src.android.view.KeyCharacterMap Maven / Gradle / Ivy
Show all versions of android-all Show documentation
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.view;
import android.annotation.Nullable;
import android.compat.annotation.UnsupportedAppUsage;
import android.hardware.input.InputManager;
import android.os.Build;
import android.os.Parcel;
import android.os.Parcelable;
import android.text.method.MetaKeyKeyListener;
import android.util.AndroidRuntimeException;
import android.util.SparseIntArray;
import com.android.internal.annotations.VisibleForTesting;
import java.text.Normalizer;
/**
* Describes the keys provided by a keyboard device and their associated labels.
*/
public class KeyCharacterMap implements Parcelable {
/**
* The id of the device's primary built in keyboard is always 0.
*
* @deprecated This constant should no longer be used because there is no
* guarantee that a device has a built-in keyboard that can be used for
* typing text. There might not be a built-in keyboard, the built-in keyboard
* might be a {@link #NUMERIC} or {@link #SPECIAL_FUNCTION} keyboard, or there
* might be multiple keyboards installed including external keyboards.
* When interpreting key presses received from the framework, applications should
* use the device id specified in the {@link KeyEvent} received.
* When synthesizing key presses for delivery elsewhere or when translating key presses
* from unknown keyboards, applications should use the special {@link #VIRTUAL_KEYBOARD}
* device id.
*/
@Deprecated
public static final int BUILT_IN_KEYBOARD = 0;
/**
* The id of a generic virtual keyboard with a full layout that can be used to
* synthesize key events. Typically used with {@link #getEvents}.
*/
public static final int VIRTUAL_KEYBOARD = -1;
/**
* A numeric (12-key) keyboard.
*
* A numeric keyboard supports text entry using a multi-tap approach.
* It may be necessary to tap a key multiple times to generate the desired letter
* or symbol.
*
* This type of keyboard is generally designed for thumb typing.
*
*/
public static final int NUMERIC = 1;
/**
* A keyboard with all the letters, but with more than one letter per key.
*
* This type of keyboard is generally designed for thumb typing.
*
*/
public static final int PREDICTIVE = 2;
/**
* A keyboard with all the letters, and maybe some numbers.
*
* An alphabetic keyboard supports text entry directly but may have a condensed
* layout with a small form factor. In contrast to a {@link #FULL full keyboard}, some
* symbols may only be accessible using special on-screen character pickers.
* In addition, to improve typing speed and accuracy, the framework provides
* special affordances for alphabetic keyboards such as auto-capitalization
* and toggled / locked shift and alt keys.
*
* This type of keyboard is generally designed for thumb typing.
*
*/
public static final int ALPHA = 3;
/**
* A full PC-style keyboard.
*
* A full keyboard behaves like a PC keyboard. All symbols are accessed directly
* by pressing keys on the keyboard without on-screen support or affordances such
* as auto-capitalization.
*
* This type of keyboard is generally designed for full two hand typing.
*
*/
public static final int FULL = 4;
/**
* A keyboard that is only used to control special functions rather than for typing.
*
* A special function keyboard consists only of non-printing keys such as
* HOME and POWER that are not actually used for typing.
*
*/
public static final int SPECIAL_FUNCTION = 5;
/**
* This private-use character is used to trigger Unicode character
* input by hex digits.
*/
public static final char HEX_INPUT = '\uEF00';
/**
* This private-use character is used to bring up a character picker for
* miscellaneous symbols.
*/
public static final char PICKER_DIALOG_INPUT = '\uEF01';
/**
* Modifier keys may be chorded with character keys.
*
* @see #getModifierBehavior()
*/
public static final int MODIFIER_BEHAVIOR_CHORDED = 0;
/**
* Modifier keys may be chorded with character keys or they may toggle
* into latched or locked states when pressed independently.
*
* @see #getModifierBehavior()
*/
public static final int MODIFIER_BEHAVIOR_CHORDED_OR_TOGGLED = 1;
/*
* This bit will be set in the return value of {@link #get(int, int)} if the
* key is a "dead key."
*/
public static final int COMBINING_ACCENT = 0x80000000;
/**
* Mask the return value from {@link #get(int, int)} with this value to get
* a printable representation of the accent character of a "dead key."
*/
public static final int COMBINING_ACCENT_MASK = 0x7FFFFFFF;
/* Characters used to display placeholders for dead keys. */
private static final int ACCENT_ACUTE = '\u00B4';
private static final int ACCENT_BREVE = '\u02D8';
private static final int ACCENT_CARON = '\u02C7';
private static final int ACCENT_CEDILLA = '\u00B8';
private static final int ACCENT_CIRCUMFLEX = '\u02C6';
private static final int ACCENT_COMMA_ABOVE = '\u1FBD';
private static final int ACCENT_COMMA_ABOVE_RIGHT = '\u02BC';
private static final int ACCENT_DOT_ABOVE = '\u02D9';
private static final int ACCENT_DOT_BELOW = '.'; // approximate
private static final int ACCENT_DOUBLE_ACUTE = '\u02DD';
private static final int ACCENT_GRAVE = '\u02CB';
private static final int ACCENT_HOOK_ABOVE = '\u02C0';
private static final int ACCENT_HORN = '\''; // approximate
private static final int ACCENT_MACRON = '\u00AF';
private static final int ACCENT_MACRON_BELOW = '\u02CD';
private static final int ACCENT_OGONEK = '\u02DB';
private static final int ACCENT_REVERSED_COMMA_ABOVE = '\u02BD';
private static final int ACCENT_RING_ABOVE = '\u02DA';
private static final int ACCENT_STROKE = '-'; // approximate
private static final int ACCENT_TILDE = '\u02DC';
private static final int ACCENT_TURNED_COMMA_ABOVE = '\u02BB';
private static final int ACCENT_UMLAUT = '\u00A8';
private static final int ACCENT_VERTICAL_LINE_ABOVE = '\u02C8';
private static final int ACCENT_VERTICAL_LINE_BELOW = '\u02CC';
/* Legacy dead key display characters used in previous versions of the API.
* We still support these characters by mapping them to their non-legacy version. */
private static final int ACCENT_GRAVE_LEGACY = '`';
private static final int ACCENT_CIRCUMFLEX_LEGACY = '^';
private static final int ACCENT_TILDE_LEGACY = '~';
private static final int CHAR_SPACE = ' ';
/**
* Maps Unicode combining diacritical to display-form dead key.
*/
private static final SparseIntArray sCombiningToAccent = new SparseIntArray();
private static final SparseIntArray sAccentToCombining = new SparseIntArray();
static {
addCombining('\u0300', ACCENT_GRAVE);
addCombining('\u0301', ACCENT_ACUTE);
addCombining('\u0302', ACCENT_CIRCUMFLEX);
addCombining('\u0303', ACCENT_TILDE);
addCombining('\u0304', ACCENT_MACRON);
addCombining('\u0306', ACCENT_BREVE);
addCombining('\u0307', ACCENT_DOT_ABOVE);
addCombining('\u0308', ACCENT_UMLAUT);
addCombining('\u0309', ACCENT_HOOK_ABOVE);
addCombining('\u030A', ACCENT_RING_ABOVE);
addCombining('\u030B', ACCENT_DOUBLE_ACUTE);
addCombining('\u030C', ACCENT_CARON);
addCombining('\u030D', ACCENT_VERTICAL_LINE_ABOVE);
//addCombining('\u030E', ACCENT_DOUBLE_VERTICAL_LINE_ABOVE);
//addCombining('\u030F', ACCENT_DOUBLE_GRAVE);
//addCombining('\u0310', ACCENT_CANDRABINDU);
//addCombining('\u0311', ACCENT_INVERTED_BREVE);
addCombining('\u0312', ACCENT_TURNED_COMMA_ABOVE);
addCombining('\u0313', ACCENT_COMMA_ABOVE);
addCombining('\u0314', ACCENT_REVERSED_COMMA_ABOVE);
addCombining('\u0315', ACCENT_COMMA_ABOVE_RIGHT);
addCombining('\u031B', ACCENT_HORN);
addCombining('\u0323', ACCENT_DOT_BELOW);
//addCombining('\u0326', ACCENT_COMMA_BELOW);
addCombining('\u0327', ACCENT_CEDILLA);
addCombining('\u0328', ACCENT_OGONEK);
addCombining('\u0329', ACCENT_VERTICAL_LINE_BELOW);
addCombining('\u0331', ACCENT_MACRON_BELOW);
addCombining('\u0335', ACCENT_STROKE);
//addCombining('\u0342', ACCENT_PERISPOMENI);
//addCombining('\u0344', ACCENT_DIALYTIKA_TONOS);
//addCombining('\u0345', ACCENT_YPOGEGRAMMENI);
// One-way mappings to equivalent preferred accents.
sCombiningToAccent.append('\u0340', ACCENT_GRAVE);
sCombiningToAccent.append('\u0341', ACCENT_ACUTE);
sCombiningToAccent.append('\u0343', ACCENT_COMMA_ABOVE);
// One-way legacy mappings to preserve compatibility with older applications.
sAccentToCombining.append(ACCENT_GRAVE_LEGACY, '\u0300');
sAccentToCombining.append(ACCENT_CIRCUMFLEX_LEGACY, '\u0302');
sAccentToCombining.append(ACCENT_TILDE_LEGACY, '\u0303');
}
private static void addCombining(int combining, int accent) {
sCombiningToAccent.append(combining, accent);
sAccentToCombining.append(accent, combining);
}
/**
* Maps combinations of (display-form) combining key and second character
* to combined output character.
* These mappings are derived from the Unicode NFC tables as needed.
*/
private static final SparseIntArray sDeadKeyCache = new SparseIntArray();
private static final StringBuilder sDeadKeyBuilder = new StringBuilder();
static {
// Non-standard decompositions.
// Stroke modifier for Finnish multilingual keyboard and others.
addDeadKey(ACCENT_STROKE, 'D', '\u0110');
addDeadKey(ACCENT_STROKE, 'G', '\u01e4');
addDeadKey(ACCENT_STROKE, 'H', '\u0126');
addDeadKey(ACCENT_STROKE, 'I', '\u0197');
addDeadKey(ACCENT_STROKE, 'L', '\u0141');
addDeadKey(ACCENT_STROKE, 'O', '\u00d8');
addDeadKey(ACCENT_STROKE, 'T', '\u0166');
addDeadKey(ACCENT_STROKE, 'd', '\u0111');
addDeadKey(ACCENT_STROKE, 'g', '\u01e5');
addDeadKey(ACCENT_STROKE, 'h', '\u0127');
addDeadKey(ACCENT_STROKE, 'i', '\u0268');
addDeadKey(ACCENT_STROKE, 'l', '\u0142');
addDeadKey(ACCENT_STROKE, 'o', '\u00f8');
addDeadKey(ACCENT_STROKE, 't', '\u0167');
}
private static void addDeadKey(int accent, int c, int result) {
final int combining = sAccentToCombining.get(accent);
if (combining == 0) {
throw new IllegalStateException("Invalid dead key declaration.");
}
final int combination = (combining << 16) | c;
sDeadKeyCache.put(combination, result);
}
public static final @android.annotation.NonNull Parcelable.Creator CREATOR =
new Parcelable.Creator() {
public KeyCharacterMap createFromParcel(Parcel in) {
return new KeyCharacterMap(in);
}
public KeyCharacterMap[] newArray(int size) {
return new KeyCharacterMap[size];
}
};
private long mPtr;
private static native long nativeReadFromParcel(Parcel in);
private static native void nativeWriteToParcel(long ptr, Parcel out);
private static native void nativeDispose(long ptr);
private static native char nativeGetCharacter(long ptr, int keyCode, int metaState);
private static native boolean nativeGetFallbackAction(long ptr, int keyCode, int metaState,
FallbackAction outFallbackAction);
private static native char nativeGetNumber(long ptr, int keyCode);
private static native char nativeGetMatch(long ptr, int keyCode, char[] chars, int metaState);
private static native char nativeGetDisplayLabel(long ptr, int keyCode);
private static native int nativeGetKeyboardType(long ptr);
private static native KeyEvent[] nativeGetEvents(long ptr, char[] chars);
private static native KeyCharacterMap nativeObtainEmptyKeyCharacterMap(int deviceId);
private static native boolean nativeEquals(long ptr1, long ptr2);
private KeyCharacterMap(Parcel in) {
if (in == null) {
throw new IllegalArgumentException("parcel must not be null");
}
mPtr = nativeReadFromParcel(in);
if (mPtr == 0) {
throw new RuntimeException("Could not read KeyCharacterMap from parcel.");
}
}
// Called from native
@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
private KeyCharacterMap(long ptr) {
mPtr = ptr;
}
@Override
protected void finalize() throws Throwable {
if (mPtr != 0) {
nativeDispose(mPtr);
mPtr = 0;
}
}
/**
* Obtain empty key character map
* @param deviceId The input device ID
* @return The KeyCharacterMap object
* @hide
*/
@VisibleForTesting
@Nullable
public static KeyCharacterMap obtainEmptyMap(int deviceId) {
return nativeObtainEmptyKeyCharacterMap(deviceId);
}
/**
* Loads the key character maps for the keyboard with the specified device id.
*
* @param deviceId The device id of the keyboard.
* @return The associated key character map.
* @throws {@link UnavailableException} if the key character map
* could not be loaded because it was malformed or the default key character map
* is missing from the system.
*/
public static KeyCharacterMap load(int deviceId) {
final InputManager im = InputManager.getInstance();
InputDevice inputDevice = im.getInputDevice(deviceId);
if (inputDevice == null) {
inputDevice = im.getInputDevice(VIRTUAL_KEYBOARD);
if (inputDevice == null) {
throw new UnavailableException(
"Could not load key character map for device " + deviceId);
}
}
return inputDevice.getKeyCharacterMap();
}
/**
* Gets the Unicode character generated by the specified key and meta
* key state combination.
*
* Returns the Unicode character that the specified key would produce
* when the specified meta bits (see {@link MetaKeyKeyListener})
* were active.
*
* Returns 0 if the key is not one that is used to type Unicode
* characters.
*
* If the return value has bit {@link #COMBINING_ACCENT} set, the
* key is a "dead key" that should be combined with another to
* actually produce a character -- see {@link #getDeadChar} --
* after masking with {@link #COMBINING_ACCENT_MASK}.
*
*
* @param keyCode The key code.
* @param metaState The meta key modifier state.
* @return The associated character or combining accent, or 0 if none.
*/
public int get(int keyCode, int metaState) {
metaState = KeyEvent.normalizeMetaState(metaState);
char ch = nativeGetCharacter(mPtr, keyCode, metaState);
int map = sCombiningToAccent.get(ch);
if (map != 0) {
return map | COMBINING_ACCENT;
} else {
return ch;
}
}
/**
* Gets the fallback action to perform if the application does not
* handle the specified key.
*
* When an application does not handle a particular key, the system may
* translate the key to an alternate fallback key (specified in the
* fallback action) and dispatch it to the application.
* The event containing the fallback key is flagged
* with {@link KeyEvent#FLAG_FALLBACK}.
*
*
* @param keyCode The key code.
* @param metaState The meta key modifier state.
* @return The fallback action, or null if none. Remember to recycle the fallback action.
*
* @hide
*/
public FallbackAction getFallbackAction(int keyCode, int metaState) {
FallbackAction action = FallbackAction.obtain();
metaState = KeyEvent.normalizeMetaState(metaState);
if (nativeGetFallbackAction(mPtr, keyCode, metaState, action)) {
action.metaState = KeyEvent.normalizeMetaState(action.metaState);
return action;
}
action.recycle();
return null;
}
/**
* Gets the number or symbol associated with the key.
*
* The character value is returned, not the numeric value.
* If the key is not a number, but is a symbol, the symbol is retuned.
*
* This method is intended to to support dial pads and other numeric or
* symbolic entry on keyboards where certain keys serve dual function
* as alphabetic and symbolic keys. This method returns the number
* or symbol associated with the key independent of whether the user
* has pressed the required modifier.
*
* For example, on one particular keyboard the keys on the top QWERTY row generate
* numbers when ALT is pressed such that ALT-Q maps to '1'. So for that keyboard
* when {@link #getNumber} is called with {@link KeyEvent#KEYCODE_Q} it returns '1'
* so that the user can type numbers without pressing ALT when it makes sense.
*
*
* @param keyCode The key code.
* @return The associated numeric or symbolic character, or 0 if none.
*/
public char getNumber(int keyCode) {
return nativeGetNumber(mPtr, keyCode);
}
/**
* Gets the first character in the character array that can be generated
* by the specified key code.
*
* This is a convenience function that returns the same value as
* {@link #getMatch(int,char[],int) getMatch(keyCode, chars, 0)}.
*
*
* @param keyCode The keycode.
* @param chars The array of matching characters to consider.
* @return The matching associated character, or 0 if none.
* @throws {@link IllegalArgumentException} if the passed array of characters is null.
*/
public char getMatch(int keyCode, char[] chars) {
return getMatch(keyCode, chars, 0);
}
/**
* Gets the first character in the character array that can be generated
* by the specified key code. If there are multiple choices, prefers
* the one that would be generated with the specified meta key modifier state.
*
* @param keyCode The key code.
* @param chars The array of matching characters to consider.
* @param metaState The preferred meta key modifier state.
* @return The matching associated character, or 0 if none.
* @throws {@link IllegalArgumentException} if the passed array of characters is null.
*/
public char getMatch(int keyCode, char[] chars, int metaState) {
if (chars == null) {
throw new IllegalArgumentException("chars must not be null.");
}
metaState = KeyEvent.normalizeMetaState(metaState);
return nativeGetMatch(mPtr, keyCode, chars, metaState);
}
/**
* Gets the primary character for this key.
* In other words, the label that is physically printed on it.
*
* @param keyCode The key code.
* @return The display label character, or 0 if none (eg. for non-printing keys).
*/
public char getDisplayLabel(int keyCode) {
return nativeGetDisplayLabel(mPtr, keyCode);
}
/**
* Get the character that is produced by combining the dead key producing accent
* with the key producing character c.
* For example, getDeadChar('`', 'e') returns è.
* getDeadChar('^', ' ') returns '^' and getDeadChar('^', '^') returns '^'.
*
* @param accent The accent character. eg. '`'
* @param c The basic character.
* @return The combined character, or 0 if the characters cannot be combined.
*/
public static int getDeadChar(int accent, int c) {
if (c == accent || CHAR_SPACE == c) {
// The same dead character typed twice or a dead character followed by a
// space should both produce the non-combining version of the combining char.
// In this case we don't even need to compute the combining character.
return accent;
}
int combining = sAccentToCombining.get(accent);
if (combining == 0) {
return 0;
}
final int combination = (combining << 16) | c;
int combined;
synchronized (sDeadKeyCache) {
combined = sDeadKeyCache.get(combination, -1);
if (combined == -1) {
sDeadKeyBuilder.setLength(0);
sDeadKeyBuilder.append((char)c);
sDeadKeyBuilder.append((char)combining);
String result = Normalizer.normalize(sDeadKeyBuilder, Normalizer.Form.NFC);
combined = result.codePointCount(0, result.length()) == 1
? result.codePointAt(0) : 0;
sDeadKeyCache.put(combination, combined);
}
}
return combined;
}
/**
* Describes the character mappings associated with a key.
*
* @deprecated instead use {@link KeyCharacterMap#getDisplayLabel(int)},
* {@link KeyCharacterMap#getNumber(int)} and {@link KeyCharacterMap#get(int, int)}.
*/
@Deprecated
public static class KeyData {
public static final int META_LENGTH = 4;
/**
* The display label (see {@link #getDisplayLabel}).
*/
public char displayLabel;
/**
* The "number" value (see {@link #getNumber}).
*/
public char number;
/**
* The character that will be generated in various meta states
* (the same ones used for {@link #get} and defined as
* {@link KeyEvent#META_SHIFT_ON} and {@link KeyEvent#META_ALT_ON}).
*
* Index Value
* 0 no modifiers
* 1 caps
* 2 alt
* 3 caps + alt
*
*/
public char[] meta = new char[META_LENGTH];
}
/**
* Get the character conversion data for a given key code.
*
* @param keyCode The keyCode to query.
* @param results A {@link KeyData} instance that will be filled with the results.
* @return True if the key was mapped. If the key was not mapped, results is not modified.
*
* @deprecated instead use {@link KeyCharacterMap#getDisplayLabel(int)},
* {@link KeyCharacterMap#getNumber(int)} or {@link KeyCharacterMap#get(int, int)}.
*/
@Deprecated
public boolean getKeyData(int keyCode, KeyData results) {
if (results.meta.length < KeyData.META_LENGTH) {
throw new IndexOutOfBoundsException(
"results.meta.length must be >= " + KeyData.META_LENGTH);
}
char displayLabel = nativeGetDisplayLabel(mPtr, keyCode);
if (displayLabel == 0) {
return false;
}
results.displayLabel = displayLabel;
results.number = nativeGetNumber(mPtr, keyCode);
results.meta[0] = nativeGetCharacter(mPtr, keyCode, 0);
results.meta[1] = nativeGetCharacter(mPtr, keyCode, KeyEvent.META_SHIFT_ON);
results.meta[2] = nativeGetCharacter(mPtr, keyCode, KeyEvent.META_ALT_ON);
results.meta[3] = nativeGetCharacter(mPtr, keyCode,
KeyEvent.META_ALT_ON | KeyEvent.META_SHIFT_ON);
return true;
}
/**
* Get an array of KeyEvent objects that if put into the input stream
* could plausibly generate the provided sequence of characters. It is
* not guaranteed that the sequence is the only way to generate these
* events or that it is optimal.
*
* This function is primarily offered for instrumentation and testing purposes.
* It may fail to map characters to key codes. In particular, the key character
* map for the {@link #BUILT_IN_KEYBOARD built-in keyboard} device id may be empty.
* Consider using the key character map associated with the
* {@link #VIRTUAL_KEYBOARD virtual keyboard} device id instead.
*
* For robust text entry, do not use this function. Instead construct a
* {@link KeyEvent} with action code {@link KeyEvent#ACTION_MULTIPLE} that contains
* the desired string using {@link KeyEvent#KeyEvent(long, String, int, int)}.
*
*
* @param chars The sequence of characters to generate.
* @return An array of {@link KeyEvent} objects, or null if the given char array
* can not be generated using the current key character map.
* @throws {@link IllegalArgumentException} if the passed array of characters is null.
*/
public KeyEvent[] getEvents(char[] chars) {
if (chars == null) {
throw new IllegalArgumentException("chars must not be null.");
}
return nativeGetEvents(mPtr, chars);
}
/**
* Returns true if the specified key produces a glyph.
*
* @param keyCode The key code.
* @return True if the key is a printing key.
*/
public boolean isPrintingKey(int keyCode) {
int type = Character.getType(nativeGetDisplayLabel(mPtr, keyCode));
switch (type)
{
case Character.SPACE_SEPARATOR:
case Character.LINE_SEPARATOR:
case Character.PARAGRAPH_SEPARATOR:
case Character.CONTROL:
case Character.FORMAT:
return false;
default:
return true;
}
}
/**
* Gets the keyboard type.
* Returns {@link #NUMERIC}, {@link #PREDICTIVE}, {@link #ALPHA}, {@link #FULL}
* or {@link #SPECIAL_FUNCTION}.
*
* Different keyboard types have different semantics. Refer to the documentation
* associated with the keyboard type constants for details.
*
*
* @return The keyboard type.
*/
public int getKeyboardType() {
return nativeGetKeyboardType(mPtr);
}
/**
* Gets a constant that describes the behavior of this keyboard's modifier keys
* such as {@link KeyEvent#KEYCODE_SHIFT_LEFT}.
*
* Currently there are two behaviors that may be combined:
*
*
* - Chorded behavior: When the modifier key is pressed together with one or more
* character keys, the keyboard inserts the modified keys and
* then resets the modifier state when the modifier key is released.
* - Toggled behavior: When the modifier key is pressed and released on its own
* it first toggles into a latched state. When latched, the modifier will apply
* to next character key that is pressed and will then reset itself to the initial state.
* If the modifier is already latched and the modifier key is pressed and release on
* its own again, then it toggles into a locked state. When locked, the modifier will
* apply to all subsequent character keys that are pressed until unlocked by pressing
* the modifier key on its own one more time to reset it to the initial state.
* Toggled behavior is useful for small profile keyboards designed for thumb typing.
*
*
* This function currently returns {@link #MODIFIER_BEHAVIOR_CHORDED} when the
* {@link #getKeyboardType() keyboard type} is {@link #FULL} or {@link #SPECIAL_FUNCTION} and
* {@link #MODIFIER_BEHAVIOR_CHORDED_OR_TOGGLED} otherwise.
* In the future, the function may also take into account global keyboard
* accessibility settings, other user preferences, or new device capabilities.
*
*
* @return The modifier behavior for this keyboard.
*
* @see #MODIFIER_BEHAVIOR_CHORDED
* @see #MODIFIER_BEHAVIOR_CHORDED_OR_TOGGLED
*/
public int getModifierBehavior() {
switch (getKeyboardType()) {
case FULL:
case SPECIAL_FUNCTION:
return MODIFIER_BEHAVIOR_CHORDED;
default:
return MODIFIER_BEHAVIOR_CHORDED_OR_TOGGLED;
}
}
/**
* Queries the framework about whether any physical keys exist on the
* any keyboard attached to the device that are capable of producing the given key code.
*
* @param keyCode The key code to query.
* @return True if at least one attached keyboard supports the specified key code.
*/
public static boolean deviceHasKey(int keyCode) {
return InputManager.getInstance().deviceHasKeys(new int[] { keyCode })[0];
}
/**
* Queries the framework about whether any physical keys exist on the
* any keyboard attached to the device that are capable of producing the given
* array of key codes.
*
* @param keyCodes The array of key codes to query.
* @return A new array of the same size as the key codes array whose elements
* are set to true if at least one attached keyboard supports the corresponding key code
* at the same index in the key codes array.
*/
public static boolean[] deviceHasKeys(int[] keyCodes) {
return InputManager.getInstance().deviceHasKeys(keyCodes);
}
@Override
public void writeToParcel(Parcel out, int flags) {
if (out == null) {
throw new IllegalArgumentException("parcel must not be null");
}
nativeWriteToParcel(mPtr, out);
}
@Override
public int describeContents() {
return 0;
}
@Override
public boolean equals(Object obj) {
if (obj == null || !(obj instanceof KeyCharacterMap)) {
return false;
}
KeyCharacterMap peer = (KeyCharacterMap) obj;
if (mPtr == 0 || peer.mPtr == 0) {
return mPtr == peer.mPtr;
}
return nativeEquals(mPtr, peer.mPtr);
}
/**
* Thrown by {@link KeyCharacterMap#load} when a key character map could not be loaded.
*/
public static class UnavailableException extends AndroidRuntimeException {
public UnavailableException(String msg) {
super(msg);
}
}
/**
* Specifies a substitute key code and meta state as a fallback action
* for an unhandled key.
* @hide
*/
public static final class FallbackAction {
private static final int MAX_RECYCLED = 10;
private static final Object sRecycleLock = new Object();
private static FallbackAction sRecycleBin;
private static int sRecycledCount;
private FallbackAction next;
@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
public int keyCode;
@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
public int metaState;
private FallbackAction() {
}
public static FallbackAction obtain() {
final FallbackAction target;
synchronized (sRecycleLock) {
if (sRecycleBin == null) {
target = new FallbackAction();
} else {
target = sRecycleBin;
sRecycleBin = target.next;
sRecycledCount--;
target.next = null;
}
}
return target;
}
public void recycle() {
synchronized (sRecycleLock) {
if (sRecycledCount < MAX_RECYCLED) {
next = sRecycleBin;
sRecycleBin = this;
sRecycledCount += 1;
} else {
next = null;
}
}
}
}
}