All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.com.android.internal.graphics.cam.Frame Maven / Gradle / Ivy

/*
 * Copyright (C) 2021 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.android.internal.graphics.cam;

import android.annotation.NonNull;
import android.util.MathUtils;

/**
 * The frame, or viewing conditions, where a color was seen. Used, along with a color, to create a
 * color appearance model representing the color.
 *
 * 

To convert a traditional color to a color appearance model, it requires knowing what * conditions the color was observed in. Our perception of color depends on, for example, the tone * of the light illuminating the color, how bright that light was, etc. * *

This class is modelled separately from the color appearance model itself because there are a * number of calculations during the color => CAM conversion process that depend only on the viewing * conditions. Caching those calculations in a Frame instance saves a significant amount of time. */ public final class Frame { // Standard viewing conditions assumed in RGB specification - Stokes, Anderson, Chandrasekar, // Motta - A Standard Default Color Space for the Internet: sRGB, 1996. // // White point = D65 // Luminance of adapting field: 200 / Pi / 5, units are cd/m^2. // sRGB ambient illuminance = 64 lux (per sRGB spec). However, the spec notes this is // artificially low and based on monitors in 1990s. Use 200, the sRGB spec says this is the // real average, and a survey of lux values on Wikipedia confirms this is a comfortable // default: somewhere between a very dark overcast day and office lighting. // Per CAM16 introduction paper (Li et al, 2017) Ew = pi * lw, and La = lw * Yb/Yw // Ew = ambient environment luminance, in lux. // Yb/Yw is taken to be midgray, ~20% relative luminance (XYZ Y 18.4, CIELAB L* 50). // Therefore La = (Ew / pi) * .184 // La = 200 / pi * .184 // Image surround to 10 degrees = ~20% relative luminance = CIELAB L* 50 // // Not from sRGB standard: // Surround = average, 2.0. // Discounting illuminant = false, doesn't occur for self-luminous displays public static final Frame DEFAULT = Frame.make( CamUtils.WHITE_POINT_D65, (float) (200.0f / Math.PI * CamUtils.yFromLstar(50.0f) / 100.f), 50.0f, 2.0f, false); private final float mAw; private final float mNbb; private final float mNcb; private final float mC; private final float mNc; private final float mN; private final float[] mRgbD; private final float mFl; private final float mFlRoot; private final float mZ; float getAw() { return mAw; } float getN() { return mN; } float getNbb() { return mNbb; } float getNcb() { return mNcb; } float getC() { return mC; } float getNc() { return mNc; } @NonNull float[] getRgbD() { return mRgbD; } float getFl() { return mFl; } float getFlRoot() { return mFlRoot; } float getZ() { return mZ; } private Frame(float n, float aw, float nbb, float ncb, float c, float nc, float[] rgbD, float fl, float fLRoot, float z) { mN = n; mAw = aw; mNbb = nbb; mNcb = ncb; mC = c; mNc = nc; mRgbD = rgbD; mFl = fl; mFlRoot = fLRoot; mZ = z; } /** Create a custom frame. */ @NonNull public static Frame make(@NonNull float[] whitepoint, float adaptingLuminance, float backgroundLstar, float surround, boolean discountingIlluminant) { // Transform white point XYZ to 'cone'/'rgb' responses float[][] matrix = CamUtils.XYZ_TO_CAM16RGB; float[] xyz = whitepoint; float rW = (xyz[0] * matrix[0][0]) + (xyz[1] * matrix[0][1]) + (xyz[2] * matrix[0][2]); float gW = (xyz[0] * matrix[1][0]) + (xyz[1] * matrix[1][1]) + (xyz[2] * matrix[1][2]); float bW = (xyz[0] * matrix[2][0]) + (xyz[1] * matrix[2][1]) + (xyz[2] * matrix[2][2]); // Scale input surround, domain (0, 2), to CAM16 surround, domain (0.8, 1.0) float f = 0.8f + (surround / 10.0f); // "Exponential non-linearity" float c = (f >= 0.9) ? MathUtils.lerp(0.59f, 0.69f, ((f - 0.9f) * 10.0f)) : MathUtils.lerp( 0.525f, 0.59f, ((f - 0.8f) * 10.0f)); // Calculate degree of adaptation to illuminant float d = discountingIlluminant ? 1.0f : f * (1.0f - ((1.0f / 3.6f) * (float) Math.exp( (-adaptingLuminance - 42.0f) / 92.0f))); // Per Li et al, if D is greater than 1 or less than 0, set it to 1 or 0. d = (d > 1.0) ? 1.0f : (d < 0.0) ? 0.0f : d; // Chromatic induction factor float nc = f; // Cone responses to the whitepoint, adjusted for illuminant discounting. // // Why use 100.0 instead of the white point's relative luminance? // // Some papers and implementations, for both CAM02 and CAM16, use the Y // value of the reference white instead of 100. Fairchild's Color Appearance // Models (3rd edition) notes that this is in error: it was included in the // CIE 2004a report on CIECAM02, but, later parts of the conversion process // account for scaling of appearance relative to the white point relative // luminance. This part should simply use 100 as luminance. float[] rgbD = new float[]{d * (100.0f / rW) + 1.0f - d, d * (100.0f / gW) + 1.0f - d, d * (100.0f / bW) + 1.0f - d, }; // Luminance-level adaptation factor float k = 1.0f / (5.0f * adaptingLuminance + 1.0f); float k4 = k * k * k * k; float k4F = 1.0f - k4; float fl = (k4 * adaptingLuminance) + (0.1f * k4F * k4F * (float) Math.cbrt( 5.0 * adaptingLuminance)); // Intermediate factor, ratio of background relative luminance to white relative luminance float n = CamUtils.yFromLstar(backgroundLstar) / whitepoint[1]; // Base exponential nonlinearity // note Schlomer 2018 has a typo and uses 1.58, the correct factor is 1.48 float z = 1.48f + (float) Math.sqrt(n); // Luminance-level induction factors float nbb = 0.725f / (float) Math.pow(n, 0.2); float ncb = nbb; // Discounted cone responses to the white point, adjusted for post-chromatic // adaptation perceptual nonlinearities. float[] rgbAFactors = new float[]{(float) Math.pow(fl * rgbD[0] * rW / 100.0, 0.42), (float) Math.pow(fl * rgbD[1] * gW / 100.0, 0.42), (float) Math.pow( fl * rgbD[2] * bW / 100.0, 0.42)}; float[] rgbA = new float[]{(400.0f * rgbAFactors[0]) / (rgbAFactors[0] + 27.13f), (400.0f * rgbAFactors[1]) / (rgbAFactors[1] + 27.13f), (400.0f * rgbAFactors[2]) / (rgbAFactors[2] + 27.13f), }; float aw = ((2.0f * rgbA[0]) + rgbA[1] + (0.05f * rgbA[2])) * nbb; return new Frame(n, aw, nbb, ncb, c, nc, rgbD, fl, (float) Math.pow(fl, 0.25), z); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy