBuffer = buffer;
return this;
}
/**
* Set timestamp to this queue request.
*
* @param presentationTimeUs The presentation timestamp in microseconds for this
* buffer. This is normally the media time at which this
* buffer should be presented (rendered). When using an output
* surface, this will be propagated as the {@link
* SurfaceTexture#getTimestamp timestamp} for the frame (after
* conversion to nanoseconds).
* @return this object
*/
public @NonNull QueueRequest setPresentationTimeUs(long presentationTimeUs) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
mPresentationTimeUs = presentationTimeUs;
return this;
}
/**
* Set flags to this queue request.
*
* @param flags A bitmask of flags
* {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
* While not prohibited, most codecs do not use the
* {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
* @return this object
*/
public @NonNull QueueRequest setFlags(@BufferFlag int flags) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
mFlags = flags;
return this;
}
/**
* Add an integer parameter.
* See {@link MediaFormat} for an exhaustive list of supported keys with
* values of type int, that can also be set with {@link MediaFormat#setInteger}.
*
* If there was {@link MediaCodec#setParameters}
* call with the same key which is not processed by the codec yet, the
* value set from this method will override the unprocessed value.
*
* @return this object
*/
public @NonNull QueueRequest setIntegerParameter(
@NonNull String key, int value) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
mTuningKeys.add(key);
mTuningValues.add(Integer.valueOf(value));
return this;
}
/**
* Add a long parameter.
* See {@link MediaFormat} for an exhaustive list of supported keys with
* values of type long, that can also be set with {@link MediaFormat#setLong}.
*
* If there was {@link MediaCodec#setParameters}
* call with the same key which is not processed by the codec yet, the
* value set from this method will override the unprocessed value.
*
* @return this object
*/
public @NonNull QueueRequest setLongParameter(
@NonNull String key, long value) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
mTuningKeys.add(key);
mTuningValues.add(Long.valueOf(value));
return this;
}
/**
* Add a float parameter.
* See {@link MediaFormat} for an exhaustive list of supported keys with
* values of type float, that can also be set with {@link MediaFormat#setFloat}.
*
* If there was {@link MediaCodec#setParameters}
* call with the same key which is not processed by the codec yet, the
* value set from this method will override the unprocessed value.
*
* @return this object
*/
public @NonNull QueueRequest setFloatParameter(
@NonNull String key, float value) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
mTuningKeys.add(key);
mTuningValues.add(Float.valueOf(value));
return this;
}
/**
* Add a {@link ByteBuffer} parameter.
* See {@link MediaFormat} for an exhaustive list of supported keys with
* values of byte buffer, that can also be set with {@link MediaFormat#setByteBuffer}.
*
* If there was {@link MediaCodec#setParameters}
* call with the same key which is not processed by the codec yet, the
* value set from this method will override the unprocessed value.
*
* @return this object
*/
public @NonNull QueueRequest setByteBufferParameter(
@NonNull String key, @NonNull ByteBuffer value) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
mTuningKeys.add(key);
mTuningValues.add(value);
return this;
}
/**
* Add a string parameter.
* See {@link MediaFormat} for an exhaustive list of supported keys with
* values of type string, that can also be set with {@link MediaFormat#setString}.
*
* If there was {@link MediaCodec#setParameters}
* call with the same key which is not processed by the codec yet, the
* value set from this method will override the unprocessed value.
*
* @return this object
*/
public @NonNull QueueRequest setStringParameter(
@NonNull String key, @NonNull String value) {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
mTuningKeys.add(key);
mTuningValues.add(value);
return this;
}
/**
* Finish building a queue request and queue the buffers with tunings.
*/
public void queue() {
if (!isAccessible()) {
throw new IllegalStateException("The request is stale");
}
if (mLinearBlock == null && mHardwareBuffer == null) {
throw new IllegalStateException("No block is set");
}
setAccessible(false);
if (mLinearBlock != null) {
mCodec.native_queueLinearBlock(
mIndex, mLinearBlock, mOffset, mSize, mCryptoInfo,
mPresentationTimeUs, mFlags,
mTuningKeys, mTuningValues);
} else if (mHardwareBuffer != null) {
mCodec.native_queueHardwareBuffer(
mIndex, mHardwareBuffer, mPresentationTimeUs, mFlags,
mTuningKeys, mTuningValues);
}
clear();
}
@NonNull QueueRequest clear() {
mLinearBlock = null;
mOffset = 0;
mSize = 0;
mCryptoInfo = null;
mHardwareBuffer = null;
mPresentationTimeUs = 0;
mFlags = 0;
mTuningKeys.clear();
mTuningValues.clear();
return this;
}
boolean isAccessible() {
return mAccessible;
}
@NonNull QueueRequest setAccessible(boolean accessible) {
mAccessible = accessible;
return this;
}
private final MediaCodec mCodec;
private final int mIndex;
private LinearBlock mLinearBlock = null;
private int mOffset = 0;
private int mSize = 0;
private MediaCodec.CryptoInfo mCryptoInfo = null;
private HardwareBuffer mHardwareBuffer = null;
private long mPresentationTimeUs = 0;
private @BufferFlag int mFlags = 0;
private final ArrayList mTuningKeys = new ArrayList<>();
private final ArrayList